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We investigate noise-induced pattern formation in a model of cancer
growth based on Michaelis–Menten kinetics, subject to additive and multi-
plicative noises. We analyse stability properties of the system and discuss
the role of diffusion and noises in the system’s dynamics. We find that ran-
dom dichotomous fluctuations in the immune response intensity along with
Gaussian environmental noise lead to emergence of a spatial pattern of two
phases, in which cancer cells, or, respectively, immune cells predominate.

PACS numbers: 05.40.–a, 87.10.+e, 89.75.Kd

1. Introduction

The study of population dynamics covers a wide range of fields such as
ecology, cellular and molecular biology and medicine (see e.g. [1–4]). The
models of population growth based on nonlinear ordinary differential equa-
tions, despite their simplicity, can often capture the essence of complex bi-
ological interactions and explain characteristics of proliferation phenomena.
However, biological processes are not purely deterministic: systems existing
in nature are subject to natural noises.

The presence of noise in biological systems gives rise to a rich variety
of dynamical effects. Random fluctuations may be regarded not only as
a mere source of disorder but also as a factor which introduces positive
and organising rather than disruptive changes in the system’s dynamics.
Some of the more important examples of noise induced effects are stochastic
resonance [2, 5], resonant activation [6–8], noise-induced transitions [9, 10],
noise-enhanced stability [11] and pattern formation [1, 2, 12].

The effect of cell-mediated immune surveillance against cancer [13–15]
may be a specific illustration of the coupling between noise and a biological
system. Most of tumoral cells bear antigens which are recognised as strange
by the immune system. A response against these antigens may be mediated
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either by immune cells such as T-lymphocytes or other cells, not directly
related to the immune system (like macrophages or natural killer cells).
The process of damage to tumour proceeds via infiltration of the latter by
the specialised cells which subsequently develop a cytotoxic activity against
the cancer cell-population. The series of reactions between the cytotoxic
cells and the tumour tissue may be considered to be well approximated by a
saturating, enzymatic-like process whose time evolution equations are similar
to the standard Michaelis–Menten kinetics [13, 16]. Random variability of
kinetic parameters defining that process may effect the extinction of the
tumour.

In our previous article [8] we discussed the noise-induced effect of res-
onant activation in a spatially homogeneous model of cancer growth [16]
based upon the above-mentioned kinetic scheme. In the present paper, we
focus on the study of a spatially inhomogeneous system, namely, we inves-
tigate how global environmental noise as well as fluctuations in the immune
response parameter effect the emergence of spatial patterns.

2. The model

The interaction between cancer cells and cytotoxic cells will be described
by use of the predator-prey model based upon the Michaelis–Menten kinetic
scheme [8,9,13,16–18]. This model is a classical one and has been extensively
studied since the 1970s. Its validity has been verified experimentally e.g.
in [19], where the authors examined the mechanism of immune rejection of
a tumour induced by Moloney murine sarcoma virus. The behaviour of the
cellular populations may be represented by the following scheme:

First, the cytotoxic cells bind to the tumour cells at rate k1; subsequently,
the cancer cells which have been bound are killed and the complex dissociates
at rate k2; finally, dead cancer cells decay at a rate k3. The process can be
described schematically:

X + Y −→k1 Z −→k2 Y + P −→k3 Y. (1)

X represents here the population of tumour cells. Y , Z and P are popu-
lations of active cytotoxic cells, bound cells and dead tumour cells, respec-
tively. Following the original presentation [16], we assume that (i) cancer
cells undergo replication at a rate proportional to a time constant λ; (ii) as
a result of cellular replication in limited volume, a diffusive propagation of
cancer cells is possible, with a transport coefficient proportional to the repli-
cation rate and local density of cancer cells; (iii) dead cancer cells undergo
elimination at rate k3; (iv) free cytotoxic cells can move with a “diffusion”
coefficient D. The spatio-temporal evolution of the tumour due to the above
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processes can be then described by a set of balance equations:























∂x
∂t

= λ[1 − (x + p)]x − k1yx + λ(1 − p)∇2x + λx∇2p ,
∂y
∂t

= −k1yx + k2z + D∇2y ,
∂z
∂t

= k1yx − k2z ,
∂p
∂t

= k2z − k3p .

(2)

The x(−→r , t), y(−→r , t), z(−→r , t) and p(−→r , t) are local densities of cells at point
−→r . Finally, we impose an additional condition on the model: the total
number of active and bound cytotoxic cells should remain constant:

y(t) + z(t) = const. = E . (3)

Below, we analyse several versions of the model:

• Bifurcation analysis, based on a bare kinetics model without spatial
diffusion (Sec. 4.1)

• Incorporation of Fickian diffusion terms in evolution equations for
x(−→r , t), p(−→r , t) respectively, which leads to a wavefront solution
(Sec. 4.2).

• We determine the effect of the dichotomous switching in the kinetic
parameter k1 and discuss its role also for the model system in which
each of the kinetic equations is additionally driven by a Gaussian noise
term of the same intensity (Sec. 4.3, 4.4, 4.5).

• At the last step of the model complexity, we analyse how the joint
effect of diffusion, additive Gaussian fluctuations and independent di-
chotomic switching in k1 parameter affect the cancer cells population
dynamics (Sec. 4.6).

3. Simulation

The basic aim of this work was to study the behaviour of the system (2)
subject to additive and multiplicative noises:































∂x
∂t

= λ[1 − (x + p)]x − (k1 + η(t))yx

+λ(1 − p)∇2x + λx∇2p + σξ(−→r , t) ,
∂y
∂t

= −(k1 + η(t))yx + k2z + D∇2y + σξ(−→r , t) ,
∂z
∂t

= (k1 + η(t))yx − k2z + σξ(−→r , t) ,
∂p
∂t

= k2z − k3p + σξ(−→r , t) .

(4)
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The multiplicative dichotomous Markovian noise η(t) = ±∆ with mean fre-

quency γ and autocorrelation 〈η(t)η(t′)〉 = ∆2

2
e−2γ|t−t′| models fluctuations

in immune response. The additive Gaussian noise ξ(−→r , t) with autocorel-
lation 〈ξ(−→r , t)ξ(−→r ′, t′)〉 = δ(−→r −−→r ′)δ(t − t′) depicts external environmen-
tal fluctuations. We assume that its intensity σ is same for each variable
of the system. Both noises are assumed to be statistically independent:
〈ξ(−→r , t)η(s)〉 = 0.

3.1. Numerics

We have solved the stochastic differential equations (4) numerically, using
the Euler scheme, on a 128× 128 square lattice. According to the statistical
properties of η(t), the waiting time between two switchings was generated
from the exponential distribution.

Since x, y, z and p are densities, their values never can be greater than 1
or less than 0. Consequently, following boundary conditions have been im-
posed on the simulated system: if x, y, z or p becomes less than 0 or greater
than 1 at a given time step, we adjust its value to 0 or to 1, respectively.

3.2. Simulation results

We performed a simulation with the following values of parameters:

λ = 0.5 , D = 0.05 , σ = 0.01 , ∆ = 0.5 ,

k1 = 1.75 , k2 = 0.1 , k3 = 0.1 , γ = 0.01 . (5)

γ is the mean rate of switching in η(t). Initial conditions:

x(−→r , 0) = 0 , y(−→r , 0) = 0.4 , z(−→r , 0) = 0 , p(−→r , 0) = 0 . (6)

The values of parameters and initial conditions have been chosen so that
we could obtain a distinct pattern: The immune response rates k1 + ∆ and
k1 − ∆, along with λ lead to two different types of stationary behaviour
(see Sec. 4.5). The mean switching rate is one or two orders of magnitude
slower than other kinetic parameters, which gives the system a possibility
to approach the stationary states. The environmental noise intensity σ has
been chosen in such a way that it allows the system to jump between both
mentioned states. The noise is, however, weak enough to let the system form
a pattern. At the selected value of D, the pattern has sufficiently distinct
boundaries and is relatively stable (at higher values of D it would dissolve
quickly, whereas at smaller D it would form small “grains”). Parameters k2

and k3 have been chosen by a trial-and-error procedure: k2 is responsible
for the dissociation of z into y + p. If the dissociation rate is large, then
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the active immune cells y are being released faster and thus the immune
response is more effective. The k3 parameter determines the rate at which
dead cancer cells are eliminated. Since dead cells occupy the living space,
this parameter controls the effective replication rate of cancer cells.

The simulation results are presented in Fig. 1. After some time, we
observe the emergence of the “y-phase” islands (where the immune cells
y predominate) within the relatively homogeneous “x-phase” (in this phase
cancer cells x prevail). The phase boundaries move back and forth depending
on the dichotomous changes in the immune response intensity k1 ± ∆.

Fig. 1. Snapshots from the simulation of the system (4). Time evolution of the

spatial distribution of x, y and z. Time counter in upper left corner of each image.

Simulation time T = 10000. Initial conditions: x = 0, y = 0.4, z = 0, p = 0

everywhere. Parameters: λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0.5, k1 = 1.75, k2 =

0.1, k3 = 0.1, γ = 0.01. Light pixels: high concentration, dark pixels: low concen-

tration of cells.
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4. Analysis

In order to explain the behaviour of the simulated system, we will analyse
its stability properties as well as the role of diffusion, additive noise and
dichotomous noise in the k1 parameter.

4.1. Stability analysis

The stationary points {x⋆, y⋆, z⋆, p⋆} of the system are given by:

{0, y⋆, 0, 0} (7)

and
{

k3

λ

λ − k1y
⋆

k3 + k1y⋆
, y⋆,

k1k3y
⋆

λk2

λ − k1y
⋆

k3 + k1y⋆
,

k1y
⋆

λ

λ − k1y
⋆

k3 + k1y⋆

}

. (8)

According to (2), the value of y⋆ is arbitrary. However, if the condition
(3) is involved, it defines the value of y⋆:

y⋆ + z⋆ = const. = E . (9)

Fig. 2. Sets of stationary points (7), (8) and their stability (shown only schemat-

ically by arrows), x-y-z-projection. Dashed lines: planar projections of the curve.

Parameters: λ = 0.5, k1 = 1.25, k2 = 0.1, k3 = 0.1.
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The sets of stationary points form two branches in the x-y-z-p-space. The
branch (7) changes its stability at the point {0, λ

k1
, 0, 0}. It is repelling for

0 < y < λ
k1

and attracting for λ
k1

< y < 1. The branch (8) is attracting for

0 < y < k3

k1

(

−1 +
√

1 + λ
k1

)

. For k3

k1

(

−1 +
√

1 + λ
k1

)

< y < 1 it consists of

saddle points.
Trajectories of the deterministic system can lie only on the plane (3),

given by the initial conditions for y and z. Hence, the stationary points
of such a system lie on the intersection of the plane (3) and the branches
(7), (8). Depending on the values of parameters and initial conditions, the
system can have 1 (attracting), 2 (attracting and repelling) or 3 (attracting,
saddle and attracting) stationary points (see Figs. 2, 3).

Fig. 3. Sets of stationary points (7), (8) in y-z-p-projection. Dashed lines: planar

projections of the curve. Parameters: λ = 0.5, k1 = 1.25, k2 = 0.1, k3 = 0.1.

When E, k2, k3 are fixed, the stability properties of the system depend
on the k1 parameter (see Fig. 4), i.e. the immune response efficiency, which,
in our simulation, was controlled by the dichotomous noise.

In the next subsections, we will analyse how the presence of noises and
diffusion affects the behaviour of the system.
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Fig. 4. Stationary points (open circles) lie on the intersection of the plane y+z = E

and the curves given by (7), (8). As k1 grows, the number of intersections changes

from 2 to 3 and, subsequently, from 3 to 1. (An arrow shows schematically the

direction in which the intersection points move as k1 grows.) The values of the

remaining parameters are here: E = 0.6, λ = 0.6, k2 = 0.1, k3 = 0.1.

4.2. Spatially inhomogeneous system without noise

The solutions to the deterministic system with diffusive terms have the
form of travelling wavefronts [20].

Fig. 5. Example trajectories of the system with dichotomous noise only, for two

different values of E = y + z: E = 0.9 and E = 0.2. Parameters: λ = 0.5, γ =

0.05, k1 = 0.5, ∆ = 0.25, k2 = 1, k3 = 1. Simulation time T = 700.
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4.3. Spatially homogeneous system with dichotomous multiplicative noise

After the introduction of the dichotomous noise η(t) = ±∆ into the k1

parameter, trajectories of the system lie on the planes y+z = E and wander
between two stationary points according to the current value of k1 ± ∆
(see Fig. 5).

4.4. Spatially homogeneous system with dichotomous multiplicative noise
and additive Gaussian white noise

In the next step of complexity, we add the term σξ(−→r , t) (Gaussian white
noise) to each equation, assuming that the additive noise acts in the same
way on each variable of the system. Here, the trajectories do not stay on
constant planes y + z = E any more. Due to the additive noise, they “slip
off” from their initial planes (see Figs. 6, 7).

Fig. 6. Two example trajectories of the spatially homogeneous system with multi-

plicative dichotomous noise, with additive Gaussian noise, starting from two dif-

ferent initial conditions: y + z = E = 0.9 and y + z = E = 0.2, in x-y-projection.

σ = 0.002, other parameters same as in Fig. 5. To compare with the trajectories

without additive noise, see Fig. 5.

4.5. System with Gaussian noise and diffusion

Let us examine a system with the additive Gaussian noise and diffusion,
but without the dichotomous noise. Instead, we will take into consideration
two situations where the intensity of the immune response is constant:
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Fig. 7. Two example trajectories of the spatially homogeneous system with multi-

plicative dichotomous noise and additive Gaussian noise, starting with two different

initial conditions: E = 0.9 and E = 0.2, in y-z-projection. The trajectories do not

stay on their initial planes E (denoted by sloped lines), but move up or down due

to the Gaussian noise. Curves: branches of stationary points for switching value

of k1 ± ∆. σ = 0.002, other parameters the same as in Fig. 5.

K1 = k1 − ∆ (10)

and

K1 = k1 + ∆ . (11)

The value of ∆ is the same as in the first simulation (Sec. 3.2), i.e. it corre-
sponds to one of the dichotomous noise states.

For K1 = k1 − ∆, the “x-phase” is more stable. The trajectory starts
with initial conditions (6) which is exactly the point {0, λ

k1
, 0, 0} where two

branches of stationary points cross. It is then very likely that the trajectory
falls down onto the lower branch of the attractor and stays in its neighbour-
hood (see Figs. 9, 10).

For K1 = k1 + ∆, the “y-phase” is more stable. Starting far away from
the lower branch of the attractor, the trajectory remains close to the upper
branch. Moreover, it climbs higher and higher because of the reflecting
boundary at x = 0, y = 0, z = 0, p = 0, x = 1, y = 1, z = 1, p = 1
(see Figs. 11, 12). This condition imposed on the boundaries is justified by
the requirement that the population density cannot be negative nor greater
than 1.
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Fig. 8. Stabilising effect of diffusion. Gray: trajectory of a system with diffusion

(D = 0.5) and additive Gaussian noise, recorded at point [20, 20] on the spatial

lattice. Black: trajectory of a system with additive Gaussian noise, but without

diffusion (D = 0). Parameters: λ = 0.5, σ = 0.005, k1 = 0.25, k2 = 1, k3 = 1.

Simulation time T = 3000.

Fig. 9. An example trajectory of the system with additive Gaussian noise and

diffusion, recorded at point [20, 20] on the spatial lattice. The immune response

parameter K1 = k1 − ∆ = 1.25. The trajectory falls down onto the “x-phase”

attractor. λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0, k2 = 0.1, k3 = 0.1. Initial

conditions: x = 0, y = 0.4, z = 0, p = 0. Straight lines: the profiles of example E

planes.
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Fig. 10. Time-evolution of x, y, z and p in the system with additive Gaussian noise

and diffusion, recorded at point [20, 20] on the spatial lattice. K1 = k1 − ∆ =

1.25, λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0, k2 = 0.1, k3 = 0.1. Initial conditions:

x = 0, y = 0.4, z = 0, p = 0.

Fig. 11. An example trajectory of the system with additive Gaussian noise and

diffusion, recorded at point [20, 20] on the spatial lattice. The immune response

parameter K1 = k1 + ∆ = 2.25. The trajectory remains in the neighbourhood of

the “y-phase” attractor and climbs towards maximal values of y. λ = 0.5, D =

0.05, σ = 0.01, ∆ = 0, k2 = 0.1, k3 = 0.1. Initial conditions: x = 0, y = 0.4, z =

0, p = 0 everywhere.
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One can observe a synchronisation effect: the values of y, z and p de-
crease when x increase, and vice versa (see Figs. 10, 12). One can also
notice the stabilising effect of diffusion. Fig. 8 compares trajectories of
two systems: with and without diffusion, driven by additive Gaussian noise.
Without diffusion, the trajectory wanders up and down along the branch of
stationary points. The trajectory stabilised by diffusion stays longer in the
neighbourhood of its initial plane E.

Fig. 12. The time-evolution of x, y, z and p. in the system with additive Gaussian

noise and diffusion, recorded at point [20, 20] on the spatial lattice. K1 = k1 +∆ =

2.25, λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0, k2 = 0.1, k3 = 0.1. Initial conditions

as above.

4.6. System with Gaussian noise, dichotomous noise and diffusion

The system (4) is a combination of all cases analysed above. Dichoto-
mous noise switches the system between states where either the “x-phase” or
the “y-phase” is preferred. This causes the emergence of separate “islands”
of these two phases. Their boundaries move due to diffusion and the di-
rection and speed of the motion depends on the current value of k1 + η(t)
(see Figs. 1, 15). In the x-y-z -space, the trajectories climb up towards the
region where y is close to 1 (the upper part of the y-phase attractor). This
“climbing” effect is caused by the boundary conditions imposed on the sys-
tem: Since the same positive or negative value of σξ(−→r , t) is being added to
each equation, there is a certain preferred direction in which the trajectory
moves. It cannot, however, cross the boundaries and thus, near the attract-
ing branch of (7), the average direction of motion is “upwards” (i.e. towards
the increasing values of y) because the motion in the opposite direction is
blocked due to the boundary conditions (see Fig. 14).
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Fig. 13. Trajectory of the system (4) recorded at point [20, 20] on the spatial

lattice. Simulation time T = 4000. The trajectory jumps between two possible

phases. Initial conditions: x = 0, y = 0.4, z = 0, p = 0 everywhere. Parameters:

λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0.5, k1 = 1.75, k2 = 0.1, k3 = 0.1, γ = 0.01.

Fig. 14. Trajectory of the system (4) recorded at point [20, 20] on the spatial

lattice, y-z-projection, simulation time T = 10000. The trajectory jumps between

two stable branches of stationary points, but, finally, it climbs up the “y-phase”

branch. Initial conditions: x = 0, y = 0.4, z = 0, p = 0 everywhere. Parameters:

λ = 0.5, D = 0.05, σ = 0.01, ∆ = 0.5, k1 = 1.75, k2 = 0.1, k3 = 0.1, γ = 0.01.

Curves show how the shape of branches of stationary points changes with switching

value of k1 ± ∆. Sloped line: the initial plane E = 0.4.
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When trajectories get to the upper part of the “y-phase” attractor, they
remain in its neighbourhood for all time because the “x-phase” attractor is
too distant. This distance is determined by the choice of parameters, namely
by the position of point {0, λ

k1
, 0, 0} where the other branch of stationary

points begins (see Fig. 14). This effect is the reason why the “y-phase”
finally spreads all over accessible space in our simulation.

Fig. 15. Time evolution of x, y, z and p in system (4). Simulation time T = 10000.

Initial conditions: x = 0, y = 0.4, z = 0, p = 0 everywhere. Parameters: λ =

0.5, D = 0.05, σ = 0.01, ∆ = 0.5, k1 = 1.75, k2 = 0.1, k3 = 0.1, γ = 0.01.

5. Conclusions

We have performed a simulation of a spatially inhomogeneous model of
cancer growth with additive Gaussian noise and multiplicative dichotomous
noise. The multiplicative noise controls the efficiency of the immune response
whereas the external environmental fluctuations have been modelled by the
additive Gaussian noise.

The presence of noise in biological systems may be regarded not only as
a mere source of disorder but also as a factor which introduces positive and
organising rather than disruptive changes in the system’s dynamics: In our
model, we find that the presence of a global (i.e. depending only on time)
multiplicative dichotomous noise in a system perturbed by a spatially inho-
mogeneous additive Gaussian noise leads to emergence of a spatial pattern
of two “phases”. The “phases” are distinct areas in which cancer cells, or,
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respectively, immune cells predominate. The pattern is not stable: domain
boundaries move due to a diffusion effect, and the direction (and speed) of
that motion is determined by the current value of the dichotomous noise,
i.e. by the effective intensity of the immune response.

The spatial pattern emerges when the environmental noise intensity σ is
properly tuned. Combined with the multiplicative noise, it should allow the
system to perform transitions between two “phases”. Too strong additive
noise would however dominate the picture, preventing the formation of a
pattern. Additionally, the diffusion parameter D should be carefully cho-
sen, so that the pattern could have sufficiently distinct boundaries and be
relatively stable. If the diffusion rate is high, the pattern dissolves quickly,
whereas at small diffusion rate it only forms small “grains”. The quantitative
analysis of the interplay between the above-mentioned factors in the process
of pattern formation [21] merits a further study.

After a sufficiently long time, the immune cells prevail globally. This
turns out to be the effect of reflecting boundary conditions, which prevent
the population densities from exceeding 0 or 1. The existence of such bound-
aries causes that the trajectories of the system prefer to move in the direction
of greater population of immune cells. A replacement of the additive Gaus-
sian noise ξ(−→r , t) with a multiplicative Gaussian noise, and a comparison
with the model described here, would be another interesting issue for future
research.

The author would like to thank Dr. Ewa Gudowska-Nowak for helpful
discussions and comments.
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