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Chaotic time series obtained from simple dynamical systems (the tent
map and the logistic map) are analyzed by means of Detrended Fluctuation
Analysis (DFA) — a widely used method for quantifying long-range corre-
lations in time series obtained from complex systems. The first conclusion
is that time series obtained from stochastic (noise-driven) and determinis-
tic systems may be indistinguishable using the DFA method. We introduce
the adaptive DFA exponent and find that it is related to the structure of
the periodic orbit. We show that persistence detected in deterministic se-
ries by DFA has a different interpretation than that used in the context of
stochastic series analysis. For chaotic time series, we find that only a large
level of dynamic additive noise can alter the short-range DFA exponent.
Finally, a relation between the DFA exponents and the control parameter
of the map is studied. The short-range DFA exponent is sensitive to differ-
ent kinds of nonlinear transitions — we show that the exponent decreases
with the merging of chaotic bands and increases as the natural measure
becomes more symmetric. If periodic windows occur in the bifurcation di-
agram, they can be also detected by DFA as an abrupt decrease of the
short-range exponent to a value close to 0. An interior crisis occurs at the
end of each periodic window — as a result, the DFA exponent increases as
a function of the control parameter until the next band-merging point. As
the periodic windows are dense in the bifurcation diagram, the relation of
the DFA exponent on the control parameter is more complex for this case.
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1. Introduction

Natural phenomena occur in a complex and often unpredictable way.
Modeling of such phenomena is a challenging task because the variety of
behaviors may indicate a variety of unknown underlying processes. If we
focus on recent models and measures of natural phenomena [1–27] we find
two general approaches.

The first approach originates from statistical physics, where unpredict-
able events are described by statistical rules. The application of such statis-
tical physics to e.g. heart rate variability [1–7], DNA chains [7,14], data from
economy [6, 15], weather changes analysis [16, 17], electric signals [20, 21] or
stellar X-ray binary systems [22] in principle is equivalent to assuming that
these phenomena are caused by truly random processes. This kind of mod-
eling of natural phenomena is also the basis of the Detrended Fluctuation
Analysis (DFA) method analyzed in this paper, a recent and already pop-
ular method, used extensively in the analysis of various kinds of complex
non-stationary data [2–4,14–30].

The second approach is based on the long-known fact that deterministic
nonlinear systems may generate seemingly random and unpredictable time
series [5, 6, 8–13]. These series often have the same statistical properties as
random processes. Therefore the successful application of stochastic meth-
ods of analysis does not exclude the deterministic origin of the data analyzed.
Often the source of the processes analyzed is unknown. It may occur that a
time series of deterministic origin be assumed of stochastic origin.

The DFA method detects persistency by assuming the self-similarity of
series (see, e.g., the study of detecting persistency in fractional Brownian
motion by Malamud et Turcotte [31]). The correlations in fluctuations in
those signals occur on a statistical basis. We analyze whether the application
of DFA to chaotic data is possible — when the “fluctuations” are the result
of nonlinearities.

A detailed study on the effect of various transformations of the input
signal on DFA can be found in recent papers [28–30]. These transforma-
tions include the addition of trends and nonlinearities to the original signal.
However, in these studies nonlinearities are treated only as alterations of
the signal. Therefore, the main aim of such an analysis consists of elimi-
nating a given set of filters to derive the properties of a presumably “pure”
signal. In the cited studies, it is shown that the transform alters the DFA
results only at a certain range of correlation lengths. For other correlation
lengths, detrended fluctuation analysis of the transformed signal yields the
same results as for the unaltered signal. Here we study a different situation
— nonlinearity is the genesis of both structure and fluctuations in the ana-
lyzed signals [11–13, 32], which is in contrast to being just an alteration of
the analyzed signal.
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In this paper, we investigate the effectiveness of DFA when applied to
simple stationary time series derived from two well-known dynamical sys-
tems — the logistic map and the tent map. The properties of these systems
have been investigated extensively [11–13,32]. The following equation:

xn+1 = axn(1 − xn) , (1a)

defines the logistic map, and the tent map is given by:

xn+1 = a
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In the above equations the control parameter is denoted by a.
Both our own software and that from the authors of the method [33] was

used in the calculations.
The paper is divided as follows. First, we introduce the DFA method.

In Section 2, we consider the application of DFA to periodic signals. Al-
though from the definition of the method such use of DFA may seem to be
inappropriate, we show that, for large periods, the value of the short-range
correlations exponent is related to the structure of the periodic orbit. We
analyze the sensitivity of the method to noise. The meaning of persistence
and antipersistence in the context of deterministic series is discussed. Sec-
tion 3 is focused on the analysis of the chaotic states of discrete dynamical
systems. Finally, in Section 4 we study a general relation between the DFA
exponents and the control parameter. We show that DFA is sensitive to dif-
ferent kinds of nonlinear phenomena in deterministic systems. The analogies
between the Lyapunov exponent [11–13] and DFA are analyzed. Often it is
very difficult to calculate the Lyapunov exponent, as the knowledge of the
dynamical evolution of the system is required [6]. Therefore the existence
of a possible relation between the Lyapunov exponent and DFA may be an
important issue in the analysis of dynamical systems.

1.1. Detrended Fluctuation Analysis

Detrended Fluctuation Analysis is a method for quantifying long-range
correlations in non-stationary time series. Among others, it has been applied
to detect long-range correlations in DNA nucleotide sequences [14], financial
data [15] and mean daily temperatures [16], as well as in coupled chaotic
oscillators [20], electric signals [21, 22], stellar X-ray binary systems [23],
neural receptors in biological systems [24], cloud structure [25], ethnology
[26], music [27] and many other research fields (see [28–30] and references
therein for a list of over 70 publications that have utilized DFA). DFA was
introduced by Peng et al. in 1994 for analyzing nucleotide sequences [14] and
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soon afterwards applied to heart rate variability (HRV) time series derived
from 24-hour ECG recordings [18]. It has been reported to show improved
prognostic value for medical diagnosis [3, 5, 19].

As DFA has been originally designed for the DNA walk, one needs to
define a general input series-related walk analogously. To do this, the input
series {B(k)} of length N is integrated after subtracting the average value.
The series {y(k)} is then:

y(k) =

k
∑

i=1

(B(i) − 〈B〉) , (2)

where B(i) is the i-th point of a discrete time series and 〈B〉 is the aver-
age value of the data. Next, the integrated series is divided into subinter-
vals (windows) of equal length n, and for each window a linear least squares
fit to the y(k), denoted yn(k), is made. The RMS fluctuation around the
regression line is then given by the equation:

F (n) =

√

√

√

√

1

N

N
∑

k=1

[y(k) − yn(k)]2 . (3)

The dependence of F on n is examined via a plot of log F (n) versus

log n. When scaling occurs, the overall slope of the linear trend in the
double-logarithmic scale is equal to the DFA exponent and denoted by
α = log(e−bF (n))(log n)−1, where b is the intercept of the approximated
trend. Figure 1 shows an example of the log–log plot of the detrended
fluctuations F versus window size n for a computer generated uncorrelated
random numbers series. The length of the series was 105 data points and
the DFA exponent is equal to α = 0.5.

In Ref. [18], in addition to the global scaling exponent α, α1 was intro-
duced. This is a short-range correlations exponent, defined for the range
of 4 ≤ n ≤ 16, as opposed to the whole range of n used in the calculation
of α. The importance of the short range correlations for HRV analysis was
demonstrated in Refs. [2, 4, 19].

Generally speaking, when a scaling F (n) ∝ n is observed, the scaling
exponent in the range 0.5 < α < 1 indicates positive long-range power-law
correlations (in other words, persistence) and 0 < α < 0.5 infers anticorrela-
tions (i.e. antipersistence) [14,18,19]. α = 1.5 is obtained for the Brownian
walk. The exponent α = 0.5 corresponds to uncorrelated data (such as in
Fig. 1). If there are short-range correlations, the slope for low n may differ
from 0.5 but it will approach this value for large n. It was also proved rigor-
ously that the DFA exponent is related to the Hurst exponent H: α = 1+H
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Fig. 1. The dependence of detrended fluctuations F on the window size n for a test
series: 105 data points calculated using the GNU C compiler random real number
generator uniformly distributed from 0 to 1 with a good accuracy; the mean value
of the series is 0.500.

when the signal corresponds to an incremental walk (e.g. Brownian walk)
and α = H when the analyzed signal consists of increments (e.g. uncorre-
lated i.i.d. noise) [34].

Crossovers in the linear dependence of the exponent on window size
n have been observed in detrended fluctuation analysis of complex data
(e.g. biological data) and may be an important indicator characterizing the
underlying process [14, 18].

2. Periodic signal analysis

Purely periodic signals have neither a trend nor fluctuations. Therefore
the application of DFA to such signal may seem controversial. Although
other methods are more suitable for such an analysis, it is interesting to find
that, contrary to the assumptions of the definition, it is at all possible to
apply DFA to periodic signals. In this section, we introduce two new mea-
sures: the DFA short-range adaptive exponent α+ and the DFA long-range
exponent α. We show that these exponents quantify correlations better than
α1 and α2 introduced in Ref. [18].

To perform the Detrended Fluctuation Analysis of a periodic state, one
must avoid window lengths which are a multiple of the period of the data.
Otherwise the fluctuation F (n) vanishes. Figure 2 depicts the DFA plots
of periodic states of the logistic map for two values of a. In both cases
the period is equal to p = 18. In figure 2(a), it can be seen that for most
window lengths F (n) is a constant — this makes the resulting overall slope
close to 0, which is an indicator of very strong correlations [14, 18] (i.e. pe-
riodicity in this case). For small values of n, we also observe in Fig. 2(b)
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Fig. 2. DFA plots of the logistic map for control parameter a corresponding to
periodic states (the period is equal to 18). (a): the overall DFA exponent α is
equal to 0 for a periodic state; (b): magnification of the area marked in (a). (c):
DFA plot for a periodic orbit with a different structure than in (a). (d): DFA
plot for the same parameter value as in (c), but with a small amount of noise
(σ = 5 × 10−6) added at each iteration. α1 is the DFA short-range exponent, α+

is the DFA short-range adaptive exponent and α is the DFA long-range exponent.
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(a magnification of Fig. 2(a)) the effect of the periodicity of the state an-
alyzed — the fluctuation F depends strongly on the window length. This
happens for values of n smaller or of the same order of magnitude as the
period length. For such window sizes, the fluctuations F change with n be-
cause, at large periods, the series within a window of small size may seem
quasiperiodic or almost random. The fluctuation values may then differ
strongly from window position to window position along the series. On the
other hand, when n is larger than the period length, the series looks alike
at all ranges of n larger than the period length and there are very small
(if any) differences with window position at a given n.

In summary, for n smaller then the period length, we obtain a slope quite
different from zero, while at larger n the DFA exponent tends to zero. This
behavior suggests the use of the previously-cited short-range correlations
exponent α1 introduced in [18]. The disadvantage is a rigidly defined range
of n required for its calculation (n ∈ [4; 16]). As can be seen in Fig. 2(b), the
short-range correlation exponent α1 (dashed line) differs from zero but its
meaning is doubtful due to the large linear approximation error. The error
for α1 will thus be an unknown function of the period of the orbit.

A better approach is to introduce the DFA short-range adaptive exponent
α+ — the slope of the best linear approximation for short-range window sizes
n as marked in figure 2(b)–2(d) by a solid line. The points included in the
optimized linear regression are denoted by triangles on these plots.

The value of α1 is equal to 0.37 for the control parameter a = 3.92628 in
figure 2(b) indicates antipersistence, while the adaptive exponent α+ = 0.58
indicates a weak persistent character of the series (i.e. a low level of positive
correlations in the series). On the other hand, for the control parameter
a = 3.60059 the exponent α+ equal to 0.32 was obtained, indicating an-
tipersistence (Fig. 2(c)). Both series have a period length p = 18, the main
difference between them is the distribution of the iterations xi around the
mean value 〈x〉.

The above observations show that the adaptive DFA exponent α+ is an
indicator of the structure of periodic orbits. Such structure can be described
by the invariant measure, shown in Fig. 3 for the above discussed periodic
orbits. In all plots the structure of the measure depicted is asymmetric. As
can be seen for the control parameter a = 3.92628 (Fig. 3(a)), although the
period of the orbit is 18, there are only ten bars visible, but note that two
bars near x = 0.5 are twice shorter than the rest. These bars are shorter
because they are the effect of a splitting of a single bar. Without this
splitting the period would have been 9. The difference in the dynamics of
the two orbits in Fig. 3(a) and 3(b) is that, for a = 3.60059, the values come
one after another in a rather symmetric manner around the mean value (this
is equivalent to “antipersistence” in DFA). At a = 3.92628, for x ∈ [0; 0.4]
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there are only two bars, while in the range [0.6; 1.0] there are six bars. This
asymmetric distribution of the elements of the periodic orbit around the
mean iterations value makes the series “persistent”.

Fig. 3. Invariant measures for the logistic map with control parameter values cor-
responding to periodic states (compare Fig. 2).

The natural measures depicted in Fig. 4 are a mean representation of
the signal in time. DFA is sensitive to the dynamics of the signal. This
sensitivity is the consequence of the use in the calculation of the DFA ex-
ponents of a sliding window with a varying length n. For example, let the
signal structure be asymmetric in the time within one period (as in the case
of a = 3.92628, see Figs. 2(a) and 3(a)). Then, the fluctuations value F

for window sizes n smaller than a half of the period length will be much
smaller than those for larger n values (but still not exceeding one period
length). As a consequence, the DFA exponent α+ value will be larger for
such a distribution than for a symmetric series of iterations.

By adding even a very small amount of random noise at each iteration
of the states in Eqs. (1a) and (1b) (noise amplitude σ = 5 × 10−6 at each
iteration), we change dramatically the dependence of the mean fluctuation
F on n for large window sizes (compare Figs. 2(c) and 2(d)). As in the
case of uncorrelated stochastic noise, also in this case, for large n the slope
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Fig. 4. Double logarithmic plots of the detrended fluctuations F versus window size
n for two nonlinear unimodal maps. Series length N = 105. (a) the logistic map
with control parameter a = 4, (b) the tent map with a = 1. The small difference
in the intercepts is due to a non-uniform iteration distribution for the logistic map.

will approach the value 0.5 (on Fig. 2(d) this slope is represented by a
dashed line). The corresponding DFA exponent calculated for large n will
be denoted by α.

Note that, counter-intuitively, the log F versus log n plot at small window
sizes n remains almost unaltered by the noise. As will be shown in the next
section, this is true also for larger levels of additive noise. Note that the
value of α+ did not change due to noise.

The invariant measure for a = 3.60059 with noise is shown in Fig. 3(c).
With the addition of noise, the fixed points are no longer uniformly dis-
tributed and the original natural measure is not preserved. However, the
exponent α+ has the same value as for the series with no noise (Fig. 2(c)
and 2(d)). Note that α+ is a measure of short-range correlations. This indi-
cates that weak dynamic additive noise retains does not destroy short-range
correlations. The crossover point (Fig. 2(d)) is a measure of the predictabil-
ity range of the series [18].
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3. Chaotic signal analysis

For fully developed chaos (a = 4 for the logistic map and a = 1 for
the tent map) we cannot distinguish between the time series generated by
the maps (1a) and (1b) (Fig. 4) and purely stochastic uncorrelated iid noise
(Fig. 1). However, for control parameters even only slightly less than the
maximum value at which fully developed chaos is obtained, we find visible
traces of determinism at short window lengths (Fig. 5).

Fig. 5. Double logarithmic plots of the F versus n dependence. (a): the logistic
map without additive noise for a = 3.60064 — a chaotic state. (b): the logistic
map without additive noise for a = 3.99 — a fully-developed chaotic state. (c):
the logistic map with a = 3.60064 and large additive noise. (d): the logistic map
with a = 3.99 and a large additive noise (σ = 0.1).

The correlation range for the logistic map can be evaluated by means of
the DFA scaling exponents. An increase of the DFA exponent value occurs
from that obtained for the short n range (e.g. α1 = 0.03 for a = 3.60064 in
Fig. 5(a) and α1 = 0.34 for a = 3.99 in Fig. 5(b)) to a value close to 0.5 for
large window lengths. This is seen as a crossover on the log F (n) versus log n

plot. Such an effect occurs because, in chaotic states, memory of the initial
condition is lost when the number of iterations increases. To illustrate this,
we introduce noise which makes the correlation range shorter. This is also
a good way to show that the DFA plot does not depend on the genesis of
the signal. For example, a periodic series for the logistic map (a = 3.60059)
with a small amount of additive noise at each iteration (as in Fig. 2(d))
may have a DFA plot similar to the one for a chaotic state series, e.g. for
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a = 3.60064 without noise (Fig. 5(a)). The similarity of the series in this
case is expressed by similar values of the short-range correlations exponent
α+, of the long-range correlations exponent α and by the sharp change of
the slope that occurs approximately at log n = 3.

Other similarities between the DFA plots of different chaotic time series
for different control parameter values also can be found. Firstly, we will
calculate α — the DFA exponent at large window sizes n. For all time series
corresponding to chaotic states, the value of this exponent is close to 0.5
indicating the absence of long-range correlations. For a chaotic state series
at a = 3.60064 without noise (Fig. 5(a)) it is equal to α = 0.43. For a fully
developed chaotic state series the value of α is closer to 0.5, e.g. α = 0.48 for
a = 3.99 (Fig. 5(b)). For time series with a high level of dynamic additive
noise (σ = 10%) α = 0.51 (Figs. 5(c) and 5(d)). This shows that the addition
of the noise renders the deterministic series for a < 4 indistinguishable from
each other and from purely stochastic uncorrelated i.i.d. noise by means of
DFA at large n. For smaller window sizes (e.g. n < 103) the situation is
different.

By adding a relatively high level of dynamic additive noise (σ = 10%)
to the deterministic time series for a = 3.60064 the position of the crossover
is shifted to smaller values of n (approximately to log n = 2) and the slope
value becomes slightly closer to that for large n (Fig. 5). Thus, the DFA plot
in this case (Fig. 5(c)) is more similar to the plots for the series at greater
values of the control parameter (as in Fig. 5(b)). This same observation can
be obtained for the DFA plot of the time series at a = 3.99 (Fig. 5(b)). When
dynamic noise is added (Fig. 5(d)) this series becomes indistinguishable by
means of DFA from the time series at a = 4.0 (Fig. 4(a)) and also from
purely stochastic uncorrelated i.i.d. noise (Fig. 1).

Note that for a < 3.9 even large noise does not affect strongly the value of
α1 or α+ (this was also true in the case of periodic signals, compare Figs. 2(c)
and 2(d), described in the previous section). More significant is that only a
relatively large noise is able to remove completely the correlations detected
by DFA. This feature of DFA seems to be important.

The departure from the linear trend at the largest values of n seen in
the above described figures is an artifact that occurs because of the small
number of sliding windows. At such window sizes (e.g. log n > 4 for time
series length N = 105) the number of sliding windows is less than 10. This
introduces a large error value in the RMS fluctuation around the regression
line from Eq. (3).
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4. The dependence of the DFA exponents

on the control parameter of the map

Sections 2 and 3 were mostly devoted to the analysis of the DFA plots
(i.e. log F−log n plots) for a particular control parameter value of the logistic
map. When the series analyzed were periodic (Section 2), the values of α1

and α+ were related to the structure of the periodic orbit and there was no
obvious relation between the DFA exponents and the control parameter. In
Section 3, it was observed that for larger a corresponding to chaotic states
the value of α1 is also larger and reaches 0.5 for a = 4. In this section, we
investigate the general relation between the DFA exponent and the control
parameter.

The dependence of the properties of chaotic maps on the control pa-
rameter is usually described by the Lyapunov exponent [11–13], which is a
measure of the memory of the initial conditions. The Lyapunov exponent
for one-dimensional iterated maps is calculated as [12]:

λ = lim
N→∞

1

N
ln

∣

∣

∣

∣

df(xi)

dxi

∣

∣

∣

∣

, (4)

where xi corresponds to the i-th iteration of the map and x0 is the initial
condition. A negative value of λ indicates periodic states, a positive λ —
chaotic states. The Lyapunov exponent is related to the structure of the
bifurcation diagram (Figs. 6 and 7). The period doubling points seen on
the diagram for the logistic map (Fig. 7) correspond to λ = 0. The control
parameter value at which the doubling cascade becomes infinite is called the
accumulation point. For control parameter values greater than the accumu-
lation point, we find chaotic states (λ > 0) and periodic windows (λ < 0).
In the case of the tent map (Fig. 6), there are no periodic windows (i.e.

λ > 0 everywhere beyond the accumulation point), and the dependence of
the Lyapunov exponent (denoted by the long dashed line) on the control
parameter value a is very simple, namely: λ = ln(2a). The DFA exponent
α1 (lowest curve in Fig. 6) seems to be a more complicated function of the
control parameter (we did not calculate α+ since there are no periodic states
in this case).

For a less than 0.6, there is a large scatter in the α1 values, due to
the narrow range in which the iterations fall. Such small variance in effect
imitates a periodic signal. For this reason we omitted here the results for
this range.

Three different regions may be distinguished for a > 0.6. The first region
corresponds approximately to a < 0.7. In this region, the range of iteration
values increases monotonically and so does α1.
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Fig. 6. The Lyapunov λ (long dashed line) and DFA α1 exponents (continuous
line) and mean of the tent map (short dashed line) for a ∈ [0.5; 1]. The bifurcation
diagram is drawn in the background for comparison. In the calculation of α1, α

and 〈x〉 the control parameter was incremented by 10−4, while for the bifurcation
diagram by 5 × 10−3.

The second region (approximately for 0.7 < a < 0.8) is characterized by
a non-monotonic dependence of α1 on a. The decrease of the DFA exponent
value occurs near the point of the band-merging. As the bands merge, the
iterations are distributed more uniformly thus the value of α1 is smaller. But
as the control parameter increases, the phase space in the chaotic region also
grows (the bifurcation diagram in Fig. 6 widens as we increase a) and so does
the DFA exponent. However, because the bifurcation diagram is asymmetric,
the increase of this exponent (i.e. the decrease of antipersistence) is due
to an increase in the symmetry of the natural measure. As a result the
DFA exponent is a strong function of the average iteration 〈x〉. Due to the
interplay of the two phenomena: band-merging and increase in the symmetry
of the natural measure, many local minima and maxima are observed in this
range.

In the third control parameter range (a > 0.8), the band-merging has
a weak effect, the iterations have a wide range and are mostly uniformly
distributed. That is why the DFA exponent grows monotonically in this
region.
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Fig. 7. Upper part: the dependence of λ (Lyapunov exponent, top curve) on the
control parameter a for the logistic map. Lower part: the dependence of α1 (con-
tinuous curve) and the mean value calculated for 10000 iterations (dashed curve)
on a. In the lower part, the bifurcation diagram is also shown in the background
for comparison. In the calculation of α1, α and 〈x〉 the control parameter was
incremented by 10−4, while for the bifurcation diagram by 5 × 10−3.

The dependence of α1 as well as λ on the control parameter and the
bifurcation diagram for the logistic map is shown in Fig. 7. Numerous min-
ima of the Lyapunov exponent are seen (indicating periodic windows where
λ < 0) as well as the strong correlation between the abrupt decrease of the
Lyapunov exponent below zero and abrupt changes in the value of α1.

To show that the changes of the two measures are not only correlated
but also occur for the same control parameter value, we calculated the value
of the critical control parameter values analytically. This can be done by
means of symbolic dynamics. To find the value of the control parameter, at
which a superstable orbit exists one needs to solve the equation [32]:

f(a, xc) = W (xc), (5)

where xc is the argument at which the iterated map has the maximum
value, f(a, xc) is the maximum value of the map iterations (equal to 0.25a
for the logistic map) and W denotes a word composed of symbolic dynamics
functions R and L [32]. R denotes the right branch and L the left branch
of the map. The symbol C indicating the critical point is in this notation
omitted.
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The approximate solution of Eq. (5) for the period 3 orbit (in symbolic
dynamics denoted RL) is a = 3.83187. On the other hand, it can be seen in
Fig. 7 that this value of the control parameter corresponds very well to the
smallest local minimum of α1.

The same is true for other superstable orbits, e.g. we find local minima
of α1 and λ for period 5 orbits: RL3 (a = 3.99027), RL2R (a = 3.90571)
and RLR2 (a = 3.73891). For all of the above control parameter values both
the Lyapunov and DFA exponents have a minimum, indicating the presence
of a periodic window.

Within periodic windows, α1 remains almost constant, contrary to λ,
which has minima. Thus, in periodic windows we observe almost flat minima
or maxima of α1. Instead, λ for a periodic orbit attains a wide range of
values, indicating the strength of attraction of the orbit.

As shown in Section 2, DFA exponents are not good measures for quanti-
fying the periodic behavior of a system — the calculation of α1 by linear re-
gression is dubious, as in the range 4 < n < 16 there are often crossovers (see
Fig. 2). This was the reason to introduce α+.

The corresponding relation between α+ and a value is given in Fig. 8.
Note that for the iterated map studied here α1 never exceeds 0.5, while
(as discussed in Section 2) the adaptive DFA exponent α+ may have values
larger than 0.5. In Figs. 7 and 8, both maxima and minima of DFA exponents
are observed for the periodic windows. The minima are simple to explain
— there are no fluctuations in periodic signals (except for effects due to the

Fig. 8. The dependence of α+ (the adaptive DFA short-range scaling exponent,
continuous line) and λ (Lyapunov exponent, dotted line) on the control parameter
a for the logistic map. The control parameter was incremented by 10−4.



1818 M. Sozański, J. Żebrowski

sliding window size) therefore the DFA exponent is close to 0 — and constant
within the periodic window. On the other hand, the maxima of the DFA
exponents occur for periodic time series with an asymmetric distribution of
the iteration values within one period (see Section 2).

The complicated dependence of α1 and α+ on the control parameter of
the logistic map is due to the occurrence of the interior crisis [35]. These
are sudden changes in the structure of a chaotic attractor due to collisions
with an unstable periodic orbit when the control parameter exceeds a critical
value. Similarly as in the case of the tent map, when merging of different
chaotic bands occurs, the value of the DFA exponent decreases. In the tent
map, this phenomenon practically disappeared when the control parameter
exceeded 0.8. For the logistic map, this effect is observed after each of
the periodic windows, because of the interior crises within these windows.
Beyond the interior crisis point, the DFA exponent increases as a function
of the control parameter until the next band-merging point. Then, again,

Fig. 9. Relation between the mean iteration value 〈x〉 and the DFA exponent α+

for the control parameter ranging from 0.53 to 0.8 (a) and from 0.8 to 1.0 (b) for
the tent map. In the latter case, a strong linear dependence is found.
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it decreases. However, as the control parameter increases, the phase space
in the chaotic region also grows (the widening of the bifurcation diagram in
Fig. 7) and so does the DFA exponent. The presence of an infinite number
of periodic windows makes the DFA exponent dependence on the control
parameter very complex.

In addition to the dependence of the DFA exponent on the control pa-
rameter, another relation is worth mentioning. In the case of the tent map, a
simple relation between the mean iteration value 〈x〉 and the DFA exponent
α+ is found. In Fig. 9, we present separate plots representing this relation
for 0.53 < a < 0.8 and for a > 0.8. The second plot depicts a strong linear
relationship, namely

α+ = −4.1〈x〉 + 2.5. (6)

The square of the Pearson correlation coefficient for the above relation is
equal to 0.97. As mentioned before in the description of Fig. 6, the range of
iterations increases monotonically for a > 0.8 and so does the DFA exponent
α1. Note that the linear dependence on the mean value is not a general
property of DFA exponents, but is due to the properties of the tent map in
this region of the control parameter. Due to the asymmetry of the bifurcation
diagram, although the phase space grows in this region in both directions,
the expansion of the distribution of iterations towards the value of 0 is faster
than towards 1. As the iterations are almost monotonically distributed in
the phase space for a > 0.8, the mean value 〈x〉 decreases monotonically.
In the case of the logistic map, the DFA exponent dependence on the mean
value is not as simple.

Fig. 10. Relation between the mean iteration value and DFA exponent α+ for
control parameter value ranging from 3.5 up to 4 for the logistic map. The data
from within the periodic windows were omitted from this graph.
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The dependence seen in Fig. 10 was obtained after omitting the mean
iteration values corresponding to periodic windows. The relation is more
complex. As there is an infinite set of periodic windows between the ac-
cumulation point and the control parameter value corresponding to fully
developed chaos, even for the range of control parameter values close to
a = 4 we do not observe a simple linear dependence of 〈x〉 on a. The first
band-merging point and the occurrence of crises at the end of each periodic
window all have an effect on the dependence in Fig. 10. The details of this
dependence are being researched.

5. Summary and conclusions

DFA detects and classifies the type of correlations in a time series. We
showed that DFA is sensitive to both the dynamics and the statistical prop-
erties of the signal. Dynamical systems in a fully developed chaotic state can
exhibit random behavior, indistinguishable by means of DFA from stochastic
processes. Thus, using the DFA method, it is impossible to state whether
the origin of the behavior obtained is a deterministic or noise-driven process.
Even if such a method yields consistent results in the analysis of such data
as heart rate variability [2,4,14,18,19], it does not mean that the underlying
mechanisms are noise-driven processes. An important result obtained by us
is that the “persistence” detected in the deterministic series by DFA has a
different interpretation than that in a stochastic time series.

We demonstrated that nonlinear maps generate behaviors that can be
analyzed by means of DFA. We also applied the DFA method to the analysis
of periodic time series. Although, from the definition of the method, this may
seem to be inappropriate, we showed that the DFA short-range correlations
exponent is related to the structure of the periodic orbits. However, for orbit
period length less than 20, the value of the exponent α1 is often meaningless
due to a large linear approximation error. Therefore we introduced the
adaptive DFA exponent α+ as an improved quantifier of the short-range
behavior of periodic time series. The new exponent has the lowest possible
linear approximation error and reflects the structure of the periodic time
series better than α1.

We studied a general dependence of the DFA short-range exponents on
the control parameter a for the tent and logistic maps. In the case of the tent
map, the complicated shape of the α1 versus a curve reflects the sensitivity
of DFA to the merging of the chaotic bands and the enlarging of the map
iterations range with a (Fig. 6).
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Periodic windows can be detected by DFA with a good accuracy. The
analogies between α1 and λ shown in this paper (abrupt changes of the DFA
exponent at periodic windows, the increase of α1 with the development of
chaos) may suggest that a DFA-related measure could be very useful in such
cases where the Lyapunov exponent cannot be easily calculated.

Summarizing, we have shown that DFA may be a useful tool in applica-
tion to deterministic time series. In some aspects the information obtained is
similar to that from the Lyapunov exponent. A general relation between the
DFA exponent and the Lyapunov exponent does not exist but the Detrended
Fluctuation Analysis may be a useful additional measure in the analysis of
chaotic maps and nonlinear systems, as it is sensitive to different types of
nonlinear phenomena.

A special feature of DFA exponents α1 and α+ is that they are relatively
insensitive to noise in the signal. Only relatively large levels of noise can
significantly alter the DFA plot of a signal.

This research has been supported by the Warsaw University of Tech-
nology internal grant. The authors are very grateful to Peter Talkner for
introducing them to the detrended fluctuation method several years ago.
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