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Stationary solutions to a Fokker–Planck equation corresponding to
a noisy logistic equation with correlated Gaussian white noises are con-
structed. Stationary distributions exist even if the corresponding deter-
ministic system displays an unlimited growth. Positive correlations be-
tween the noises can lead to a minimum of the variance of the process and
to the stochastic resonance if the system is additionally driven by a periodic
signal.
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1. Introduction

The logistic equation

ẋ = ax(1 − x) , a > 0 , x > 0 , (1)

is one of the best-known and most popular models in population dynamics.
Perturbing this equation by a multiplicative noise is an obvious generaliza-
tion of the deterministic theory, aiming at describing populations that live
in an ever-changing environment. The logistic equation with a fluctuating
growth rate

ẋ = (a + p ξ(t))x(1 − x) , (2)

has been first discussed by Leung in Ref. [1] and later by many other authors.
Recently in Ref. [2] we have discussed a further generalization of (2) in which
both the growth rate and the limiting population level fluctuate, and these
fluctuations are correlated in time:

ẋ = (a + p ξm(t))x − (b + q ξa(t))x
2 . (3)

(1981)



1982 P.F. Góra

Here ξm,a are two Gaussian white noises (GWNs) that satisfy 〈ξi(t)〉 = 0,
〈ξi(t1)ξi(t2)〉 = δ(t1 − t2), i = m, a, 〈ξm(t1)ξa(t2)〉 = c δ(t1 − t2), p, q are
the amplitudes of the two noises and the correlation coefficient c ∈ [−1, 1].
For the sake of terminology, we will sometimes call the noise ξm(t) “multi-
plicative” and the noise ξa(t) “additive”; see Eq. (5) below for a rationale
behind these names. Please note, though, that on the level of Eq. (3) both
these noises are coupled multiplicatively to the process x(t). Note also that
if b > 0, the corresponding deterministic equation converges to a stable fixed
point; accordingly, we will call a system with a positive b “convergent”. If
b 6 0, the corresponding deterministic system displays unlimited growth.
We will call a system with a negative b “exploding”. Recently Mao et al.

have shown in Ref. [3] that in the absence of ξm, the system (2) remains
positive and bounded even in the “exploding” case. In Ref. [4] we have dis-
cussed certain difficulties that may arise in numerical simulations of such
a system. This paper generalizes the result of Mao et al. to the case of both
noises present.

In Ref. [2] we have shown how the dynamics (3) is related to the problem
of a linear stochastic resonance. We have mapped the nonlinear equation
(3) into a linear Langevin equation with two correlated noises and used the
solutions of the latter to heuristically explain the behaviour of the noisy
logistic equation. Specifically, the substitution

y =
1

x
(4)

converts Eq. (3) into a linear equation

ẏ = −(a + p ξm(t))y + b + q ξa(t) (5)

which can be solved exactly for realizations of the process y(t). The process
(5) has a convergent mean if

a − 1
2p2 > 0 (6a)

and a convergent variance if a stronger condition

a − p2 > 0 (6b)

holds. Using the properties of the process y(t), useful prediction can be
made about the noisy logistic process. Since in the presence of correlations,
for certain values of parameters the variance of y(t) first shrinks and then
grows as a function of the “multiplicative” noise strength, q, one expects
a similar behaviour for the logistic process x(t) as well. These predictions
have been corroborated numerically in Ref. [2]. In particular, if c = ±1,
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bp ∓ aq = 0 and the condition (6b) is satisfied, the variance of the process
y(t) vanishes. The relation between the processes y(t) and x(t) = 1/y(t)
intuitively means that if almost all realizations of the former asymptotically
reach the same constant value, so do almost all realizations of the latter.
However, as a formal relation between moments of these processes is not
trivial, the predictions based on the properties of y(t) have only a heuristic
value.

In the following we will construct mathematically exact stationary solu-
tions to the Fokker–Planck equation corresponding to Eq. (3) and re-examine
the above results from the point of view of these stationary solutions. Fur-
thermore, we will show numerically that if the parameters undergo periodic
(for example, circaannual or seasonal) oscillations, a positive correlation be-
tween the noises leads to a stochastic resonance.

In the Appendix we extend to the case of two correlated noises the
proof originally proposed by Mao et al. in Ref. [3] that solutions to Eq. (3),
when started from a positive initial condition, never become negative almost
surely.

2. The Fokker–Planck equation

The problem of constructing a Fokker–Planck equation corresponding
to a process driven by two correlated Gaussian white noises has been first
discussed in Ref. [5], where the two noises have been decomposed into two
independent processes. The same result has been later re-derived in [6],
where the authors have attempted to avoid an explicit decomposition of the
noises but eventually resorted to a disguised form of the decomposition. The
general Langevin equation

ẋ = h(x) + g1(x)ξm(t) + g2(x)ξa(t) , (7)

where x(t) is a one-dimensional process and ξm,a are as in Eq. (3), leads to
the following Fokker–Planck equation in the Ito interpretation:

∂P (x, t)

∂t
= − ∂

∂x
h(x)P (x, t) +

1

2

∂2

∂x2
B(x)P (x, t) , (8a)

where
B(x) = [g1(x)]2 + c g1(x)g2(x) + [g2(x)]2 . (8b)

In the case of Eq. (3) the corresponding Fokker–Planck equation therefore
reads

∂P (x, t)

∂t
= − ∂

∂x
[(a − bx)xP (x, t)] +

1

2

∂2

∂x2

[

x2(p2 − 2cpqx + q2x2)P (x, t)
]

.

(9)
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It is apparent that the absolute signs of the two noise amplitudes do not in-
fluence the solutions to the above equations, only their relative sign, sgn(pq),
does. In the following we will assume that sgn(pq) = +1. This comes at no
loss to the generality as Eq. (9) is invariant under a simultaneous change of
signs of pq and the correlation coefficient, c.

Stationary solutions to Eq. (9) are the normalizable solutions to [7, 8]

x2(p2−2cpqx+q2x2)
dPst(x)

dx
+2x

(

2q2x2 + (b−3cpq)x − (a−p2)
)

Pst(x) = 0 .

(10)
A slight modification of the argument presented originally in Ref. [3]

shows that all solutions to Eq. (3) which start from a positive initial condition
remain positive almost surely; see the Appendix for a proof. Physically
speaking, this results from a presence of an absorbing barrier at x = 0 in
Eq. (3): should the population suddenly drop to zero, it would stay there
forever. The formal result of Ref. [3], extended here to the case of two noises
present, ensures that the population never actually becomes nonpositive
although in certain cases (see below) it may dynamically cluster in a close
proximity of x = 0+. Therefore, we can divide both sides of (10) by x and
obtain

x(p2−2cpqx+q2x2)
dPst(x)

dx
+2

(

2q2x2 + (b − 3cpq)x − (a − p2)
)

Pst(x) = 0 ,

(11)
provided Pst(x) is normalizable over the x > 0 half-axis.

One may be tempted to try to immediately solve Eq. (11) by standard
methods, but a word of caution is needed here: should the coefficient at
dPst/dt vanish, special care must be taken.

2.1. The case of only one noise present

Before proceeding to the general case, we will discuss the special cases
where only one of the amplitudes p, q does not vanish.

Purely “multiplicative” noise. If q = 0, the Langevin equation (3) reduces
to

ẋ = (a + p ξm(t))x − bx2 (12)

and we find for Pst(x)

Pst(x) = Nx2(a−p2)/p2

exp

(

−2bx

p2

)

, (13)

where N is a normalization constant. This function is normalizable for x > 0
if b > 0, or if the system is convergent, and

a − 1
2p2 > 0 , (14a)
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which determines the behaviour of the distribution around x = 0. Moreover,
if

a − p2 > 0 , (14b)

Pst(x) goes to zero as x → 0+ and has a maximum at x = (a − p2)/b.
Note that the conditions (14a), (14b) coincide with the conditions (6a), (6b)
determining the properties of the linear process (5). For p2 > a > 1

2p2, the
distribution is mildly divergent at x = 0 and decreases monotonically with
an increasing x.

Purely “additive” noise. If p = 0, the Langevin equation takes the form

ẋ = (a − bx)x + qx2ξa(t) (15)

and we obtain for the stationary distribution

Pst(x) =
N
x4

exp

(

−a − 2bx

q2x2

)

(16)

which is normalizable whenever a > 0. Note that no bounds on b are im-
posed: The stationary distribution exists for both convergent and exploding
systems. This special case falls into a broad category discussed recently by
Mao et al. in Ref. [3], without further generalizations provided by the present
paper. The distribution (16) has a maximum at the positive root of

2q2x2 + bx − a = 0 . (17)

2.2. The general case

If both noises are present and are not maximally correlated, |c| 6= 1, the
solution to (11) reads

Pst(x) =
Nx2(a−p2)/p2

(p2−2cpqx+q2x2)(a+p2)/p2
exp



−
2(bp−acq) arctan

(

qx−cp
√

1−c2p

)

√
1 − c2 p2q



 .

(18)

Since the exponential term is limited, the convergence (normalization) prop-
erties of (18) are determined by those of the fractional term. The denomi-
nator is always strictly positive. For x → ∞, Pst(x) ∼ x−4 for all possible
values of parameters. Pst(x) is therefore normalizable if it does not diverge
too rapidly at x → 0+, or again if the condition (14a) holds. Either in
this case, no bounds on b are imposed. If the condition (14b) holds as well,
the distribution (18) approaches zero as x → 0+, but this condition is no
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longer associated with the presence of a maximum. The maximum of Pst(x)
coincides with the positive root of

2q2x2 + (b − 3cpq)x − (a − p2) = 0 , (19)

cf. Eq. (11), provided such a root exists. It certainly does for a−p2 > 0, but it
can appear also for p2 > a > 1

2p2, where the distribution is mildly divergent.
Example stationary distributions in a strongly correlated case are presented
in Fig. 1. For large values of the additive noise strength, q, the distributions
are highly skewed and squeezed against the x = 0 axis. For comparison, in
Fig. 2 we show example stationary distributions for the uncorrelated and a
strongly anticorrelated cases. The distributions presented are skewed and
much wider than the distribution from Fig. 1 with the same value of q = 0.5.
These distributions also get squeezed as the additive noise strength becomes
large. Note that the distribution corresponding to the anticorrelated noises
is already more squeezed than the distribution for the uncorrelated case.
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Fig. 1. Stationary distributions (18) in a strongly correlated case, c = 0.99. Clock-

wise, from top-left q = 0.1, q = 0.5, q = 0.6, and q = 5.0. Other parameters,

common for all panels, are p = 0.5, a = b = 1.
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Fig. 2. Stationary distributions for the uncorrelated (c = 0, left panel) and

a strongly anticorrelated (c = −0.99, right panel) cases. Other parameters are

a = b = 1, p = q = 0.5.

If the distribution (18) is normalizable, it has a convergent mean and
a variance. Its higher moments are divergent.

2.3. The maximally correlated case

If the two noises are maximally (anti)correlated, c = ±1, Eq. (11) takes
the form

x(p ∓ qx)2
dPst

dx
+ 2

[

(p ∓ qx)2 + q2x2 + (b ∓ pq)x − a
]

Pst = 0 , (20)

leading to the following candidate solution:

Pst(x) = N x2(a−p2)/p2

(p ∓ qx)2(a+p2)/p2
exp

[

∓ 2(bp ∓ aq)

pq(p ∓ qx)

]

. (21)

With our sign convention adopted, sgn(pq) = +1, this solution is nor-
malizable if c = −1 and the condition (14a) holds. The distribution (21)
with the “+” sign can be obtained from Eq. (18) by taking the limit c → −1.
This distribution decreases as x−4 with x → ∞. The maximum of (21), if
it exists, coincides with the positive root of Eq. (19) with c = −1.

The case of c = +1 is more challenging. First, if the resonant condition

bp − aq = 0 (22)

holds, Eq. (20) is solved by

Pst(x) = δ

(

x − p

q

)

(23)
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regardless of the value of p. This result is stronger than that reported in
Ref. [2] where we could predict a δ-shaped distribution only in the a−p2 > 0
case, or when the variance of the corresponding linear system was convergent,
as otherwise any predictions based on the linear system failed. Note that
with the condition (22) statisfied, Eq. (3) reduces to a rescaled form of
Eq. (2).

If c = +1 and the condition (22) does not hold, Eq. (20) does not have
a normalizable solution. This observation is slightly surprising, but formally
speaking, it results from the fact that the double limit

lim
x→p/q

c→1

exp



−
2(bp − acq) arctan

(

qx−cp
√

1−c2p

)

√
1 − c2 p2q



 (24)

does not exits: Its value depends on which route the singularity is ap-
proached. The nonexistence of stationary solutions in the fully correlated,
non-resonant case is, therefore, related to the essential singularity of the
complex exponential at infinity. The fact that with c = +1, bp−aq 6= 0, the
drift and diffusive terms in Eq. (20) both vanish, but at different points, is
the physical reason for this apparent oddity: If the population gets located
around the point of the vanishing diffusion, it is washed away by the drift,
and if it gets located around the point of the vanishing drift, it diffusively
leaks from there. Nevertheless, if a − 1

2p2 > 0, in numerical simulations the
cases of c = 1 and c = 1 − ε with 0 < ε ≪ 1 are undistinguishable. In the
latter case, the distribution (18) is perfectly normalizable.

3. Resonant effects and the shape of the stationary distribution

Perhaps the most important prediction based on the analysis of the linear
equation (5) and discussed in Ref. [2] is that, for certain values of parame-
ters, the variance of the process x(t) should, in the asymptotic regime, first
shrink, reach a minimum, and then grow as a function of the additive noise
strength, q. As we have mentioned before, these are heuristic, intuitive con-
clusions based on the behaviour of the linear system associated with the
logistic process, but because of the complicated relation between the mo-
ments of these two processes, they do not amount to a formal proof. In
Ref. [2] we have confirmed these predictions numerically for a certain range
of the additive noise strengths. As we have seen above, in the fully corre-
lated and resonant case, the stationary distribution becomes δ-shaped and
its variance indeed vanishes, much as predicted by the linear system. Since
we now know the mathematically exact stationary distributions, we can test
the behaviour of the variance in the general case directly.
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Fig. 3. The variance
〈

x2
〉

−〈x〉2 determined form the distribution (18) as a function

of the additive noise strength, q. Main panel: p = 0.5, the curves, from bottom

to top, correspond to c = 0.99, c = 0.90, c = 0.75, c = 0.50, c = 0.25, c = 0, and

c = −0.25, respectively. Inset: p = 1.1, the curves correspond, from bottom to

top, to c = 0.99, c = 0.98, c = 0.97, c = 0.96, c = 0.95, and c = 0.94, respectively.

Other parameters, common for all curves presented, are a = b = 1.

Recall that the distribution (18) has the two first moments convergent
whenever it is normalizable. Unfortunately, analytical expressions for these
moments cannot be obtained, mainly due to the presence of the complicated
exponential term. Therefore, we have calculated the moments by numeri-
cally integrating over the distribution (18). Results are presented in Fig. 3.
If the distribution approaches zero as x → 0+, or when the condition (14b)
is satisfied, and if the two noises are positively correlated, 0 < c < 1, the
variance

〈

x2
〉

− 〈x〉2 displays a clear minimum as a function of the addi-
tive noise strength, q. The minimum becomes shallower as the correlations
decrease towards zero, where it eventually disappears. It is not present for
the negative correlations or when one of the amplitudes vanishes. These
effects agree with predictions based on the linear system (5). The presence
of the minimum of the variance is a clear and beneficial effect of positive
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correlations between the two noises. However, for larger values of q a new
phenomenon appears: The variance starts decreasing again. This is be-
cause for large values of the additive noise, the stationary distribution gets
squeezed against the x = 0 axis, cf. Fig. 1 above. This effect cannot be
predicted within the linear approach — note that the process described by
Eq. (5) has a support that formally spreads over the entire real axis and,
moreover, is Gaussian whenever the condition (14b) holds, while the noisy
logistic process is restricted to the positive half-axis.

If the stationary distribution mildly diverges at zero, or if p2 > a > 1
2p2,

a distinct minimum in the variance of x also appears but it is present only for
fairly large (and positive) values of the correlation coefficient, cf. the inset
in Fig. 3. Note that this effect cannot possibly be predicted by analysing the
linear system (5) as in this regime the variance of the linear process diverges
and any predictions break.

4. Stochastic resonance

We now assume that parameters of the logistic process are not only sub-
jected to noise, but also to periodic, deterministic perturbations, resulting
for example from seasonal changes in the environment. Specifically, we con-
sider

ẋ = (a + p ξm(t))x − (b + A sin(Ωt + ϕ) + q ξa(t))x
2 . (25)

We have shown analytically in Ref. [2] that the linear system associated
with Eq. (25) displays a stochastic resonance (SR) if the noises are positively
correlated. SR is one of the most spectacular examples of a constructive role
of noise — see Ref. [9] for a review. Because we do not know exact solutions
of a time-dependent Fokker–Planck equation corresponding to Eq. (25), we
will demonstrate the SR phenomenon numerically. We will use the Signal-
To-Noise Ratio (SNR) as a measure of the SR:

SNR = 10 log10

Psignal

Pnoise(ω = Ω)
, (26)

where Psignal is the height of the peak in the power spectrum at the driving
frequency and Pnoise is the noise-induced background.

We have solved the equation (25) numerically with the Euler–Maryuama
algorithm and a timestep equal 2−16. The GWNs have been generated
by the Marsaglia algorithm [10] and the famous Mersenne Twister [11] has
been used as the underlying uniform generator. We have let the system
to equilibrate, run the simulations for 225 steps and collected the results of
every 29-th step, calculated the power spectrum, calculated the SNR and
averaged the results over 128 realizations of the stochastic processes and the
initial phases, ϕ. Selected results are presented in Fig. 4.
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Fig. 4. Stochastic resonance in the system (25). The upper panel — the condition

(14b) is satisfied, p = 0.5. The lower panel — the condition (14b) is not satisfied,

p = 1.1. Other parameters, common for the two panels, are a = b = 1, A = 0.5,

Ω = 2π. Curves presented correspond, back to front, to c = 1.0, 0.99, 0.9 (lower

panel only), 0.75, 0.5, 0.25, 0.0, and −0.25, respectively.
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The upper panel corresponds to the situation when the condition (14b)
holds, or when the noisy logistic process without the periodic signal has
a convergent variance. We can clearly see that the system (25) displays
a SR for positive correlations between the two noises: For positive corre-
lations between the noises, there is a certain level of the “additive” noise
that maximizes the impact that seasonal changes in the environment have
on the population. As we have shown in the preceding Section, this range
of parameters corresponds to the presence of the minimum in the variance
of (18). One may be tempted to conclude that the SR and the minimum of
the variance are two facets of the same phenomenon, much as in the linear
case. However, the lower panel of Fig. 4, corresponding to the situation
when the condition (14b) is not satisfied, shows that this is not the case.
The SR, albeit much weaker than in the previous case, is clearly present even
when the signal-free system no longer displays a minimum of the variance.
A minimum of the variance and the stochastic resonance are two different
constructive effects of positive correlations between the noises.

5. Conclusions

In this paper we have constructed stationary distributions corresponding
to a noisy logistic process driven by two correlated GWNs. These distribu-
tions are restricted to the positive semiaxis and if they are normalizable, they
have two convergent moments. In particular, if the noises are maximally cor-
related and a certain resonant condition holds, the stationary distribution
is δ-shaped, which has been reported previously as a result of many numeri-
cal simulations. Surprisingly, if the noises are maximally correlated but the
resonant condition does not hold, the process does not have a stationary
distribution, even though it can numerically manifest itself as if it had one.

Positive correlations between the noises lead to a minimum of the vari-
ance of the noisy logistic process and to a stochastic resonance if the pa-
rameters of the system undergo additional periodic changes. As we have
numerically demonstrated, these are two different effects. By constructing
the exact stationary distributions, we have extended our previous analysis of
the system performed mainly by formally converting the system into a lin-
ear one. Several features of the system, and “squeezing” of the stationary
distribution in case of a strong “additive” noise in particular, cannot be de-
scribed by analysing the linear process. This is because the linear process
(5) is Gaussian if it has two convergent moments but the nonlinear logistic
process is not. Nevertheless, there are nice parallels between the properties
of the logistic process and its formal linearization: If a− 1

2p2 > 0, the linear
process has a convergent mean and the logistic process has a normalizable
stationary distribution that decreases for large x as x−4. If a − p2 > 0, the
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stationary distribution of the logistic process approaches zero as x → 0+ and
the linear process has a convergent variance. If 1

2p2 < a < p2, the stationary
distribution of the noisy logistic process mildly diverges at x = 0+ and the
population dynamically clusters around that point. Note that for a > p2,
the stationary distribution has a maximum and the population is actually
pushed away from x = 0+. Thus, the level of the multiplicative noise p2 = a
marks a qualitative change in the population described by the noisy logistic
equation.

It is, perhaps, surprising that a stationary distribution of the noisy lo-
gistic process may exist even if the corresponding deterministic process is
clearly divergent. The fact that noise can prevent a population from explod-
ing has been recently reported by Mao et al. in Ref. [3] for a more restricted,
in a sense, class of systems. The present work is an extension of this research
to a class that includes two correlated sources of the noise.

I am very grateful to Prof. Andrzej Fuliński for his thorough criticism of
a draft version of this paper.

Appendix A

To show that solutions to Eq. (3) remain positive almost surely when
started from a positive initial condition, we first decompose the correlated
noises ξm, ξa into two independent processes:

ξm(t) = ξ(t) , (A.1a)

ξa(t) = cξ(t) +
√

1 − c2 η(t) , (A.1b)

where η(t), ξ(t) are two identical, uncorrelated GWNs. The decomposition
(A.1) is a variant of the method originally used in Ref. [5]. We now cast
Eq. (3) in a form customarily used by mathematicians:

dx = (ax − bx2) dt + (px − qcx2) du − q
√

1 − c2 x2 dw , (A.2)

where du, dw are differentials over two identical, independent Wiener pro-
cesses. Incidentally, observe that the Fokker–Planck equation (9) follows
immediately from Eq. (A.2).

Theorem 1. If the initial condition x0 > 0, for any q 6= 0 the solution to

Eq. (A.2) remains positive for all t > 0 almost surely.



1994 P.F. Góra

Proof. The proof of this theorem follows closely that of Theorem 2.1 from
the work of Mao et al. [3] and we encourage readers interested in mathe-
matical details to familiarize with that proof first; to save the space, we will
show only this part in which the proof of Theorem 1 differs from that of
Mao et al.

First, the authors of Ref. [3] consider a multispecies (multidimensional)
system, while we restrict ourselves to a simpler single-species case.

Second, the proof is based on properties of the function

V (s) =
√

s − 1 − 1
2 ln s . (A.3)

This function is nonnegative for any s > 0. We calculate V (x(t)) along
the trajectory generated by Eq. (A.2) with an initial condition x0 > 0 and
calculate the stochastic differential of V (x(t)) using Ito formula. Because
Eq. (A.2) differs from that considered by Mao et al., we obtain a slightly
different expression. Specifically, if x(t) > 0,

dV (x(t)) = 1
2

(

x−1/2 − x−1
)[

(ax−bx2)dt + (px−qcx2)du − q
√

1−c2x2dw
]

+1
4

(

x−2 − 1
2x−3/2

)

[

(px − qcx2)2 + q2(1 − c2)x4
]

dt . (A.4)

The second term in (A.4) would be absent if the noises were interpreted in
the Stratonovich sense. After a simple algebra,

dV (x(t)) =
[

1
2

(

x1/2 − 1
)

(a−bx) + 1
4

(

1 − 1
2x1/2

)

(p2−2pqcx+q2x2)
]

dt

−1
2

(

x1/2 − 1
)

(p − qcx) du − 1
2

(

x1/2 − 1
)

q
√

1 − c2 x dw .

(A.5)

If q = 0 and b < 0, or when the corresponding deterministic system
explodes, the coefficient at dt in (A.5) may assume arbitrarily large values.
On the contrary, for any q 6= 0 and regardless of the sign of b, this coefficient
is bounded from above by a certain positive number K. Thus1

T
∫

0

dV (x(t)) 6 KT −
T

∫

0

1
2

(

x1/2 − 1
)

(p − qcx) du

−
T

∫

0

1
2

(

x1/2 − 1
)

q
√

1 − c2 x dw , (A.6)

1 Some subtleties of the notation are omitted here, see [3] for a fully rigorous treatment.
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where T is a time such that x(t) is positive for 0 6 t < T almost surely. By
taking the expectation values, we obtain

〈V (x(T ))〉 6 V (x0) + KT . (A.7)

The rest of the proof now proceeds exactly as in Ref. [3] to show that
T = ∞.
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