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1. Introduction

Among the Lie algebras used in physics, unitary algebras u(N) occupy a
special place, since they appear naturally from the properties of the harmonic
oscillator, and also constitute the appropriate approximation in the study of
strong interactions and the quark model [1–3]. Certain semidirect products
obtained from the unitary algebras, usually as a subgroup of the complete
symmetry group that preserves certain properties. Whenever a Lie algebra is
relevant to a physical model, their representations and Casimir invariants are
an essential tool to analyse the states of the system (e.g. quantum numbers),
and it is therefore important that they can be easily obtained.

In this work we obtain a matrix formula for the Casimir operators of
the Lie algebras wu(N) and some of its contractions. The advantage of
this method compared with the so called insertion method of Quesne1 [4] is
that the invariants can be obtained directly using a determinant, when the
classical boson operator realisation is used.

Unitary Lie algebras u (N) can be realized by various methods [1], but
for the analysis of Casimir operators, the boson realisation [5, 6] is very

1 The procedure is based on the analysis of copies of u(N) in the enveloping algebra of
the semidirect product.

(1921)
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convenient. Consider the linear operators ai, a
†
j (i, j = 1 . . . N) satisfying

the commutation relations

[
ai, a

†
j

]
= δij , (1)

[ai, aj ] =
[
a
†
i , a

†
j

]
= 0 . (2)

These are the usual creation and annihilation operators considered when

studying the harmonic oscillators [5]. The operators a
†
iaj (1 ≤ i, j,≤ N)

generate the unitary Lie algebra u (N), and the operators ai, a
†
i transform

as follows by the generators a
†
iaj of u(N):

[
a
†
iaj, a

†
k

]
= δjka

†
i , (3)

[
a
†
iaj, ak

]
= −δikaj . (4)

Therefore the operators a
†
i and aj define a representation Γ of u (N). Using

the labelling

Xi,j = a
†
iaj, 1 ≤ i, j ≤ N , (5)

the brackets of u (N) are determined by the formula:

[Xi,j ,Xk,l] = δjkXi,l − δilXk,j, 1 ≤ i, j, k, l ≤ N . (6)

By (3)–(4), the operators Xi,j , Ri = a
†
i , Si = ai and Z for the identity

operator I span a Lie algebra with nontrivial Levi decomposition isomor-
phic to the semidirect product wu (N) := u (N)

−→
⊕Γ⊕Γ0

hN , where hN is
the usual (2N + 1)-dimensional Heisenberg Lie algebra and Γ0 the trivial
representation. This induces a natural gradation g0 ⊕ g1 of wu(N), where
g0 = u(N) ⊕ 〈Z〉 and g1 =

∑
i〈Ri〉 ⊕ 〈Si〉. Observe that by this decompo-

sition g0 is a subalgebra, while the other block is merely a linear subspace.
This suggests to consider the contractions that preserve the subalgebra2 g0,
which gives rise to a Lie algebra of inhomogeneous type3. To this extent,

2 Actually this situation motivated the definition of Inönü–Wigner contractions. See
e.g. [7].

3 By inhomogeneous type we mean a semidirect product of an algebra s with an Abelian
algebra a. This enlarges naturally the definition of inhomogeneous algebra, which is
the corresponding product determined by the standard representation of s.
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consider the automorphism of wu (N) defined by

Φ (Xi,j) = Xi,j , 1 ≤ i, j ≤ N , (7)

Φ (Rk) =
1√
(t)

Rk, 1 ≤ k ≤ N , (8)

Φ (Sk) =
1√
(t)

Sk, 1 ≤ k ≤ N , (9)

Φ (Z) = Z , (10)

where t is a parameter. Then the nontrivial brackets of wu (N) transform
according to the following rules:

Φ−1 [Φ (Xi,j) , Φ (Xk,l)] = δjkXi,l − δilXk,j , (11)

Φ−1 [Φ (Xi,j) , Φ (Rk)] = δjkRi , (12)

Φ−1 [Φ (Xi,j) , Φ (Sk)] = −δikSj , (13)

Φ−1 [Φ (Ri) , Φ (Sj)] =
δij

t
Z . (14)

This shows that the brackets of the unitary part and the representation
remain unchanged, while the brackets of the operators Ri and Sj are rescaled.
Clearly the limit

[X,Y ]Φ := lim
t→∞

Φ−1 [Φ (X) , Φ (Y )] (15)

exists for any X,Y ∈ wu (N), thus Φ defines an Inönü–Wigner contraction,
and the contracted algebra is isomorphic to the decomposable Lie algebra
(u (N)

−→
⊕Γ (2N)L1) ⊕ 〈Z〉, where (2N)L1 denotes the Abelian Lie algebra

of dimension 2N . Thus, over a basis {Xi,j, Pk, Qk, Z}, the brackets of the
contraction are given by

[Xi,j,Xk,l] = δjkXi,l − δilXk,j , (16)

[Xi,j , Pk] = δjkPi , (17)

[Xi,j, Qk] = −δikQj , (18)

[Pi, Qj ] = 0 . (19)

In the following we will consider the Lie algebras u (N)
−→
⊕Γ (2N)L1 as

defined over the preceding basis, with the brackets (16)–(19).
In order to derive a matrix formula for the Casimir invariants of the

algebras u (N)
−→
⊕Γ (2N)L1, we will use some properties of the Lie algebra

wu(N), which will be developed later in the context of invariants.
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Lemma 1 The operators X ′
i,j := Xi,j−RiSj (1 ≤ i, j ≤ N) generate a copy

of u (N) in the enveloping algebra U of wu (N) that commutes with Rk and

Sk for all k.

Proof.

[
X ′

i,j,X
′
k,l

]
= [Xi,j ,Xk,l] − [RiSj,Xk,l] − [Xi,j , RkSl] + [RiSj , RkSl]

= {Xk,lRiSj−Ri (Xk,lSj+δkjSl)}−Rk (δilSj+Xi,jSl)+(δjkXi,l−δliXk,j)

= −Xi,jRkSl {δjkRiSl + RiRkSjSl − RkSlRiSj} + δjk (Xi,l − RiSl)

−δli (Xk,j − RkSj) = δjkX
′
i,l − δliX

′
k,j . (20)

[
X ′

i,j , Rk

]
= δjkRi − {Ri (RkSj + δjk) − RkRiSj} = 0 . (21)

[
X ′

i,j , Sk

]
= −δikSj − {RiSjSk − (RiSk + δik) Sk} = 0 . (22)

As a consequence of this result, any operator commuting with the vari-
ables X ′

i,j will also commute with the operators Ri and Si, thus will provide

invariants of the algebra wu(N). This method is in essence the insertion
method, and was first presented in [4].

The most extended procedure to determine the (generalised) Casimir in-
variants of a Lie algebra g is the analytical method, which turns out to be
more practical than the traditional method of analysing the centre of the
universal enveloping algebra U(g) of g. This is particularly convenient in the
study of completely integrable Hamiltonian systems, where Casimir opera-
tors in the classical sense do not have to exist, and where the transcendental
invariant functions are not interpretable in terms of U(g).

We recall briefly the analytical method. Given a basis {X1, . . . ,Xn} of

the Lie algebra g and the structure tensor
{

Ck
ij

}
, g can be realized in the

space C∞ (g∗) by means of differential operators:

X̂i = −Ck
ijxk

∂

∂xj

, (23)

where [Xi,Xj ] = Ck
ijXk (1 ≤ i < j ≤ n) and {x1, . . . , xn} is a dual basis of

{X1, . . . ,Xn}. In this context, an analytic function F ∈ C∞ (g∗) is called
an invariant of g if and only if it is a solution of the system of PDEs:

{
X̂iF = 0, 1 ≤ i ≤ n

}
. (24)

Polynomial solutions F correspond, after symmetrisation, to the classical
Casimir operators, while nonpolynomial solutions of system (24) are usually
called “generalised Casimir invariants”. The cardinal N (g) of a maximal set
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of functionally independent solutions (in terms of the brackets of the algebra
g over a given basis) is easily obtained from the classical criteria for PDEs:

N (g) := dim g − rank
(
Ck

ijxk

)

1≤i<j≤dimg

, (25)

where A(g) :=
(
Ck

ijxk

)
is the matrix which represents the commutator

table of g over the basis {X1, . . . ,Xn}. Evidently this quantity constitutes
an invariant of the algebra. We remark that N (g) can also be obtained from
the Maurer–Cartan equations of the Lie group [8, 9], which turns out to be
more practical for certain types of Lie algebras.

As example of the method, consider the unitary Lie algebra u (3). The
system of PDEs corresponding to it with respect to the basis above is

x1,2

∂F

∂x1,2

+ x1,3

∂F

∂x1,3

− x2,1

∂F

∂x2,1

− x3,1

∂F

∂x3,1

= 0 ,

−x1,2

∂F

∂x1,1

+ (x1,1 − x2,2)
∂F

∂x2,1

+ x1,2

∂F

∂x2,2

+ x1,3

∂F

∂x2,3

− x3,2

∂F

∂x3,1

= 0 ,

−x1,3

∂F

∂x1,1

− x2,3

∂F

∂x2,1

+ (x1,1 − x3,3)
∂F

∂x3,1

+ x1,2

∂F

∂x3,2

+ x1,3

∂F

∂x3,3

= 0 ,

x2,1

∂F

∂x1,1

+ (x2,2 − x1,1)
∂F

∂x1,2

+ x2,3

∂F

∂x1,3

− x2,1

∂F

∂x2,2

− x3,1

∂F

∂x3,2

= 0 ,

−x1,2

∂F

∂x1,2

+ x2,1

∂F

∂x2,1

+ x2,3

∂F

∂x2,3

− x3,2

∂F

∂x3,2

= 0 ,

−x1,3

∂F

∂x1,2

− x2,3

∂F

∂x2,2

+ x2,1

∂F

∂x3,1

+ (x2,2 − x3,3)
∂F

∂x3,2

+ x2,3

∂F

∂x3,3

= 0 ,

x3,1

∂F

∂x1,1

+ x3,2

∂F

∂x1,2

+ (x3,3 − x1,1)
∂F

∂x1,3

− x2,1

∂F

∂x2,3

− x3,1

∂F

∂x3,3

= 0 ,

−x1,2

∂F

∂x1,3

+ x3,1

∂F

∂x2,1

+ x3,2

∂F

∂x2,2

+ (x3,3 − x2,2)
∂F

∂x2,3

− x3,2

∂F

∂x3,3

= 0 ,

−x1,3

∂F

∂x1,3

− x2,3

∂F

∂x2,3

+ x3,1

∂F

∂x3,1

+ x3,2

∂F

∂x3,2

= 0 .

This system can be still integrated directly, but a maximal independent set
of solutions can be obtained from the characteristic polynomial P of the
matrix

A3 :=




x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3



 . (26)
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We have

P = (−x1,1 − x2,2 − x3,3)T 2 + (−x2,3x3,2 − x1,3x3,1 − x1,2x2,1 + x1,1x2,2

+x2,2x3,3 + x1,1x3,3)T + (−x1,2x2,3x3,1 + x1,3x2,2x3,1 + x1,2x2,1x3,3

−x1,3x2,3x3,2 + x1,1x2,3x3,2 − x1,1x2,2x3,3) . (27)

It can be easily verified that the three polynomial coefficients of P are
solutions of the system, thus they define invariants of the unitary algebra
u(N) after symmetrisation. In fact, the same matrix procedure holds for
any N .

Proposition 1 Let N ≥ 2. Then the Casimir operators Ck of u (N) are

given by the coefficients of the characteristic polynomial

|AN − T.idN | = TN +
N∑

k=1

CkT
N−k , (28)

where

AN =




x1,1 . . . x1,N

...
...

xN,1 . . . xN,N



 . (29)

Moreover deg Ck = k for k=1. . .N .

Observe that the matrix AN can be rewritten as

AN =

N∑

i=1

xi,jΓ (Xi,j) , (30)

where Γ (Xi,j) is the matrix corresponding to the generator Xi,j by the
representation Γ defined by the boson operators (3) and (4).

The objective of this work is to show that for the Lie algebras

u (N)
−→
⊕Γ (2N)L1

the Casimir operators can also be obtained using characteristic polynomials.
As intermediate result, we will also find a closed matrix expression for the
invariants of the semidirect product wu(N).
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2. Illustrating example

Consider the Lie algebra g := u (2)
−→
⊕Γ 4L1 in dimension 8. Over the

basis {X1,1,X2,2,X1,2,X2,1, P1, P2, Q1, Q2} the commutator matrix is given
by

A (g) =





0 0 X1,2 −X2,1 P1 0 −Q1 0
0 0 −X1,2 X2,1 0 P2 0 −Q2

−X1,2 X1,2 0 X1,1 − X2,2 0 P1 −Q2 0
X2,1 −X2,1 X2,2 − X1,1 0 P2 0 0 −Q1

−P1 0 0 −P2 0 0 0 0
0 −P2 −P1 0 0 0 0 0

Q1 0 Q2 0 0 0 0 0
0 Q2 0 Q1 0 0 0 0





.

(31)
The matrix has rank six, so the algebra has two invariants. As commented
above, the Casimir operators of u (2) can be computed from the character-
istic polynomial of the matrix

A2 =

(
x1,1 x1,2

x2,1 x2,2

)
, (32)

and we obtain

F1 := |M2 − T id2| = T 2 − (x1,1 + x2,2)T + (x1,1x2,2 − x1,2x2,1) . (33)

Now we consider the matrix

D2 =




x1,1 x1,2 p1

x2,1 x2,2 p2

−q1 −q2 0



 (34)

and take its characteristic polynomial

F2 : = T 3 − (x1,1 + x2,2)T
2 + (x1,1x2,2 − p1q1 − q2p2 − x2,1x1,2)T

−q1x1,2p2 + x1,1q2p2 + p1q1x2,2 − x,21p1q2 . (35)

Now we compute the difference F2 − TF1 and obtain the polynomial

F := −(p1q1 + p2q2)T − q1p2x1,2 + x1,1p2q2 + p1q1x2,2 − x2,1p1q2 . (36)

It is straightforward to verify that the functions C1 = p1q1 + p2q2 and
C2 = −q1p2x1,2+x1,1p2q2+p1q1x2,2−x2,1p1q2 are solutions of the system (24)

corresponding to u (2)
−→
⊕Γ 4L1, so that the symmetrisation of C1 and C2

provide the Casimir operators of the algebra. The finality of this article is to
show that for any N a fundamental system of invariants of u (N)

−→
⊕Γ (2N)L1

can be obtained by this method.
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3. The matrix formula

In order to prove the preceding assertion for any N , we will first obtain
some formulae concerning the Casimir invariants of the Lie algebras wu(N),

and then use the contraction onto the direct sum u (N)
−→
⊕Γ (2N)L1 ⊕ 〈Z〉.

Proposition 2 Let N ≥ 2. Then the noncentral Casimir operators Ck+1 of

wu(N) are given by the coefficients of the polynomial

|B − T.idN+1| = TN+1 +

N∑

k=1

zk−1Ck+1T
N+1−k, (37)

where

B =





zx1,1 . . . zx1,N p1T
...

...
...

zxN,1 . . . zxN,N pNT

−q1 . . . −qN 0



 . (38)

Moreover deg Ck+1 = k + 1 for k=1. . .N.

Proof. The idea is to use lemma 1 combined with the matrix formula
(28). We have that the operators X ′

i,j span a copy of u(N) that commutes

with Ri and Si. Thus the insertion of the corresponding variables zx′
i,j

4 into

(28). The invariants are given by the following determinant:

∆ =

∣∣∣∣∣∣∣

zx1,1 − p1q1 − T . . . zx1,N − p1qN

...
...

zxN,1 − pNq1 . . . zxN,N − pNqN − T

∣∣∣∣∣∣∣
. (39)

Now this can be simplified using the elementary rules for determinants. We
observe that the second summand in each column of (39) is a multiple of
(p1, . . . pN , q1, . . . , qN )t. Therefore ∆ reduces to:

∆ =

∣∣∣∣∣∣∣

zx1,1 − T . . . zx1,N

...
...

zxN,1 . . . zxN,N − T

∣∣∣∣∣∣∣

+
N∑

j=1

∣∣∣∣∣∣∣

zx1,1 − T . . . zx1,j−1 p1qj zx1,j+1 . . . zx1,N

...
...

...
...

...
zxN,1 . . . zxN,j−1 pNqj zxN,j+1 . . . zxN,N − T

∣∣∣∣∣∣∣
.

(40)

4 Recall that Z is the generator of the centre of wu(N), corresponding to the unit
operator, thus it commutes with any element. The reason to include it in the variables
is to obtain a homogeneous polynomial in the coefficients.
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Now consider the matrix B. The polynomial ∆′ = |B − T.idn+1| is given by
the determinant

∆′ =

∣∣∣∣∣∣∣∣

zx1,1 − T . . . zx1,N p1T
...

...
...

zxN,1 . . . zxN,N − T pNT

q1 . . . qN −T

∣∣∣∣∣∣∣∣
. (41)

Solving it by the elements of the last row, we decompose the determinant
into:

∆′ = T




N∑

j=1

(−1)N+j
qj |(B − T idN+1)N+1,j | − |(B − T idN+1)N+1,N+1|



 ,

(42)
where (B−T idN+1)i,j is the minor of B−T idN+1 obtained deleting the ith

row and jth column. Inserting the variable qj in the minor (B−T idN+1)N+1,j,

we recover the summands of (40). Comparing both determinants, we see that
they obey the relation

∆T + ∆′ = 0 . (43)

4. The Casimir operators of the contraction

By the automorphism Φ of Section 1, the preceding algebra wu(N) con-
tracts onto the direct sum of inhomogeneous algebra and the base field, i.e.

wu(N) u (N)
−→
⊕Γ (2N)L1 ⊕ 〈Z〉 . (44)

Therefore the matrix formula (39) could be used to determine the Casimir

operators of the contraction (it can easily be verified that N (u (N)
−→
⊕Γ (2N)L1)

= N (wu(N)) − 1 = N (see e.g. [4, 8]), so that the contraction procedure
allows to obtain a maximal set of independent invariants of algebra of inho-
mogeneous type. However, a variation of the preceding method will enable
us to propose a matrix formula for the invariants of these algebras without
having to consider the contraction explicitly. This formula can be easily
computed for any N and provides a direct method.

Theorem 1 Let N ≥2. Then the Casimir operators Ck of u (N)
−→
⊕Γ (2N)L1

are given by the coefficients of the polynomial

F (xi,j, pk, ql) := |C − T.idN+1| + |AN − T.idN |T =

N∑

k=1

Ck+1T
N−k , (45)
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where

C =





x1,1 . . . x1,N p1

...
...

...

xN,1 . . . xN,N pN

−q1 . . . −qN 0



 . (46)

Moreover deg Ck+1 = k + 1.

Proof. We will use the matrix formula obtained for wu(N) to obtain

the formula for u (N)
−→
⊕Γ (2N)L1. As a consequence of the contraction, the

Casimir operators can be obtained by contracting the Casimir operators of
wu(N). In particular, using the determinant (39), they follow from the limit:

lim
t→∞

1

t

∣∣∣∣∣∣∣

zx1,1 − tp1q1 − T . . . zx1,N − tp1qN

...
...

zxN,1 − tpNq1 . . . zxN,N − tpNqN − T

∣∣∣∣∣∣∣
. (47)

This determinant can be reduced in analogous manner as (39), and taking
the limit we obtain the sum of determinants:

N∑

j=1

∣∣∣∣∣∣∣

zx1,1 − T . . . zx1,j−1 p1qj zx1,j+1 . . . zx1,N

...
...

...
...

...
zxN,1 . . . zxN,j−1 pNqj zxN,j+1 . . . zxN,N − T

∣∣∣∣∣∣∣
. (48)

Since the contraction of wu(N) is a direct sum of u (N)
−→
⊕Γ (2N)L1 and Z,

the latter algebra being Abelian, we can replace in (48) the variable z by
1 5. We thus obtain:

F (xi,j, pk, ql)

:=

N∑

j=1

∣∣∣∣∣∣∣

x1,1 − T . . . x1,j−1 p1qj x1,j+1 . . . x1,N

...
...

...
...

...
xN,1 . . . xN,j−1 pNqj xN,j+1 . . . xN,N − T

∣∣∣∣∣∣∣
.

(49)

Expanding the sum we obtain the polynomial

F (xi,j , pk, ql) =

N∑

k=1

Ck+1T
N−k , (50)

5 Since obviously the Casimir operators of u (N)
−→
⊕Γ (2N)L1 are independent of z.
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where the Ck+1 are homogeneous polynomials in xi,j, pk, ql of degree k + 1.

These functions can be taken as the invariants of u (N)
−→
⊕Γ (2N)L1 (adding

z as the only invariant of the direct summand 〈Z〉). We now consider the
matrix (46) and expand the determinant:

|C − T.idn+1| =

N∑

j=1

(−1)N+1+j
qj |(C − T idN+1)N+1,j|

+T |(C − T idN+1)N+1,N+1| . (51)

Here (C − T idN+1)i,j is the minor of (C − T idN+1) obtained deleting the
ith row and jth column. For any j ∈ {1 . . . N} it is straightforward to verify
that

∣∣∣∣∣∣∣

x1,1 − T . . . x1,j−1 p1qj x1,j+1 . . . x1,N

...
...

...
...

...
xN,1 . . . xN,j−1 pNqj xN,j+1 . . . xN,N − T

∣∣∣∣∣∣∣

= (−1)N+1+j
qj |(C − T idN+1)N+1,j | . (52)

Therefore we conclude that

F (xi,j , pk, ql) − |C − T.idn+1| = −T |(C − T idN+1)N+1,N+1| , (53)

but this is nothing but the determinant of (28) multiplied by T . Thus

F (xi,j, pk, ql) = |C − T.idN+1| + |AN − T.idN |T . (54)

This result shows that the Casimir operators of u (N)
−→
⊕Γ (2N)L1 can

be obtained directly as the difference of two characteristic polynomials, and
that no limit or contraction must be used for its computation.

5. Concluding remarks

We have shown that the Casimir operators of the semidirect product
wu(N) can be obtained by evaluation of a determinant, and that, in addi-
tion, this formula provides also closed matrix expressions for the invariants
of certain contractions. These formulae both follow from the generalisation
to non-classical algebras of the well known matrix methods developed in the
50’s by Gel’fand [10], thus showing that using characteristic polynomials to
compute Casimir invariants is not exclusive of classical Lie algebras. Actu-
ally similar determinantal and matrix methods have recently been developed
for various types of semidirect products of Lie algebras [11, 12], basing on
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different properties of its semisimple subalgebras. However, the method pre-
sented here generalises naturally the formula for u(N) by using the gradation
of the semidirect product wu(N), which remains valid also for the contrac-
tion. Under certain circumstances, the method should also be applicable to
other types of Lie algebras s

−→
⊕Rr exhibiting this gradation, for which there

exists a matrix formula to determine the Casimir operators of s.
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