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We show how the Cole–Davidson relaxation response, characteristic of
alcoholic systems, can be derived within the framework of the continuous-
time random walk (CTRW). Using the random-variable formalism, we indi-
cate that the high-frequency power law of dielectric spectra is determined by
the heavy-tailed distribution of quantities that provide the spatio-temporal
coupling in the random-walk process. As an illustration, we present the
dielectric permittivity spectra of several butanediol isomers.

PACS numbers: 02.50.Cw, 02.50.Ey, 77.22.Gm

1. Introduction

Dielectric relaxation spectroscopy is a technique sensitive to the reori-
entation of dipole moments in materials. The method is widely used to
study interactions in dipolar, hydrogen-bonded liquids such as aqueous mix-
tures or alcoholic systems [1,2]. Investigations of the dielectric permittivity
spectra of water [3, 4], alcohols [3], alcohol/water [5, 6] and alcohol/alcohol
mixtures [7–9], electrolyte solutions [10, 11], etc. may lead to a better un-
derstanding of the unique characteristics of water as a bulk liquid and as
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a solvent embedding solutes. Dipole relaxation experiments yield insight
to the wetting properties of water and the physical basis of the hydropho-
bic effect as a general phenomenon of the interplay among hydrophobic and
hydrophilic compounds [12–15]. More specifically, studies of dielectric relax-
ation in biological systems, especially at interfaces [16], may help elucidate
the biological roles of water. Despite vast attention, however, the theoreti-
cal understanding of relaxation behaviour in the above mentioned systems
is still insufficiently developed.

Experimental data provide clear evidence that the complex permittivity
spectra ε∗(ω) = ε′(ω)−iε′′(ω) of aqueous mixtures and alcohols strongly de-
viate from the classical Debye pattern. The deviations, indicated by broader
and asymmetric shapes of the absorption term ε′′(ω) of the spectra, are often
well fitted with the empirical Cole–Davidson function

ΦCD(ω) =
ε∗(ω) − ε∞

εs − ε∞
=

1
(

1 + iω
ωp

)γ , 0 < γ < 1 , (1)

where ωp denotes the loss peak frequency, εs is the static permittivity, and
ε∞ the high-frequency permittivity. The Debye expression corresponds to
γ = 1. Let us note that a fit with the Cole–Davidson function ΦCD(ω) yields
the following limiting properties of the complex permittivity [17]:

1. the high-frequency power law

ε′(ω) ∝ ε′′(ω) ∝

(

ω

ωp

)

−γ

, for ω ≫ ωp , (2)

indicating the deviations from Debye behaviour in the form (ω/ωp)−1,

2. the low-frequency characteristics

ε′(0)−ε′(ω) ∝

(

ω

ωp

)2

and ε′′(ω) ∝

(

ω

ωp

)1

, for ω ≪ ωp , (3)

coinciding with the properties of the Debye function.

Such a common property of the dielectric spectra, found in different alco-
holic systems (i.e., 1,2 ethanediol, 1,4 butanediol, benzyl, n-hexyl, ethanol–
water mixture, water–ethanol–glycine mixtures, butanediol–benzyl mixtu-
res, propanediol–ethanediol–hexanol mixtures, etc. [8,9]), suggests a kind of
general behaviour that is independent of the details of the studied systems.
This assumption is justified in the framework of statistical models, where
averaging principles like the law of large numbers and limit theorems are in
force for the large scale behaviour of complex systems [18–20].
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The non-Debye behaviour of complex OH-systems such as alcohols is of-
ten interpreted in terms of a “wait-and-switch” relaxation mechanism [21].
In this approach, it is assumed that reorientation follows an activated jump
mechanism. The direction of a dipole moment at any given time corre-
sponds to an energy minimum; different dipole orientations are separated
by potential energy barriers. Reorientation is initiated by the presence of an
additional neighbour in a suitable position. This additional molecule first
flattens the potential energy barrier and subsequently offers the possibility
of forming a new hydrogen bond. The dielectric relaxation time is hence
determined by the period in which an additional neighbour approaches, i.e.

the local diffusion coefficient. The “wait-and-switch” model resembles the
concept of Glarum [22], who assumed that vacancies diffuse within the ex-
amined system and that when they meet with an initially prepared excited
state the latter is allowed to relax. Following Glarum’s idea and the notion
of a continuous-time random walk (CTRW), introduced by Montroll and
Weiss [23], a target model for describing anomalous (non-Debye) relaxation
processes has been proposed by Shlesinger [24] and Blumen et al. [25]. An
alternative and novel approach to anomalous dynamics of complex systems
has been recently proposed in [26, 27].

This paper follows the CTRW approach to relaxation. We demonstrate,
however, the power of the mathematical tools underlying the concept of
the CTRW by showing how it can be generalised to handle Cole–Davidson
relaxation in dipolar-liquid systems. Our attempt is based directly on the
definition of a cumulative stochastic process. By using the random-variable
formalism [18–20], introduced recently to study random-walk processes, we
show that the limit theorems of probability theory lead to rigorous results.
This approach avoids the technical difficulties that arise in the classical ap-
proach to the CTRW, which is based on Fourier–Laplace transform analy-
sis [28, 29].

As a demonstration of the discussed Cole–Davidson relaxation, we present
the dielectric permittivity spectra of several butanediol isomers. These com-
pounds have many applications, e.g. as industrial solvents and in cryopreser-
vation. They are often regarded as model systems of biomolecules bearing
both polar and non-polar groups. The special interest in the dielectric re-
laxation of these isomers results from the variable distance of their relaxing
groups, giving thus access to the coupling mechanism among these groups.
It is hence essential to gain knowledge of their dielectric responses for under-
standing their behaviour. In this study, the properties of the butanediol iso-
mers were analysed in the frequency range 10MHz–4GHz, and the complex
permittivity data were fitted with the Cole–Davidson function. Obtained
parameters were compared to available literature values [7, 8, 30–32].
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2. Experiment and data analysis

2.1. Permittivity measurements

The four butanediol isomers, namely 2,3-, 1,2-, 1,3-, and 1,4-butanediol
(structural formulas shown in Fig. 1), were purchased from Sigma–Aldrich
Chemie GmbH (Sreinheim, Germany) and used as received. Samples were
probed by an alternating electric field, with frequencies in the range 10MHz
≤ ν ≤ 4GHz, generated by a Vector Network Analyzer (ZVRE, Rhode &
Schwarz). The field was introduced into the liquid samples through a small
(approximately 2mm in diameter) cylindrical coaxial electrode; the reflected
field was detected by the same electrode and the effective reflection coeffi-
cient (ratio of the incoming to outgoing fields) recorded by the Network
Analyzer. The amplitude of the generated field was 38 dBmV, and all mea-
surements were performed at approximately (20 ± 4)◦ C.

Fig. 1. Structural formulas of the four butanediol isomers: 2,3- (A), 1,2- (B),

1,3- (C), and 1,4- (D) butanediol. The carbon chain positions (1–4) are numbered

to show the possible positions of the two hydroxyl groups, which distinguishes the

four isomers.

Complex permittivity spectra ε∗(ω) were obtained from the measured
reflection coefficient S∗(ω) by using the proportionality:

ε∗(ω) ∝
1

iω
Y ∗(ω) ∝

1

iω

1 − S∗(ω)

1 + S∗(ω)
, (4)

where Y ∗(ω) is the complex electric admittance of the sample.
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In order to compensate for losses in the field and factors of geometrical
origin in the proportionality (4), the reflection coefficient was calibrated
with respect to air, for which it was assumed to be unity (total reflection, or
S∗ = 1.0), and permittivity was calibrated with respect to water. The final
equation used for calculating the permittivity of any sample is then

ε∗(ω) =

(

S∗

air(ω) − S∗(ω)

S∗

air(ω) + S∗(ω)

)(

S∗

air(ω) + S∗

water(ω)

S∗

air(ω) − S∗

water(ω)

)

ε∗water(ω) , (5)

where S∗, S∗

air, and S∗

water are the non-calibrated reflection coefficients of the
sample, air, and water, respectively, as obtained directly from the Network
Analyzer output. The permittivity of water in (5), ε∗water(ω), was calculated
using a single Debye function with literature parameters interpolated to
20◦C [4].

2.2. Data analysis

The obtained complex permittivity spectra were fitted with the Cole–
Davidson function in the form:

ε∗(ν) = ε∞ + ∆εΦCD(ω) = ε∞ +
∆ε

(1 + i2πντ)γ
, (6)

where

∆ε = εs − ε∞ ,

τ =
1

ωp
, and ν =

ω

2π
.

A modified Powell conjugate gradient algorithm was used to minimise
the normalised variance χ2, given by

χ2 =
1

2N − m − 1

[

1

max(|ε∗(νi)|)

N
∑

i=1

∣

∣

∣
δε∗(νi)

∣

∣

∣

2
]

, (7)

where δε∗(νi) are the residuals of the complex permittivity, i numbers the
frequency data points in logarithmically equidistant steps (N = 200), and m
is the number of adjustable fit parameters (in this case there are four such
parameters, namely ε∞, ∆ε, τ , and γ).
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2.3. Results

Table I presents the best fit parameters for the measured data of all four
butanediol isomers within the Cole–Davidson response (6). The parameter
εs agrees well with literature values (±1 for all isomers) [30–32], given the
inaccuracy of the temperature here. The value of γτ for 1,4-butanediol has
been reported by Hanna et al. [8] to be 820 ps at 20◦. Our value (785 ps)
differs by around 4%, which again is acceptable considering the temperature
uncertainty. The parameter χ2, calculated according to (7), was minimised
to obtain the optimised fits.

TABLE I

Dielectric relaxation parameters of the four butanediol isomers for the best fit with
the Cole–Davidson function at approximately 20◦± 4◦C.

2,3-BD 1,2-BD 1,3-BD 1,4-BD

εs 23.1 22.1 30.7 32.7

∆ε 21.6 20.7 28.6 30.5

γ 0.58 0.65 0.73 0.77

γτ [ps] 853 482 1043 785

χ2 4.4 10−5 4.9 10−5 4.8 10−5 5.4 10−5

Accordingly, Fig. 2 shows the spectra for the most contrasting isomers,
namely 2,3-BD and 1,4-BD. The Debye and Cole–Davidson functions that
best fit the data have also been plotted.

It is clear that a Debye description is unsatisfactory as compared to the
Cole–Davidson one. This can be especially seen for the absorption (imagi-
nary) component of the spectra. The Cole–Davidson function offers a much
better description in the studied frequency range, reflecting the slope of the
dispersion curve and broadness of the absorption curve. A distinguishable
shoulder at high-frequencies, which is more pronounced in the case of 1,4-
butanediol than 2,3-butanediol, gives an evidence for another high-frequency
process taking over. The frequency range applied in this study does not cover
it entirely, therefore, it is not analysed here in more detail.

High-frequency deviations in the absorption spectra of alcoholic systems
are often analysed by adding additional terms to the function used to fit the
measured data [3,7]. It should be noted that the resulting formal description
— a sum of processes

∑

i fi(ω) — allows data to be easily compared in
literature, but does not provide any distinct physical meaning of each term
in itself.
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Fig. 2. Debye (A,B) and Cole–Davidson (C,D) fits to the complex permittivity

spectra of 2,3- (A,C) and 1,4- (B,D) butanediols at approximately 20◦ ± 4◦C.

The spectra are plotted as (ε∗(ω) − ε∞)/∆ε to emphasise the power laws (the

parameters ε∞ and ∆ε are taken from the corresponding fits). All plots contain

the real (◦) and imaginary (×) parts of the spectra, and fits are shown as solid

lines.

3. The random-walk mechanism of the Cole–Davidson relaxation

Let us consider a stochastic process generated by a sequence of inde-
pendent and identically distributed (i.i.d.) random vectors {(Ri, Ti), i =
1, 2, . . .}, where the random variable Ti > 0 is assigned to the time a par-
ticle waits before it jumps. The length and the direction of such a jump is
reflected in the random variable Ri. The total distance R(τ) travelled by
the particle, initially at the origin of some coordinate system, during an ex-
tended large time τ defines a process known as the continuous-time random
walk (CTRW) [23]. In general, this distance may be expressed as a random
sum of random jumps

R(τ) =

ν(τ)
∑

i=1

Ri , (8)
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where the random number of components ν(τ) is determined by the time
steps Ti, namely ν(τ) is the smallest index k for which the sum of waiting
times T1 + T2 + . . . + Tk exceeds the time of observation τ .

It should be noted that there are two types of the CTRWs: decoupled,
for which the random variables Ri and Ti are independent, and coupled, for
which the random variables Ri and Ti are dependent.

In this paper, we focus on the special case of coupled processes [20], with
the space steps Ri and time steps Ti expressed as random sums:

Ri =

Mi
∑

j=1

∆Rij , Ti =

Mi
∑

j=1

∆Tij . (9)

The sequences of space and time spans, {∆Rij , i, j = 1, 2, . . .} and
{∆Tij , i, j = 1, 2, . . .}, consist of i.i.d. positive random variables, and {Mi,
i = 1, 2, . . .} consists of i.i.d. positive integer-valued random variables. Addi-
tionally, the independence of all sequences is assumed. Although we assume
the independence of space and time random spans, a non-degenerate dis-
tribution of the number of summands Mi provides a stochastic dependence
between them.

In the considered case, the total distance R(τ) has the same distribution
as the following random sum of space spans [33]:

R(τ) =

L(τ)
∑

k=1

∆R1k , (10)

where the index L(τ) is given by the following random sum of Mi’s:

L(τ) =

N(K(τ))
∑

i=1

Mi , (11)

with the number of summands given by the formula

N(K(τ)) = min

{

n :

n
∑

i=1

Mi > K(τ)

}

,

for K(τ) = min







l :
l

∑

j=1

∆T1j > τ







. (12)

The relaxation function defined within the CTRW framework [34] can be
expressed as the Laplace transform of the rescaled total distance (diffusion

front) R̃(t)

φ(t) =
〈

e−kR̃(t)
〉

, (13)
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where k is a positive constant and the diffusion front is defined as the fol-
lowing limit of the distribution

R(t/δτ)

f(δτ)

d

−→
δτ→0

R̃(τ) . (14)

Here,
d
= denotes an equality in distributions. In the above formula, δτ is

a characteristic time scale and f(δτ) is an appropriately chosen rescaling
function. In our calculations, we consider the rescaling function 1/δτ .

The characteristics of the diffusion front R̃(t) depend on the assumptions
used [20, 33] for the distributions of the variables that describe space spans
∆Rij , time spans ∆Tij, and the counting random variable Mi. Aiming to
find the origins of the high-frequency power law (2), we proceed to discuss the
assumptions that lead to the classical Debye and its modification expressed
in the Cole–Davidson response.

Let us first consider the case when the random variables denoting space
and time spans have finite mean values. We assume these values to be
determined by the space and time units, i.e. 〈∆Rij〉 = ∆R, and 〈∆Tij〉 =
∆T . If we assume that the number Mi also has a finite mean value, then
for any non-negative t

R(t/δτ)

1/δτ

a.s.
−→
δτ→0

R̃(t) = Ct . (15)

Here,
a.s.
−→ reads “tends with probability 1”, and C = ∆R/∆T . For a diffusion

front of the form (15), the relaxation function (13) is equal to

φ(t) =
〈

e−Ckt
〉

= e−ωpt , (16)

for ωp = Ck. The exponentially decaying time-domain relaxation function
corresponds to the frequency-domain Debye relaxation response given by the
Fourier transform

ε∗(ω) ∝

∞
∫

0

e−iωt

(

−
dφ(t)

dt

)

dt =
1

1 + iω
ωp

. (17)

In the next step, while keeping the assumptions put on ∆Rij and ∆Tij,
the same as in the Debye case, we additionally assume a heavy-tailed distri-
bution for Mi with a heavy-tail exponent 0 < γ < 1. Let us note that the
notion of a heavy tail with a heavy-tail exponent γ means that the inequal-
ity Pr(Mi ≥ m) ∝ m−γ is valid for large values of m. In such a case, the
diffusion front, as obtained in (14), is distributed as the inverse of Bγ [20]

R̃(t)
d
= Ct

1

Bγ
, (18)
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where Bγ is distributed according to the probability density function

fγ(x) =















1

Γ (γ)Γ (1 − γ)
xγ−1(1 − x)−γ for 0 < x < 1 ,

0 otherwise ,

which is the beta distribution with parameters p = γ and q = 1 − γ. The
corresponding relaxation function has the form

φ(t) =
〈

e
−Ckt 1

Bγ

〉

= Pr(Γγ ≥ Ckt) , (19)

where C = ∆R/∆T and Γγ is a random variable defined by the gamma
density function with the parameter γ:

gγ(t) =















Ck

Γ (γ)
(Ckt)γ−1e−ωpt for t > 0 ,

0 otherwise .

Inserting φ(t) given by (19) into formula (17) leads to the following
expression for the complex permittivity:

ε∗(ω) ∝

∞
∫

0

e−i ω
Ck

tgγ(t) dt ∝
1

(

1 + iω
Ck

)γ , (20)

which becomes the Cole–Davidson relaxation response (1) if ωp = Ck.

Let us finally observe that the derivation of the Debye and the Cole–
Davidson responses requires detailed information on the probability distri-
bution of neither the space Rij nor time Tij spans. The only important point
is to deal in theses cases with finite-expected-value distributions. As a conse-
quence, the space and time spans can be simply considered to be non-random
constants to get the same result as for randomly chosen spans. Departure
from the Debye to any nonexponential relaxation appears in connection with
heavy-tailed distributions of CTRW variates [33]. The high-frequency power
law (2), as expressed by the Cole–Davidson response function, is determined
by the heavy-tailed exponent γ of the distribution of the random variable Mi

counting the number of random space and time spans (see Eq. (9)).
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4. Conclusions

In this paper, we have shown how the Cole–Davidson dielectric relax-
ation response can be rigorously derived using the CTRW concept. Our
approach is based on renewal theory and limit theorems for random sums
of i.i.d. random jumps, instead of the Fourier–Laplace transform framework
commonly used to study CTRWs. The proposed random-variable formal-
ism allows the introduction of a new class of coupled CTRWs, in particular
one that leads to the Cole–Davidson function. As a result, the origins of
the high- and low-frequency properties of the Cole–Davidson response have
been found and the role of the parameter γ has been elucidated. As an illus-
tration to the analysed case, the dielectric permittivity spectra of the four
butanediol isomers in the liquid phase have been presented. This empirical
evidence essentially concerns a system of OH-dipoles on a molecular back-
bone that relax in an outer field. We have shown that the Cole–Davidson
model provides a good description of the measured data in the frequency
range applied, whereas the Debye one does not, as should be expected to
some extent due to the interaction of neighbouring relaxing groups.

Comparing the fit parameters for the four butanediol isomers presented
in Table I, an evident similarity in the values of the parameters εs and ∆ε
for 2,3- and 1,2-butanediol can be seen. These parameters are also similar
for 1,3- and 1,4-butanediol. Furthermore, the marked difference in these
parameters between the two pairs (2,3-BD and 1,2-BD as opposed to 1,3-
BD and 1,4-BD) suggests a connection to the distance between the hydroxyl
groups along the chains of these molecules. The values of the parameter γ
also seem to reflect this trend.

The assumption of an independent response of each dipole to the external
field is, therefore, not valid, and the coupled response is stronger for directly
adjacent dipoles. This is also reflected by the random-walk mechanism of the
Cole–Davidson response, in which the spatio-temporal coupling (measured
by the heavy-tail exponent γ of the coupling variable distribution) is also
stronger for the isomers with directly adjacent dipoles.

The trend observed in the fit parameters here can be correlated with
other data. For instance, Jesus et al., [35] have calculated the most stable
conformations of the butanediol isomers in the gas phase. The weighted
averages of the molecular dipole moments over the conformer populations
yield a differentiation between isomers with adjacent and separated OH-
groups. Moreover, the strengths of both intra- and intermolecular hydrogen
bonds in dilute solutions of the four isomers, observed by the same authors,
follow the sequence: 2,3-BD ≈ 1,2-BD < 1,3-BD < 1,4-BD.
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Let us finally emphasise that the high-frequency process is more pro-
nounced in the case of 1,4-butanediol than 2,3-butanediol, i.e. in the system
where the spatio-temporal coupling is weaker as measured by the heavy-tail
exponent γ of the coupling variable distribution (the tails become weaker as
γ → 1).
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ematics, Wrocław University of Technology) for discussions that have helped
her to become acquainted with the random-variable formalism of the CTRW.
K.M.L. is grateful for a Socrates Erasmus stipend and the support from the
Danish National Research Council via MEMPHYS when he was an exchange
student in B. Klösgen’s Laboratory (Physics Department and MEMPHYS,
University of Southern Denmark, Odense, Denmark).

REFERENCES

[1] N.E. Hill, W.E. Vaughan, A.H. Price, M. Davies, Dielectric Properties and
Molecular Behaviour, Van Nostrand Reinhold, London 1969.

[2] U.J. Kaatze, Solution Chem. 26, 1049 (1997).

[3] J. Barthel, K. Bachhuber, R. Buchner, H. Hetzenauer, Chem. Phys. Lett. 165,
369 (1990).

[4] R. Buchner, J. Barthel, J. Stauber, Chem. Phys. Lett. 306, 57 (1999).

[5] S. Sudo, N. Shinyashiki, Y. Kitsuki, S. Yagihara, J. Phys. Chem. A106, 458
(2002).

[6] T. Sato, R. Buchner, J. Phys. Chem. A108, 5007 (2004).

[7] U. Becker, M. Stockhausen, J. Mol. Liq. 81, 89 (1999).

[8] F.F. Hanna, B. Gestblom, A. Soliman, J. Mol. Liq. 95, 27 (2002).

[9] A.G. Chaudhari, B.R. Arbad, S.C. Mehrotra, J. Solution Chem. 33, 313
(2004).

[10] R. Buchner, G.T. Hefter, P.M. May, J. Phys. Chem. A103, 1 (1999).

[11] T. Chen, H. Hefter, R. Buchner, J. Phys. Chem. A107, 4025 (2003).

[12] C.J. Tsai, J.V. Maizel, R. Nussinov, Crit. Rev. Biochem. Mol. Biol. 37, 55
(2002).

[13] T.R. Jensen, M.O. Jensen, N. Reitzel, K. Nalashev, G.H. Peters, K. Kjaer,
T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).

[14] R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel,
A.C. Simonsen, G.H. Findenegg, Langmuir 19, 2409 (2003).

[15] A.C. Simonsen, P.L. Hansen, B. Klösgen, J. Colloid. Interf. Sci. 273, 291
(2004).

[16] B. Klösgen, C. Reichle, S. Kohlsmann, K.D. Kramer, Biophys. J. 71, 3251
(1996).



A Continuous-Time Random-Walk Approach to the Cole–Davidson . . . 1835

[17] A.K. Jonscher, Universal Relaxation Law, Chelsea Dielectrics Press, London
1966.

[18] A. Jurlewicz, K. Weron, J. Non-Cryst. Solids 305, 112 (2002).

[19] A.K. Jonscher, A. Jurlewicz, K. Weron, Cont. Phys. 44, 329 (2003).

[20] A. Jurlewicz, Applicationes Mathematicae 30, 325 (2003).

[21] M.W. Sagal, J. Chem. Phys. 36, 2473 (1962).

[22] S.H. Glarum, J. Chem. Phys. 33, 639 (1960).

[23] E.W. Montroll, G.H. Weiss, J. Mathematical Phys. 6, 167 (1965).

[24] M.F. Shlesinger, J. Stat. Phys. 10, 421 (1984).

[25] A. Blumen, G. Zumofen, J. Klafter, Phys. Rev. B30, 5379 (1984).

[26] K. Burnecki, A. Weron, Acta Phys. Pol. B 35, 1343 (2004).

[27] A. Weron, K. Burnecki, S. Mercik, K. Weron, Phys. Rev. E71, 0161113 (2005).

[28] H. Weissman, G.H. Weiss, S. Havlin, J. Stat. Phys. 57, 301 (1989).

[29] J. Klafter, G. Zumofen, J. Phys. Chem. 98, 7366 (1994).

[30] O.V. Grineva, V.I. Zhuravlev, J. Chem. Eng. Data 41, 604 (1996).

[31] F. Wang, R. Pottel, U. Kaatze, J. Phys. Chem. B101, 922 (1997).

[32] J. George, N.V. Sastry, J. Chem. Eng. Data 48, 1529 (2003).

[33] A. Jurlewicz, K. Weron, Scaling properties of the diffusion processes underlying
the Havriliak-Negami relaxation function, to be published in: Defects and
Diffusion Forum, Trans. Tech. Publication, Zurich 2005.

[34] E. Gudowska-Nowak, K. Weron, Phys. Rev. E65, 011103 (2001).

[35] A.J.L. Jesus, M.T.S. Rosado, M.L.P. Leitao, J. Redinha, J. Phys. Chem.
A107, 3891 (2003).


