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We show how to modify the random-walk scenario underlying the clas-
sical, exponential relaxation response in order to derive the empirical
Havriliak–Negami function, commonly used to fit the dielectric permit-
tivity of complex-material data. The turnover from the exponential Debye
to the power-law Havriliak–Negami relaxation response is associated with
a new type of a coupled memory continuous-time random walk (CTRW)
driving a fractional dynamics.
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1. Introduction

Dielectric relaxation is commonly defined as an approach to equilibrium
of a dipolar system driven out of equilibrium by a step or alternating external
electric field. It is represented in terms of the temporal relaxation function
φ(t) that has a meaning of the system’s survival probability in an initially
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imposed state until time t and hence is associated with the random waiting
time θ of the system for the transition from the initial state. Namely, we
have φ(t) = Pr(θ ≥ t) = 1 − Fθ(t) where Fθ(t) denotes the probability
distribution function of the random time θ.

Experimentally the systems are often probed in the frequency domain
under an harmonic external driving force yielding the complex permittiv-
ity ε∗(ω) as a function of the driving frequency ω. By definition, ε∗(ω)
is connected to the temporal relaxation function φ(t) through the Fourier
transform

ε∗(ω) − ε∞
ε0 − ε∞

= Φ∗(ω) = −

∞∫

0

e−iωtdφ(t) ,

where ε0 is the static permittivity, and ε∞ is the infinite-frequency permit-
tivity of the sample. Equivalently, Φ∗(ω) =

∫
∞

0 e−iωtdFθ(t) = 〈e−iωθ〉 where
〈·〉 denotes the average value.

As it is already well known, [1–3], all dielectric data are characterized
well enough by a few empirical functions. Among them, the most popular
analytical expression applied to the complex permittivity is given by the
Havriliak–Negami function

Φ∗(ω) =
1

(1 + (iω/ωp)α)γ
, (1)

where 0 < α, γ < 1, and ωp denotes the loss peak frequency defining the
characteristic system’s time scale τp = 1/ωp. Substituting α=1 and γ=1 in
formula (1) one obtains the spectral representation of the Debye relaxation
function

φ(t) = exp(−ωpt) (2)

related to the exponentially distributed system’s waiting time θ. In gen-
eral, the relaxation function φ(t) corresponding to the Havriliak–Negami
function (1) can be given in the following series representation

φ(t) = 1 −

∞∑

k=0

(−1)k Γ (γ + k)

Γ (γ) k!Γ (1 + α(γ + k))
(ωpt)

α(γ+k) , (3)

which can be also expressed in terms of the H-function [4]

φ(t) = 1 −
1

Γ (γ)
H11

12

(
[ωpt]

α
∣∣∣(1,1)
(γ,1)(0,α)

)
.

The relaxation function (3) is associated with a generalized Mittag–Leffler
distribution Fθ(t) = 1 − φ(t) of the system’s waiting time θ [5–7]. To make



Havriliak–Negami Response in the Framework of the Continuous-Time . . . 1857

this distribution more user-friendly let us discuss its structure by means of
the random-variable notation. It has been shown [6] that in case of the
Havriliak–Negami response (1) the random waiting time θ (having a gen-
eralized Mittag–Leffler distribution) can be expressed as a product of two
independent random variables Gγ and Sα; namely,

θ =
1

ωp
G1/α

γ Sα , (4)

where Gγ is distributed according to the gamma distribution with scale pa-
rameter 1 and shape parameter γ (defined by the density function gγ(t) =

1
Γ (γ) t

γ−1e−t for t > 0, and 0 otherwise), and Sα is the completely asym-

metric Lévy-stable random variable such that 〈e−kSα〉 = e−kα
. According

to formula (4), a generalized Mittag–Leffler distribution can be represented

by a mixture of a generalized gamma distribution corresponding to G
1/α
γ

and the Lévy-stable distribution of Sα. Let us note that when α = 1 and
γ = 1, formula (4) simplifies to θ = (1/ωp)G1 what denotes the exponentially
distributed waiting time θ of the Debye model.

The most natural theoretical attempt to model the nonexponential re-
laxation phenomena is based on the diffusion of defects in the system under
considerations. Originally, this concept was introduced by Zener [8,9] in or-
der to explain the relaxation of the strain field in a linear solid. The model
of Zener was adapted by Glarum [10] assuming that vacancies such as mi-
croscopic cavities or random orientations of crystallities diffuse within the
system, and when they meet an initially prepared excited state (an imposed
orientation of a dipole, stress, etc.), the latter is allowed to relax. This idea
was generalized by Shlesinger [11] and Blumen et al. [12] who proposed the
target model for processes of anomalous statistics. The technique used by
them was based on the notion of a continuous-time random walk (CTRW) in-
troduced by Montroll and Weiss [13] for description of many types of kinetic
phenomena. Recently, a new approach to study the CTRW, applying the
random-variable formalism, has been developed [14–18]. As we shall show
below, this mathematical tool allows us to avoid the technical difficulties
present in the classical approach to the CTRW [13, 19]; and, on the other
hand, it gives a possibility of constructing new types of coupled memory
CTRWs driving the fractional transport dynamics in complex systems.

In this paper we introduce a coupled memory CTRW which governs the
Havriliak–Negami relaxation pattern. We show that the power-law expo-
nents of the Havriliak–Negami function follow from scaling properties im-
posed on the jump and coupling parameters of the new type of the CTRW.
We also show that this relationship helps us to find interpretation of the
fractional operators in the corresponding fractional kinetic equation.
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2. New type of a coupled CTRW with random-sum structure

of time and space steps

Let us consider a random walk generated by a sequence {(Ri, Ti), i =
1, 2, . . .} of jump parameters where Ri indicates both the length and the
direction of the i-th jump while Ti > 0 is the residence time between the
i-th jump and the next one. We assume that (R1, T1), (R2, T2), . . . are
independent and identically distributed (i.i.d.) random vectors. The total
distance R(t) reached by the walker at time t ≥ 0 defines a stochastic process
called the CTRW. It is classified as decoupled if random variables Ti and
Ri are independent; as coupled in case of dependent time and space steps.
By definition, R(t) has a form of the following random sum over the space
steps Ri

R(t) =

ν(t)∑

i=1

Ri

with ν(t), random number of components, generated by the time steps by
means of the following first-passage formula

ν(t) = min

{
n :

n∑

i=1

Ti > t

}
.

As a simple example of the coupled CTRW, we can consider a random
walk around a regular spatio-temporal lattice where the walker’s steps are
random multiples of constant space and time unit steps, ∆R>0 and ∆T >0,
respectively. Namely, let us take into account the jump parameters having
the following form

Ri = Mi∆R, Ti = Mi∆T , (5)

where random multipliers M1, M2, . . . form a sequence of positive integer-
valued i.i.d. random variables. In such a case coupling is provided by the
multipliers Mi’s; and it has, in fact, a strong form of the linear dependence
between the space steps of the walker and the corresponding time steps since
formulas (5) lead to Ri = CTi with C equal to the ratio of the space to the
time units, C = ∆R/∆T . The resulting biased linearly coupled CTRW has
the following form

R(t) = M
t

∆T
∆R , (6)

where the random multiplier

M
t

∆T
=

N(t/∆T )∑

i=1

Mi (7)
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is equal to the sum of positive integer-valued random variables Mi’s with
the random number of summands given by

N
t

∆T
= min

{
n :

n∑

i=1

Mi >
t

∆T

}
. (8)

Let us observe that formulas (5) can be simply rewritten into random
sums

Ri =

Mi∑

j=1

∆R , Ti =

Mi∑

j=1

∆T , (9)

and that the resulting CTRW (6) has the equivalent form

R(t) =

M(t/∆T )∑

j=1

∆R . (10)

Following the above trick and generalizing formulas (5) for the CTRW jump
parameters (Ri, Ti) by substituting the constant space/time units steps ∆R
and ∆T in (9) by the corresponding random spans ∆Rij, ∆Tij, we can
construct a class of the coupled memory CTRWs yielding the Havriliak–
Negami response (1). Namely, let us consider the jump parameters of the
following random-sum form

Ri =

Mi∑

j=1

∆Rij , Ti =

Mi∑

j=1

∆Tij , (11)

where ∆Rij = δR
ij∆R and ∆Tij = δT

ij∆T for positive dimensionless random

perturbations δR
ij , δT

ij forming independent sequences {δR
ij , i, j = 1, 2, . . .}

and {δT
ij , i, j = 1, 2, . . .}, each consisting of i.i.d. random variables. As in the

simpler case (9), the random numbers of summands in (11) form an i.i.d. se-
quence {Mi, i = 1, 2, . . .} that is additionally assumed to be independent of
the perturbation sequences {δR

ij}, {δ
T
ij}. If the distribution of Mi is nonde-

generate (i.e. random variable Mi takes at least two different values with
positive probabilities), the former linear dependence Ri = CTi, character-
izing the lattice case (5), is here substituted by a weaker but more general
stochastic dependence between time and space steps. As a consequence,
the CTRW resulting from relations (11) is usually coupled, and coupling is
provided by the random-number sequence {Mi} as in the previous exam-
ple. Moreover, the obtained coupled CTRW has an equivalent random-sum
representation, similar to (10). Namely, the total distance R(t) has the



1860 K. Weron, A. Jurlewicz, M. Magdziarz

same distribution as the random sum over the space spans ∆R1j’s where
the random number of summands, L(t/∆T ), has the form resembling (7);
namely,

L
t

∆T
=

N(K(t/∆T ))∑

i=1

Mi

with the number of summands defined in a way parallel to (8) as

N

(
K

t

∆T

)
= min

{
n :

n∑

i=1

Mi > K(t/∆T )

}

for K t
∆T = min{k :

k∑
j=1

∆T1j > t} = min{k :
k∑

j=1
δT
1j > t/∆T}. More

precisely, we have

R(t)
d
=

L(t/∆T )∑

j=1

∆R1j =

L(t/∆T )∑

j=1

δR
1j∆R , (12)

where equality
d
= refers to the distributions of the considered random vari-

ables (and it means that the random variables on the left and right-hand
sides have the same distributions). Let us stress that the total distance
R(t) is not simply equal to the random sum in (12) but only has the same
distribution. However, representation (12) allows us to examine statistical

and asymptotic properties of R(t) and of the diffusion front R̃(t), being a
total-distance limit in distribution approached as the characteristic time and
space scales ∆T and ∆R tend to 0 (with ∆R related somehow to ∆T ). Infor-
mation on the diffusion-front distribution can be provided by nonstandard
limit theorems of probability theory [18, 22]. The statistical properties of

R̃(t) depend on assumptions set on the distributions of the variables ∆Rij,
∆Tij , and Mi, basic for the considered construction of the coupled CTRW.

The proposed procedure, applied here for the case of biased walk with
the positive space steps Ri only, reminds the well-known approximation of
the Brownian motion based on limiting properties of the simplest unbiased
random walk on the spatio-temporal lattice given under the following as-
sumptions Pr(Ri = ∆R) = Pr(Ri = −∆R) = 1/2 and Ti = ∆T (implying
equally probable up and down jumps). Such a random walk approaches
(in distribution) the Brownian motion if ∆T and ∆R both tend to 0 while
the ratio (∆R)2/∆T remains constant [20, 21]. Following this classical idea
for the unbiased decoupled random walk, in the model of the biased cou-
pled CTRW introduced above, the new type of diffusion processes can be
derived. In the next section we present detailed analysis of two important
cases connected with the Debye and the Havriliak–Negami responses.
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3. The Havriliak–Negami relaxation response

In the framework of the biased CTRW approach the relaxation function

can be expressed by means of the diffusion front R̃(t) as an average

φ(t) =
〈
e−k eR(t)

〉
,

where k is an appropriate positive constant [14, 17, 23]. According to the
assumed detailed statistical properties of the space and time spans ∆Rij,
∆Tij (or equivalently, of the perturbations δR

ij , δT
ij) and of the random num-

bers Mi of summands in formulas (11), the obtained coupled CTRW and
the resulting diffusion front may yield responses of different types.

In order to obtain the classical exponential response we have to consider
the case when the mean values of both, space and time spans are finite.
It is reasonable to assume that these mean values determine the space and
time units, i.e. that 〈∆Rij〉 = ∆R, 〈∆Tij〉 = ∆T (or equivalently, that
〈δR

ij〉 = 〈δT
ij〉 = 1). If the number Mi of the random-sum components in (11)

also has a finite mean value, then for any t > 0 the total distance R(t) tends
with probability 1 to the diffusion front of the form linear in time

R̃(t) = Ct

as ∆T and ∆R decrease to 0 with the ratio C = ∆R/∆T being retained
[7, 18]. The resulting relaxation function φ(t) has then the Debye form (2)
with ωp = Ck.

To pass from the Debye to the power-law Havriliak–Negami relaxation
response, we have to assume that — instead of the finite mean values —
both ∆Rij and ∆Tij (or equivalently, the perturbations δR

ij , δT
ij) have heavy-

tailed distributions with the same exponent α where 0 < α < 1, i.e. that
the distributions of the random variables ∆Rij and ∆Tij satisfy conditions

lim
x→∞

Pr(∆Rij >x)

(x/∆R)−α
= 1 (13)

and

lim
x→∞

Pr(∆Tij >x)

(x/∆T )−α
= 1 , (14)

where the space and time units are determined by the scale parameters
of the corresponding heavy tails. (Equivalently, one can assume that the

dimensionless perturbations δR
ij , δT

ij satisfy conditions lim
x→∞

Pr(δR
ij>x)

x−α = 1 and

lim
x→∞

Pr(δT
ij>x)

x−α = 1.) Moreover, it has to be assumed that the distribution of
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the random number Mi (that provides coupling) has also a heavy tail with
exponent γ where 0 < γ < 1, i.e., the distribution of Mi fulfils the condition

lim
x→∞

Pr(Mi >x)

(x/c)−γ
= 1 (15)

for some c > 0. Then for any t > 0 the total distance R(t) tends in distri-
bution to

R̃(t)
d
= Ct

S
′

α

Sα

(
1

Bγ

)1/α

(16)

as ∆T → 0 and ∆R → 0 but with constant ratio C = ∆R/∆T [7, 18]. The

random variables Bγ , Sα, and S
′

α in (16) are independent. Moreover, Sα

and S
′

α are identically distributed according to the completely asymmetric
Lévy-stable law such that

〈e−kSα〉 = 〈e−kS
′

α〉 = e−kα
; (17)

and Bγ is distributed according to the generalized arcsine distribution with
parameter γ (i.e., the beta distribution with parameters p = γ and q = 1−γ)
defined by the density function

fγ(x) =

{ 1
Γ (γ)Γ (1−γ)x

γ−1(1 − x)−γ for 0 < x < 1 ,

0 otherwise .

Let us notice that the limiting law (16) represents a mixture of a generalized
arcsine distribution, corresponding to Bγ , and a fractional stable distribution

of the ratio of independent Lévy-stable random variables S
′

α and Sα. The
assumptions set on the distributions of the variables ∆Rij, ∆Tij, and Mi,
given by (13)–(15), can be interpreted as scaling properties of a large-value
asymptotic behaviour of the respective quantity.

Now we show that the relaxation function φ(t) corresponding to the
diffusion front (16) is related to the Havriliak–Negami function (1) with
ωp = Ck. For any 0 < γ < 1 we have [7]

〈e−k·1/Bγ 〉 = Pr(Gγ ≥ k) , (18)

where random variable Gγ is distributed according to the gamma distribution
with scale parameter 1 and shape parameter γ and independent of Sα. Using
the conditional-expected-value tools, one obtains from (17) and (18) that [7]

〈
e
−k

 
S
′

α
Sα

“
1

Bγ

”
1/α
!〉

= Pr(G1/α
γ Sα ≥ k).
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As a consequence, for the diffusion front R̃(t) given by (16), the correspond-
ing relaxation function φ(t) has the form

φ(t) =

〈
e
−(Ck)t

 
S
′

α
Sα

“
1

Bγ

”
1/α
!〉

= Pr(1/(Ck)G1/α
γ Sα ≥ t) .

From (4) the spectral representation of such a function coincides with (1) if
we take ωp = Ck.

Let us add that considering other sets of conditions imposed on the
distributions of the space and time spans ∆Rij and ∆Tij and on the random
number Mi of summands one can repeat the above scheme getting other
types of relaxation responses.

4. Kinetic equation

As it has been recently shown [19, 24], the turnover from the classical
exponential to the inverse power-law relaxation pattern associated with the
empirical Cole–Cole function (the special case of function (1) with γ = 1)
involves modification of the Brownian dynamics to the fractional one rep-
resented in terms of the fractional Fokker–Planck or the fractional kinetic
equations. The fractional calculus appears hence as a useful approach for
description of transport dynamics in complex systems that are governed by
anomalous diffusion and nonexponential relaxation [19].

Below, in connection with this problem, we discuss the fractional equa-
tion which is satisfied by the response function f(t) = −dφ

dt (t) of the relaxing
system for which the relaxation function φ(t) is given by (3). Our aim is to
find the role of the exponent γ by means of which the Havriliak–Negami re-
sponse differs from the Cole–Cole case (γ = 1) discussed already by Metzler
and Klafter in [19].

The fractional kinetic equation underlying the Cole–Cole response with
the parameters 0 < α < 1, ωp > 0 has been shown to have the form [19,24]

dφ

dt
(t) = −ωα

pD1−αφ(t) , (19)

where the fractional derivative D1−α is defined as D1−α = d
dt(D

−α) for D−α

denoting the fractional Riemann–Liouville integral operator [25]

D−αh(t) =
1

Γ (α)

t∫

0

(t − s)α−1h(s)ds .
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Let us observe that equation (19) for the relaxation function φ(t) yields the
following equation for f(t), the response function of the system

(1 + ω−α
p Dα)f(t) = δ(t) , (20)

where δ(t) is the Dirac delta function and Dα = d
dt(D

−(1−α)). The solutions
of equations (19) and (20) are given by the tail function of the Mittag–Leffler
distribution [26] (a special case of the generalized Mittag–Leffler distribution
for γ = 1) and by its probability density, respectively. Now, following the
relationship of the Bessel operators to the fractional derivatives discussed by
Samko et al. in [27] we propose such a modification of the Bessel operator
that leads to a fractional equation satisfied by the probability density of the
generalized Mittag–Leffler distribution (3).

For constant parameters 0 < α < 1, γ > 0, ωp = Ck > 0 we define
operator Gα

γ via its one-sided Fourier transform as

Ft{G
α
γ h (t)} =

1

(1 + (iω/ωp)α)γ
h(ω)

for any function h : R+ → R+. Here h(ω) denotes the one-sided Fourier
transform of the function h, i.e. Ft h(t) = h(ω) =

∫
∞

0 e−iωth(t)dt. From the
properties of the Fourier transform we get the following representation for
Gα

γ :

Gα
γ h(x) =

∫ x

0
f(t)h(x − t)dt

which is a convolution of function h and the Riesz function

f(t) =

∞∑

k=0

(−1)kΓ (γ + k)

Γ (γ)Γ (α(γ + k))k!
ωp(ωpt)α(γ+k)−1 . (21)

For n ∈ N such that nα ≤ 1 the following identity:

(1 + ω−α
p Dα)n Gα

nh(t) = h(t) (22)

holds for any h : R+ → R+. Namely, Newton’s binominal formula and the
one-sided Fourier transform of the left-hand side of equation (22) give the
result
n∑

k=0

(
n

k

)(
iω

ωp

)αk

Ft{G
α
nh(t)} =

n∑

k=0

(
n

k

)(
iω

ωp

)αk 1

(1 + (iω/ωp)α)n
h(ω)

=
1

(1 + (iω/ωp)α)n
h(ω)

n∑

k=0

(
n

k

)(
iω

ωp

)αk

=
1

(1 + (iω/ωp)α)n
h(ω)

(
1+

(
iω

ωp

)α)n

= h(ω)
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which yields (22). Thus for fixed α and n ∈ N such that nα ≤ 1 the operator
(1+ω−α

p Dα)n is inverse to Gα
n . Following the above idea, for fixed α ∈ (0, 1)

and any γ > 0 such that αγ ∈ (0, 1) let us define operator (1 + ω−α
p Dα)γ as

the inverse operator to Gα
γ , i.e.

(1 + ω−α
p Dα)γh(t) = (Gα

γ )−1h(t) .

For any probability density function (pdf) g(x, t), in particular for the pdf

of the process R̃(t) obtained in formula (16), we have

Ft{(G
α
γ )−1Lxg(x, t)} = (1 + (iω/ωp)α)γ g(k, ω) =

[(Ck)α + (iω)α]γg(k, ω)

(Ck)α
,

(23)
where Lx g(x, t) =

∫
∞

0 e−kxg(x, t)dx and g(k, ω) is the Fourier–Laplace FtLx

transform of g(x, t). The last equation shows that the operator (1+ω−α
p Dα)γ

is closely related to the fractional material derivative defined by Sokolov and
Metzler in [28]. However, the exact relationship between both fractional
operators is not obvious and will be the subject of our further research.

Let us consider the following fractional equation

(1 + ω−α
p Dα)γf(t) = δ(t) (24)

being a generalization of (20). To solve equation (24) let us put the one-sided
Fourier transform on both its sides. We get then

(1 + (iω/ωp)α)γf(ω) = 1 ,

which implies

f(ω) =
1

(1 + (iω/ωp)α)γ
. (25)

Thus we have established that the solution f(t) of equation (24) is the
response function related to the Havriliak–Negami function (1). Inverse
Fourier transform of formula (25) yields the response function f(t) hav-
ing the form of the Riesz function (21). The time-domain relaxation func-
tion φ(t) corresponding to f(t) is given by (3). Let us note that operator
(1 + ω−α

p Dα)γ can be informally considered in terms of series expansion;
namely,

(1 + ω−α
p Dα)γ =

∞∑

k=0

(
γ

k

)
ω−αk

p Dαk .

In this case, the heuristic solution of (24) is equivalent to (21), the one we
have derived.
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The classical kinetic equation

dφ

dt
(t) = −r(t)φ(t) (26)

with time-dependent transition rate r(t) governs the Havriliak–Negami re-
laxations if

r(t) =

∞∑
k=0

(−1)kΓ (γ+k)
Γ (γ)Γ (α(γ+k))k!ωp(ωpt)

α(γ+k)−1

1 −
∞∑

k=0

(−1)kΓ (γ+k)
Γ (γ)Γ (1+α(γ+k))k! (ωpt)α(γ+k)

. (27)

This complicated formula for the transition rate exhibits power-law asymp-
totics [see Fig. 1(a)] of the form

r(t) ∼

{
(ωpt)

αγ−1 , ωpt ≪ 1
(ωpt)

−1 , ωpt ≫ 1 .
(28)

This corresponds, via the kinetic equation (26), to the power-law behaviour
of the response function f(t) [see Fig. 1(b)]

f(t) ∼

{
(ωpt)

αγ−1 , ωpt ≪ 1
(ωpt)

−α−1 , ωpt ≫ 1 .
(29)

In general, the above properties are independent of the Havriliak–Negami
response. It is easy to verify that for any response function f(t) with prop-
erty (29), the transition rate in equation (26) has to have property (28).

FiguresFig.1.

1

Fig. 1. The time-domain representation in the log–log scale of (a) transition rate

and (b) response function corresponding to the Havriliak–Negami function. Pa-

rameters: α = 0.7, γ = 0.9, ωp = 1.
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Equation (26) is equivalent to the following differential equation for the
response function f(t)

df(t)

dt
= −

(
r(t) −

dr(t)

dt

1

r(t)

)
f(t) (30)

determined by the system’s transition rate r(t) given in (27). Thus the frac-
tional equation (24) and the ordinary differential equation (30) with time-
dependent transition rate (27) both correspond to the Havriliak–Negami
relaxation response.

5. Conclusions

We have applied the random-variable formalism to the analysis of the
CTRW as the one that allows us to omit the technical difficulties arising in
the Fourier–Laplace technique commonly used to study this type of random
walks. In the framework of the proposed attempt we have constructed a new
class of coupled memory CTRWs underlying, in particular, the Havriliak–
Negami relaxation response. We have shown that the turnover from the ex-
ponential Debye to the power-law Havriliak–Negami relaxation is associated
with scaling properties of the defect diffusion process driving the fractional
dynamics.

The research was partially done within the ESF Programme STOCH-
DYN.
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