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The simple cubic lattice model of polymer chains was used to study
the properties of adsorbed macromolecules with different internal architec-
tures: linear chains and star-branched chains with 3 arms of equal lengths.
The polymer chains were modeled with the excluded volume interactions
only, i.e. in good solvent conditions. The chains were placed on an im-
penetrable surface and a contact potential between polymer segments and
this surface was assumed. The strength of this potential was chosen to
emulate the conditions of a weak adsorption regime. The Metropolis-like
sampling Monte Carlo algorithm was used to determine the properties of
the adsorbed polymer film. The size and the internal structure of adsorbed
chains were described. The size, distribution and lifetimes of structural ele-
ments such as tails, loops and trains were also determined. The differences
between the structure of films consisting of star-branched and linear chains
were described and discussed.

PACS numbers: 07.05.Tp, 61.25.Hq, 83.10.Nn

1. Introduction

The adsorption of polymer chains on a solid surface is a very impor-
tant phenomenon in material science due to practical applications such as
colloidal stabilization, glueing, lubrication etc. [1]. It is possible to study
such polymer systems experimentally using techniques like quasi-elastic light
scattering, induced fluorescence and small angle neutron scattering and mea-
surements of forces between polymers adsorbed from the dilute solutions
and the surface [2-4]. The adsorption of polymers usually was performed up
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to the saturation of the adsorbed layer, what means, that the real experi-
ments concerning isolated polymer chains (infinitely diluted systems) are dif-
ficult. Recently, Maier and Radler have studied DNA molecule adsorbed on
a lipid bilayer by the means of fluorescence microscopy, while Granick and
Frantz studied adsorbed polyethylene glycol [5-6]. The polymer adsorption
is also interesting from the theoretical point of view because the presence
of the attractive surface distorts the properties of the adsorbed chains when
they are compared to free chains in solution or in the melt. One of the
important questions concerns the influence of the internal architecture of
macromolecules on the properties of adsorbed polymer chains. Experiments
concerning the adsorption of polymer chains having the internal architec-
ture different from linear have also recently been carried out. Yerushalami
et al. studied cyclic polystyrenes in cyclopentane located between two mica
surfaces [7]. They found that in solvent conditions at which chains were
adsorbed they were different for both architectures. Stratouras and Kosmas
explained this behavior from the theoretical point of view and showed that
rings were significantly more adsorbed than linear chains [8]. The structure
of an adsorbed polymer can be described in the terms of trains, loops and
tails. A train is formed by adjacent beads, which are adsorbed, a loop is
simply a connection between a pair of trains (the connection formed by not
adsorbed beads only) while a tail is a sequence of not adsorbed beads at the
end of a chain. Fig. 1 presents a scheme of these structural elements.

Fig. 1. A scheme of an adsorbed star-branched chain and its structural elements.

Experimental works are still not able to study the detailed structure of
the adsorbed chain, i.e. trains, loops and tails. The number and mean
length of trains, loops and tails was given in the mean field lattice theory
of Scheutjens and Fleer that originated from the Flory–Huggins theory of
polymer solutions [9–10]. They also showed that for shorter distances from
the adsorbing surface segment density decays exponentially but for longer
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distances this decay is much slower. Binder and co-workers carried out
Monte Carlo simulations of single adsorbed short polymers on a diamond
lattice [11]. They determined the temperature at which the adsorption of
chains changed from weak to strong. They also studied some properties of
chains in these both regimes. Tirrell et al. studied the irreversible adsorption
of lattice linear chains using the Monte Carlo simulations [12].

Properties of branched chains were found in general to be different from
their linear counterparts [13]. Therefore, the comparison of properties of
polymers with different internal architectures seems to be interesting from
the theoretical point of view. Kosmas et al. developed a theory of adsorbed
polymer chains with no excluded volume [14]. They found that the difference
in adsorption of star-branched polymers consisting of a few arms and linear
chains were almost negligible. For stars with f = 3 arms the adsorption ap-
peared to be 6% higher than of linear chains. The increase of the number of
arms caused the higher adsorption of a polymer. This was explained by the
fact that a polymer had a more compact structure than a linear one. These
results were confirmed recently by Joanny and Johner [15]. Halperin and
Joanny performed a scaling analysis of adsorbed star-branched chains [16].
They found that in the case of a weak adsorption the chains retained their
spherical shapes and scalings characteristic of free polymers. Binder and
Ono studied star-branched polymers, which were adsorbed to impenetra-
ble surfaces using the scaling theory and the renormalization group method
[17–19]. They showed that scaling exponents of density profiles depended on
the number of arms. Recently, we built a simple lattice model for the simula-
tion of the isolated polymer chains adsorbed on an attractive surface and for
studying the influence of the chain architecture on the degree of adsorption
[20–22]. It was shown that ring chains were about 50% more adsorbed than
linear and star-branched chains. The transition from a weakly to a strongly
adsorbed chain was found to take place at the same temperature for all
chain architectures. Besides the Metropolis sampling method other Monte
Carlo algorithms like the configurational bias Monte Carlo (CBMC) algo-
rithm (which is, in fact, a modified Rosenbluth–Rosenbluth method) were
used. Binder et al. studied the transition from a weak to strong adsorption
by this method [23]. The adsorption of a copolymer on patterned surfaces
was investigated by Semler and Genzer also by means of CBMC [24]. Some
dynamic properties of the adsorbed polymer systems were also investigated
by a Monte Carlo method [22, 25, 26].

In this paper, we compared the properties of polymers having differ-
ent macromolecular architecture: linear and star-branched chains. For the
purpose of this study we designed simple models of polymers using two ap-
proximations — a united atom and a lattice representation. The properties
of these model chains were determined using the dynamic Monte Carlo sim-
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ulations — the simulation algorithm is explained in the following section.
The detailed analysis of the internal structure of chains was presented and
the differences between linear and star-branched polymers were pointed out.

2. Model and the simulation algorithm

We studied models of two different macromolecular architectures: linear
chains and star-branched chains. In both cases we suppressed all the atomic
details and polymers were represented by united atoms [20, 27]. It was shown
that the reduced models can be used for studying structural properties of
polymer systems assuming that we were not interested in very fast processes
and in the atomic structure. Linear chains consisted of the sequence of iden-
tical beads (homopolymers). The star-branched model chains consisted of
f = 3 arms. Each arm emanated from the same origin (the branching point)
and consisted of n identical beads. Therefore, the total number of beads in
the star-branched chain was N = f(n− 1) + 1. The second assumption was
that the positions of polymer beads were restricted to vertices of a simple
cubic lattice. The polymer chains were studied in good solvent conditions.
The excluded volume interaction was introduced into the model by forbid-
ding the double occupancy of lattice sites by polymer beads. We studied
the structure of adsorbed single chains, i.e. infinitely diluted systems.

The chains were put into the Monte Carlo box with periodic boundary
conditions imposed in x and y directions only. The size of the Monte Carlo
box was chosen large (L = 200) to minimize the influence of its size on the
results. Additionally, in the plane z = 0 we placed the surface which was
impenetrable for polymer beads. The adsorption of chains on that surface
was realized by the introduction of an attractive contact potential between
the surface and polymer beads. This potential had the form of square well
commonly used in lattice models:

V (zi) =







0 for zi > 1 ,

ε for zi = 1 ,

∞ for zi < 1 ,

(1)

where zi is a distance between i-th polymer bead and the surface while ε

is a negative constant. The reversed potential could be treated as a usual
measure of the temperature of the system T ∗ = 1/ε. As we studied the case
of the weak adsorption the problem how to keep the chain in contact with
the surface appeared. The properties of model adsorbed chains were studied
by means of the Monte Carlo method and the simulation algorithm was
based on the Metropolis scheme [27]. The initial conformation of the chain
underwent a series of local changes of its conformation. The set of these
micro-modifications presented in Fig. 2 was the following: (a) two-bond
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motion, (b) three-bond motion, (c) three-bond crankshaft motion, (d) ends
reorientations, and (e) branching point collective motion (for star-branched
chains only). All the local moves were selected randomly along the chain

Fig. 2. The set of micro-modifications of the chain-light beads show new positions

(see text for details). An arrow shows the branching point.

during the simulation. It was shown that one can define a time unit as an
average attempt of every micro-modification per one polymer bead. The
transition from an old to a new conformation was accepted according to the
Metropolis criterion with the following probability:

Pold→new = min

{

1, exp

(

Enew − Eold

kT

)}

, (2)

where Eold and Enew were the energies of old and new chain conformations,
respectively, k was the Boltzmann constant and T was the temperature.
The randomly chosen chain conformation underwent a series of local mo-
tions, usually in the order of 107–108 time units. For each set of parameters
(macromolecular architecture and the chain length N) 30–40 different and
independent long simulation runs were performed.

Since the aim of this work was to study equilibrium properties of the
system one had to be sure that the state of equilibrium had been reached.
In order to provide that we performed the simulations according to the fol-
lowing procedure: the system in its initial random conformation was equili-
brated for a long time. The equilibration runs lasted for at least 106 time
units, depending on the size of the system. At equal time intervals the con-
trol parameters were obtained. These were: the mean dimensions of the
system, the mean energy of the system and their fluctuations. The equili-
bration runs were performed until the probe results were reasonably stable
and independent of different sampling periods. After the equilibration was
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achieved the main simulation runs begun. Calculated parameters were av-
eraged over many independent simulation runs and one can estimate the
standard errors of these parameters on the level of 2–3%.

3. Results and discussion

The calculations were made for the chains consisted of N = 50 to 1200
beads (linear polymers) and of N = 49 to 1201 beads (star-branched poly-
mers). The potential of interaction between polymer beads and the surface
was chosen to be ε = −0.3 because it was shown that this potential cor-
responded to the reduced temperature T ∗ located just above the transition
from a weak to a strong adsorption regime [20].

Some information about the structure and local mobility of adsorbed
polymers can be obtained from the analysis the elementary changes of chain
conformation. In Fig. 3 we present the fraction of elementary motions ac-
cepted due to the Metropolis criterion as a function of the distance from
the adsorbing surface for star-branched chain with N = 199 beads. The
analogous fractions for linear chain with N = 200 beads were almost the
same so we do not present them. In the vicinity of the adsorbing surface all
the motions were less effective. This can be explained by the fact that the
adsorbing surface was an obstacle for modifications. Moreover, the density
of polymer beads was in this region considerably larger (see the discussion
below). For longer distances (above 5 lattice units) the acceptance fraction
of these all types of motion remained on the steady level. In the outer part
of the polymer film, i.e. for z close to 40 the fraction of the acceptance fluc-
tuated. The main conclusion was that the mobility of the entire adsorbed

Fig. 3. The fraction of accepted local moves as a function of the distance from

the adsorbing surface. Types of moves are given in the inset. The case of a star-

branched chain for N = 199.
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linear and star-branched chain was rather constant with the exception of
the thin layer located directly on the adsorbing surface. One has to re-
member that the motion of the entire adsorbed polymer chain in the very
long time limit had to be the same for all distances z because of the chain
connectivity. The above results could be treated as complementary to the
results of Baschnagel and Binder showing the difference in the perpendicu-
lar and parallel motion of adsorbed chains [28]. Real experiments suggest
that this distribution was different for different molecular architectures [16].
In Fig. 4 we present the density profile of polymer beads ρ versus the dis-
tance from the attractive surface z for two pairs of linear and star-branched
chains of the same length. The density was calculated as the number of
beads at a given distance from the surface divided by the total number of
polymer beads N . One can observe that, surprisingly, differences between
density profiles of linear and star-branched chains were rather small. The
only difference was that the segment density for shorter distances from the

Fig. 4. The density of polymer beads as a function of the distance from the ad-

sorbing surface z. The chain length and the architecture of chains are given in

the inset.

adsorbing surface was larger for star-chains while for longer distances the
star density was smaller. This can be explained by the fact that near the
branching point the segment density was always larger than in the middle
of linear chain. The shape of these density profiles did not depend strongly
on the chain length. The increase of the chain length led to almost the same
segment density. Density profiles predicted theoretically for chain without
the excluded volume scaled as ρ ∼ exp(−az). For chains in good solvent
conditions, i.e. with the excluded volume the scaling was ρ ∼ z−1/2 (but
in good solvent conditions polymers had high tendency to dissolve rather
than to adsorb [29]). Density profiles obtained in our simulations were quite
different from those obtained for chains located between two walls (“double
confinement” regime) [30].
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Fig. 5. Mean length of loops, trains and tails as a function of chain length N .

The structure of an adsorbed chain was usually described in terms of
trains, loops and tails (see Fig. 1). Fig. 5 shows the plot of the mean length
of these structural elements as a function of the total chain length N . One
can observe that all these dependences are linear. The length of the trains
was relatively small comparing to the length of tails and loops. It means
that for the weak adsorption the majority of chain remained away from the
surface and thus the chain was only slightly deformed comparing to the
free chains. Considering chains with different internal architecture it was
especially interesting to study the frequency of the appearance of trains,
loops and tails along the chain.

Fig. 6. Frequencies of the appearance of a structural elements as a function of

a bead number. The case of a star-branched chain with N = 400.
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Fig. 7. Frequencies of the appearance of a structural elements as a function of

a bead number. The case of a linear chain with N = 400.

Figs. 6 and 7 present such frequencies for linear and star-branched chain.
One can uniquely define these structural elements for star-branched chains
when stars were treated as the set of three linear chains consisted of pairs
of star’s arms. The bead numbering was here different for both chain archi-
tectures. For linear chains beads number grew from one end to another.

For star-branched chains the numbering went from one end of an arm
through the branching point towards the end of the other arm. One can
observe that for linear and star-branched chains the frequency of trains was
almost constant for all beads and very low (on the level of 0.1). This is
obvious as weakly adsorbed chains had only few contacts with the surface
[20]. The formation of loops was more probable near the middle point of
linear chains and near the branching point in star polymers. The formation
of tails was the highest for end beads and the lowest for the middle part of
chains. The main difference between linear and star-branched chains was
that the frequency of loops was higher in the inner part of arms and in the
vicinity of the branching point. On the other hand, the formation of tails in
these parts of stars was less frequent. The stability of the above mentioned
structural elements of the adsorbed chain was also studied. Figs. 8 and 9
present the mean lifetimes of trains, loops and tails for both polymer archi-
tectures. The bead numbering was the same as described in the previous
paragraph. One can see that the lifetimes of trains were almost constant
along the chain contour and close to 1 what implied that, in average, in
every time unit a train disappeared. The lifetimes of loops depended on the
position of the beads — the shortest lifetimes were observed at the ends of
chains. The lifetimes of tails were the longest and almost constant for the
beads located in the middle of chains. At the ends of chains the lifetimes of
tails increased rapidly. In general, for both cases of chain architecture the
lifetimes were very similar.
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Fig. 8. Lifetimes of structural elements as a function of a bead number. The case

of a linear chain with N = 800.

Fig. 9. Lifetimes of structural elements as a function of a bead number. The case

of a star-branched chain with N = 799.

4. Conclusions

In this paper we made an elementary analysis of structure of weakly
adsorbed linear and star-branched chains. The density profiles, as well as
the structure of polymer films, were investigated. The dynamic behavior of
structural elements of adsorbed chains like trains, loops and tails was ana-
lyzed and the differences were pointed out and discussed. It was shown that
in spite of different macromolecular architecture the structures of adsorbed
chains were rather similar while bulk properties of such chains were quite
different.
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