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Effects of quantum statistics are clearly seen in the final states of high-
energy multiparticle production processes. These effects are being widely
used to obtain information about the regions where the final state hadrons
are produced. Here we briefly present and discuss the assumptions under-
lying most of these analyses.
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1. Introduction

Differences between quantum and classical (Boltzmann) statistics show
up in a variety of systems. Here we will discuss systems, where the energy
per particle is of the order of 100 MeV or more. In such systems, produced
in high energy scattering processes, correlations due to quantum statistics
are clearly seen in the data: Identical bosons seem to attract each other,
identical fermions seem to repel each other. The quantitative description of
these effects is interesting both for their own sake and in order to disentangle
other more subtle correlations.
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There is still another motivation for this study, however, which is some-
what controversial, but very stimulating. Much work has been done on
quantum statistics in multiple particle production processes. For reviews
see e.g. [1] and [2]. According to most of this work, the study of interparti-
cle correlations due to quantum statistics yields valuable information about
interaction regions, i.e. about the regions where the hadrons are produced.
The interaction regions are difficult to study, because they are both small
and short-lived. Their typical sizes are of the order of fermis and also their
life-times are of the order of fermis. A fermi in time is the time necessary
to cross the distance of one fermi at the speed of light i.e. about 3 × 10−24

sek. Very few methods for studying interactions regions are available.
An added attraction is that the predictions from the recognized theories

for the new data from the heavy ion collider RHIC turned out to be com-
pletely wrong (references can be traced e.g. from [3]). The name coined for
this disaster is the RHIC puzzle. Consequently, both the general theoret-
ical framework and the specific phenomenological assumptions have to be
reanalyzed. In this paper we will present the basic assumptions of the most
popular models.

In low energy scattering, i.e. when the center-of-mass kinetic energy of
the two colliding particles is of the order of 1 GeV, when several particle
are produced their distribution is roughly spherically symmetric. The first
model to gain wide popularity, Fermi’s model, used a slightly modified mi-
crocanonical distribution. For each multiplicity of particles, each final state
with total energy and total momentum equal to their initial values was as-
sumed to be equally probable. At higher energies spherical symmetry breaks
down and the model does not work any more. At low energies, however, it
seemed good until paper [4] got published.

In this paper the authors studied the opening angles i.e. the angles be-
tween the momenta for pairs of pions. From Coulomb interactions one would
qualitatively expect that for pairs of like-sign charged pions the opening an-
gles would be on the average smaller than for pairs of unlike-sign charged
pions. Quantitatively, however, one can easily estimate that this effect is
rather small. The authors expected, nevertheless, a similar effect, because
it had been predicted that in the π+π− system there is a resonance, now
known as the ρ meson, while for like sign pairs no resonance had been ex-
pected. To their surprise, the experimental result was just the opposite.
The opening angles for pairs of like-sign pions tended to be smaller. The
result got explained in the seminal paper [5] as a result of the Bose–Einstein
statistics of the identical pions. For many years the effect had been known as
the GGLP effect. We will review the GGLP paper in the following section,
but now let us discuss high energy scattering.
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We will consider central heavy ion (e.g. gold–gold) scattering at center-
of-mass energies of the order of 100 GeV per pair of colliding nucleons. In
such collisions, in the center-of-mass system, due to Lorentz contraction,
both nuclei take the form of thin pancakes. When the two pancakes fly
through each other there are many nucleon–nucleon interactions, but at this
energies the directions of flight of the nucleons change little and the pancakes
survive. When they fly away from each other, many strings are formed and
stretch connecting the color charges in one nucleon with the opposite color
charges in the other. These string are a characteristic feature of quantum
chromodynamics. When two opposite electric charges interact, the well-
known field of forces extends over all space. In quantum chromodynamics
the corresponding field is confined to a thin (diameter of the order of one fm)
tube with the opposite color charges at the two ends. In a high energy central
heavy ion collision many strings are produced and exist simultaneously. It
is plausible that they merge and produce a well-defined, roughly cylindrical
region with the two pancakes at its ends. This region is presumably first
filled with quarks, antiquarks and gluons. Only later hadrons, mostly pions,
emerge from it.

There is a number of questions one would like to ask. What is the size
and shape of this region? What is its life-time and what is the duration of
hadronization? Note that the life-time and the duration of hadronization
are in general different. For instance, the region could live for 8 fm without
emitting hadrons and then emit all the hadrons within 2 fm. If the content
of the region can be considered a phase, it would be interesting to know
its equation of state. This would be valuable information for cosmological
models of the early stages of the Universe expansion and for models of the
interiors of neutron stars — perhaps some of them have quark–gluon cores.
Another set of questions is about the transition of this stuff into hadrons:
is it a phase transition or a cross-over? If it is a phase transition, is it first
order or continuous? If it is first order, what is the latent heat?

2. GGLP or HBT or BE correlations

Let us start this section with a remark about terminology. Starting from
the seventies, the original acronym GGLP was being gradually replaced by
the acronym HBT in honor of Hanbury-Brown and Twiss, who several years
before the GGLP paper [5] had made a related discussion in astronomy [6].
They used successfully the Bose–Einstein correlations among photons to
measure the diameters of distant stars. Now the name GGLP is hardly ever
used. Kopylov and Podgoretskii explained [7] how, starting from a more
general formulation, one can obtain the GGLP case by making a parameter
tend to zero and the HBT case by making the same parameter tend to
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infinity. Thus, GGLP and HBT are two different limiting cases. In fact,
some people replace HBT by the more neutral BEC standing for Bose–
Einstein correlations.

In order to facilitate comparison with subsequent developments, we will
present the GGLP results using a more general notation. GGLP start with
an input single particle density operator — not to be confused with the
actual single particle density operator for the system — in the form

ρ̂I =

∫

d3x|x〉ρ(x)〈x|. (1)

This corresponds to particles being produced incoherently from point sources.
Function ρ(x) gives the distribution of the sources in space. In this model
the full information about the size and shape of the interaction region is
given when function ρ(x) is known. The corresponding input single particle
density matrix reads

ρI(p;p′) =

∫

ρ(x)eiqx, (2)

where q = p − p′. Note that given the density matrix ρI(p;p′) one can
unambiguously obtain the distribution of sources ρ(x) just by inverting the
Fourier transformation. Unfortunately, this nice feature of the theory will
be lost, when the theory is made more realistic.

Interpreting the input density matrix as a density matrix, one would
obtain the single particle momentum distribution

Ω1(p) = ρI(p;p) =

∫

d3xρ(x) = 1. (3)

This is obviously unrealistic. E.g. very large momenta are forbidden by
energy conservation. GGLP, however, interpreted Ω1(p) as a weight for the
states allowed by energy and momentum conservation. Thus, the result
just means that the single particle distributions should be calculated from
Fermi’s model.

For pairs of identical particles, in general,

Ω2(p1,p2) 6= ρI(p1;p1)ρI(p2;p2), (4)

because the right-hand side does not have the right symmetry with respect
to the exchange of p1 and p2. GGLP symmetrized it to get

Ω2(p1,p2) = ρI(p1;p1)ρI(p2;p2) + ρI(p1;p2)ρI(p2;p1). (5)

For instance, substituting for the density distribution of sources

ρ(x) =
1

√
2πR2

3 e
−x2/2R2

(6)
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one finds

Ω2(p1,p2) = 1 + e−R2q2

. (7)

Again, as a distribution of momenta this is untenable, but interpreted as a
weight it nicely reproduces the enhancement at small momentum differences
seen in the data.

The GGLP paper has been very influential. It still is the most quoted
paper in the field. It has, however, its weak points. On the technical side,
it is easy to calculate the weights, but then the integration over momentum
space is needed. In the usual case, when neither the nonrelativistic approxi-
mation, nor the ultrarelativistic approximation (all masses tending to zero)
is justified, this is a cumbersome task. In practice, as far as I know, no
one got with this approach beyond three identical particles, while in heavy
ion collisions, at high energies hundreds of identical particles are being pro-
duced. Moreover, in order to calculate the momentum integral, one needs
the exact numbers of all the other particles produced and this is usually
not available. A reasonable approximate solution of this problem has been
found and will be presented in the next section.

Also the physics behind the model is doubtful. Time does not appear
explicitly. As easily checked, this corresponds to the assumption that all
the identical particles are produced instantly and simultaneously at some
time t0. This is a most unlikely scenario. Just reflect at the question,
in which reference frame this assumption should be satisfied. Moreover,
classically one would like to find the probability distribution for a particle
being produced at point x with momentum p. In order to get consistency
with quantum mechanics one has to compromise. In the GGLP model the
particle is produced at point x and, in agreement with quantum mechanics,
its momentum can be anything with equal probability. This is then modified
by rejecting the states forbidden by energy and/or momentum conservation.
It is much more likely, however, that the particles are produced as wave
packets with some finite variances of position and momentum.

3. Two particle (reduced) correlation functions

Consider a two-particle correlation function

C2(p1,p2) =
Ω2(p1,p2)

Ω2bckg(p1,p2)
. (8)

Here Ω2 is the experimental two-body momentum distribution and Ω2bckg is
the corresponding distribution with the Bose–Einstein correlations switched
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off. The latter cannot be obtained from the data without further assump-
tions, but the experimental groups have various methods for getting reason-
able approximations to it. It would be more in agreement with the termi-
nology used in statistics to put into the denominator the product of single
particle distributions instead, but the correlation function defined here is
more convenient to study separately the correlations due to quantum statis-
tics. Assuming that this correlation function can be calculated from the
GGLP approach without phase space integrations, one finds

Ω2(p1,p2) = Ω2bckg(p1,p2)

(

1 +
|ρ(p1,p2)|2

ρ(p1,p1)ρ(p2,p2)

)

. (9)

From now on we skip the subscript I, though ρ, strictly speaking, is not
quite the single particle density matrix of the system. Formula (9), which
has been proposed by Kopylov [8], is plausible and can be easily used for
comparison of models with experiment. One measures Ω2 and divides it by
the estimated Ω2bckg to obtain the experimental C2. This is compared with
the C2 calculated from the model. The procedure is approximate, but it
avoids the integration over momentum space. Thus, the information how
many and what kinds of particles have been produced is not needed.

For instance, for the Gaussian input density (6) the calculated correlation
function is

C2(p1,p2) = 1 + e−R2q2

. (10)

Comparing it with the data one obtains the root-mean-square radius of the
interaction region R. Here by assumption this region is spherically symmet-
ric. A natural generalization [9, 10] is to replace the product R2q2 in the
exponent by q2LR

2
L + q20R

2
0 + q2sR

2
s , where qL, q0 and qs are, respectively, the

components of q along the beam axis and along some two axes perpendic-
ular to it. Since the maximum length of the strings, achieved just before
they break, increases with energy, one would expect for central collisions
at high energies RL ≫ R0 ≈ Rs. Experimentally it is observed that RL is
comparable with R0 and Rs. This has been explained as follows [18]. The
correlations due to Bose–Einstein statistics are visible only for values of |q|
of the order of R−1 or less. Therefore, they can be used only to measure the
size of the region where particles with similar momenta are produced. This
region, named by Sinyukov the homogeneity region, is in general smaller
than the total interaction region.

The correction of the physical assumptions is much harder and will be
discussed in the following sections. Essentially there are two strategies: the
method of wave packets, with its close relative the method of covariant
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currents, and the methods inspired by the concept of the Wigner function.
This leaves aside the approaches where a complete model is proposed, which
can be used to calculate anything. In particular it may be used to calculate
the correlations among the identical particles at small |q| whether or not
they have something to do with some interaction region. For an example in
this category cf. e.g. [11].

4. Wave packets and covariant currents

Let us replace the GGLP single particle input density operator by

ρ̂ =

∫

d4xs

∫

d4ps|ψxsps
〉ρ(xs, ps)〈ψxsps

|, (11)

which corresponds to the single particle input density matrix

ρ(p;p′) =

∫

d4xs

∫

d4psψxsps
(p)ρ(xs, ps)ψxsps

(p′). (12)

Here the time dependence of the density matrix is not explicitly written.
Function ρ(xs, ps) is the distribution of the space-time four-vectors and the
energy-momentum four-vectors defining the sources. The distribution of
particles, however, is consistent with quantum mechanics because of the
wave functions ψxsps

. There are various ways of using this scenario.
Kopylov and Podgoretskii, who introduced it [12], assumed that the

sources differ only by their positions in space–time. Thus

ψxsps
(p) = eipxsφ(p), (13)

where the fourth component of p, necessary to calculate the product pxs,
is given by p0 =

√

p2 +m2 and thus, is not an independent variable. The
density matrix is

ρ(p;p′) = φ(p)φ∗(p′)

∫

d4xs

∫

d4psρ(xs, ps)e
iqxs (14)

and

Ω1(p) = |φ(p)|2. (15)

This is the first success. The model can reproduce perfectly any single
particle momentum distribution. On the other hand

C2(p1,p2) = 1 + |〈eiqxs〉|2, (16)

where the averaging is over the distribution of sources ρ(xs, ps). Here func-
tions φ(p) cancel. One way of calculating the distribution ρ(ps, xs) is to
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start with some initial distribution and then to propagate it, finding from
some classical equations, e.g. Newton’s or Boltzmann’s, the functions xs(t)
and ps(t).

Another variant, known as the method of covariant currents [13], is to
put

ψxsps
(p) = eipxsj

(

psp

ms

)

, (17)

where ms is the mass of the source, usually put equal to the particle mass.
In the rest frame of its source each current reduces to the same function
j(p0). In this approach the assumption of Kopylov and Podgoretskii that
each source yields particles with the same momentum distribution in some
common frame, e.g. in the center-of-mass frame, is replaced by the more
plausible assumption that the momentum distribution for particles from any
source looks the same in the rest frame of this source.

5. Wigner functions and their generalizations

In statistical physics there is a well-known method of including simulta-
neously positions and momenta. One uses the Wigner function related to
the density matrix in the momentum representation by the formula [14, 15]

W (X,K) =

∫

d3q

(2π)3
ρ(K + 1

2q,K − 1
2q)eiqX, (18)

where

K = 1
2(p+ p′); X = 1

2 (x+ x′). (19)

Note that, for further use, K and X are defined as four-vectors, but in
the definition of the Wigner function only three-vectors and a fixed time
argument (not written explicitly) appear. The Fourier transformation can be
inverted, so that there is a one to one relation between the density matrix and
the corresponding Wigner function. The introduction of the Wigner function
solves the problem when the production of all the particles is simultaneous at
some time t. When the particles are produced in a time interval [t1, t2], but so
that the particles produced at different instants of time do not interfere, one
can overage over time, with suitable weights, both sides of the equation. The
time averaged density matrix, which one could hope to measure, is related
to the time averaged Wigner function, but the important information about
the time distribution of the production process is lost. When the particles
produced at different instants of time interfere, even more information is
lost. It is possible to define objects related by Fourier transformations to the
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various components contributing to the density matrix, but from the point
of view of interpretation they are very different from Wigner functions [16].

Formally, one can write [14]

ρ(p;p′) =

∫

d4XeiqXS(X,K), (20)

where function S(X,K) is known as the emission function. One of the
difficulties is that the four-dimensional Fourier transformations cannot be
inverted. The reason is that for fixed K, from Kq = (p2 − p′2)/2 = 0, one
finds

q0 =
Kq

K0
, (21)

while in order to invert the Fourier transformation one needs ρ(p;p′), at
given K, for all values of q and q0. In fact, this difficulty is general and
appears as soon as we introduce time-dependent sources. Thus, there is an
infinity of emission functions S(X,K) which yield the same density matrix
ρ(p;p′).

For instance one could put

S(X,K) = δ(X0 − t)e−iq0X0W (X,K; t). (22)

This formula is correct in the sense that, as easily seen using the inverse
of transformation (18), it yields the correct density matrix. It is, however,
completely useless, because guessing this Wigner function is just as hard as
guessing the density matrix in the momentum representation. Actually, this
formula has a simple physical interpretation. Let us choose a moment of
time t0, when all the final hadrons are already present and do not interact
any more. From this time on the density matrix for each hadron is

ρ(p,p′; t) = e−iq0(t−t0)ρ(p,p′; t0). (23)

Thus, it is enough to know ρ(p,p′; t0) to predict all that happens later.
What had happened earlier is irrelevant for this prediction. One can just as
well assume that all the hadrons got created at t = t0. Physically this is a
stupid assumption, but formally it is good enough to predict the states of
the system at later times.

One could ask what is the “reasonable” emission function corresponding
to the realistic picture of particle emission. A formula for this function has
been proposed by Shuryak [17]. Let us consider first the source labeled i.
If it created particles in the pure state Ai(p), the density matrix for the
particles produced from this source would be Ai(p)A∗

i (p
′). Averaging over

the parameters of the source, one obtains the density matrix for the par-
ticles produced by source i without the assumption that the state is pure.
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Summing over the sources one obtains the overall single particle density
matrix

ρ(p,p′) =
∑

i

〈Ai(p)A∗

i (p
′)〉. (24)

Expressing the amplitudes Ai(p) in terms of their Fourier transforms Ji(x)
one can write for source i

〈Ai(p)A∗

i (p
′)〉 =

∫

d4X

∫

d4Y eiqX+iKY 〈Ji(X + 1
2Y )J∗

i (X − 1
2Y )〉, (25)

where Y = x− x′. Summing over i and introducing the notation

〈J(X + 1
2Y )J∗(X − 1

2Y )〉 =
∑

i

〈Ji(X + 1
2Y )J∗

i (X − 1
2Y )〉 (26)

one finds

ρ(p,p′) =

∫

d4X

∫

d4Y eiqX+iKY 〈J(X + 1
2Y )J∗(X − 1

2Y )〉. (27)

Comparing this formula with the (ambiguous!) definition of the emission
function (20) one finds

S(X,Y ) =

∫

d4Y eiKY 〈J(X + 1
2Y )J∗(X − 1

2Y )〉. (28)

The strategy is to guess the emission function, with some free parameters,
using all the available information about the sources. Then, one calculates
the density matrix and the correlation function C2 in order to fix the param-
eters by comparison with experiment. The weak point is that, since there
is an infinite variety of different emission functions which all give the same
density matrix, a good fit to the data does not necessarily mean that the
models being used, and consequently the parameters obtained, make sense.

6. Conclusions

The single particle momentum distribution gives the diagonal element
of the single particle density matrix. Under some simplifying assumptions
the correlations due to quantum statistics give information about the out
of diagonal elements of this matrix. Even if we could find from experiment
the complete single particle density matrix in the momentum representation,
which is not quite the case, this is not enough to find unambiguously the
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space-time distribution of the sources. On the other hand, given a good
model, it is possible to fit the experimental data related to the density
matrix and thus find some parameters of the model.

The classical full description: for each particle find its momentum and the
point in space-time where the particle has been produced, cannot be achieved
respecting the rules of quantum mechanics. Two popular compromises are:
use the positions and momenta of the sources instead of the positions and
momenta of the particles or use X and K instead of x and p. Given the
general framework one needs some phenomenological assumptions to fill it.
An example, admittedly not a very realistic one, is to assume that all the
particles are produced simultaneously from a Gaussian distribution of point
sources. In practice, of course, much more sophisticated phenomenology is
being used.

For quantitative work one must include a number of complicating fea-
tures, which have been ignored here for the sake of clarity and of economy
of time. We give below a partial list. More information can be found in the
reviews [1, 2].

• Many body symmetrization.

• Final state interactions.

• Production of resonances.

• Momentum–position correlations.

• Evolution of the interaction region before and during hadronization.
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