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We investigate the a0 → π0η decay in the framework of QCD sum rules.
We estimate the coupling constant ga0πη which plays an essential role in the
analysis of physical processes involving a0(980) meson. We also estimate
the coupling constant ga0πη by using the experimental limits of the decay
width of the a0 → π0η decay and compare with our QCD sum rule result.

PACS numbers: 12.38.Lg, 13.25.Jx, 14.40.Cs

The flavor SU(3) forms an approximate global symmetry of hadron spec-
trum according to which mesons are classified as bound states of a quark
and antiquark (qq) and they are placed in nonet representations of SU(3)
group. However, whether light scalar mesons form a scalar nonet is still
an open question. In the constituent quark model, a0(980) meson is rep-
resented by qq state [1], however, it is given by a four quark state q2q2 [2]
in the framework of MIT-bag model. Another possible structure of a0(980)
meson is that of a KK molecule [3]. Understanding the nature and the
quark substructure of the scalar mesons is still an open problem in hadron
physics.

The scalar mesons play an important role in the hadronic decays. In the
V 0 → π0ηγ decays, where V represents the lowest multiplet of vector mesons
ρ, ω and φ, the π0η system is a scalar isovector state I(JPC) = 1(0++). In
particular, the analysis of the V 0 → π0ηγ decays requires the coupling
constant ga0πη [4].

At present, there is no quantitative theory which is based on a fundamen-
tal Lagrangian to calculate the properties of hadrons. Asymptotic freedom
property of QCD allows perturbative calculations of strong interactions at
short distances. However, in the long distance region perturbation theory
fails and thus one has to confront the nonperturbative effects. The method
of QCD sum rules developed by Shifman, Vainstain and Zakharov [5] is a
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very powerful and informative tool to be used in hadron phenomenology in
the nonperturbative region. The decay channels of a0(980) meson can be
analyzed in the context of QCD sum rules. In this work, we study a0 → π0η
decay in the framework of three-point QCD sum rules and we obtain the
coupling constant ga0πη.

In the QCD sum rule method, hadrons are represented by their interpo-
lating quark currents. The correlation function of these currents is treated
within the framework of the operator product expansion (OPE), where the
short and long distance quark–gluon interactions are separated. In order
to study the QCD sum rule for a0πη-vertex, we consider the three-point
correlation function

Tµν(p, p
′; q) = i

∫

d4x d4y eip
′·ye−ip·x〈0|T{jπ0

µ (0)ja0(x)jην (y)}|0〉 , (1)

where jπ
0

µ , ja0 , and jην are the interpolating currents for π0, a0 and η mesons,
respectively. The interpolating currents in terms of quark fields are

jπ
0

µ =
1

2
(uγµγ5u− dγµγ5d) ,

jην =
1√
6
(uγνγ5u+ dγνγ5d) −

2√
6
sγνγ5s ,

ja0 =
1

2
(uu− dd) . (2)

We choose the pseudovector current for the π0 meson. We work in SU(2)
flavor context with mu = md ≡ mq and we work in the limit mq → 0.

The correlation function can be calculated phenomenologically in terms
of hadron states. In order to construct the correlation function phenomeno-
logically we consider the double dispersion relation satisfied by this function
and we saturate this double dispersion relation for the a0 → πη channel as

Tµν(p, p
′; q) =

〈0 | ja0 | a0(p)〉〈a0(p) | jπ
0

µ | η(p′)〉〈η(p′) | jην | 0〉
(p2 −m2

a0)(p
′2 −m2

η)

+

∞
∫

s0

ds

∞
∫

s′
0

ds′
ρcont.
µν (s, s′)

(s − p2)(s′ − p′2)
+ subtraction terms ,

(3)

where the hadronic spectral density ρcont.(s, s′) includes the contributions of
higher resonances and the continuum. The first part of Eq. (3) corresponds
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to low values of s and s′ where the states are treated in the narrow-width ap-
proximation proportional to double δ-function. The current particle matrix
element for η-meson is given by

〈η(p′) | jην | 0〉 = −ifηp′ν , (4)

where fη is the decay constant of η-meson. The scalar current ja0 is assumed
to have a non-vanishing matrix element between the vacuum and a0(980)
meson state

〈0 | ja0 | a0(p)〉 = λa0 , (5)

where λa0 is called the overlap amplitude. The overlap amplitude λa0 which
was calculated in [6] is needed in the sum rule.

The matrix element of pseudovector current for π0 is given as

〈a0(p) | jπ
0

µ | η(p′)〉 =
ga0πη
ma0

(p − p′)µ , (6)

where q = p− p′. The correlation function in Eq. (1) can be decomposed as

Tµν(p, p
′; q) = T1 pµp

′
ν + T2 p

′
µp

′
ν + T3 pµpν + T4 p

′
µpν + T5 gµν . (7)

Since 〈η(p′) | jην | 0〉 ∼ p′ν , the physical part of the correlation function
includes p′ν structure. The corresponding structure in the theoretical part
of correlation function is pµp

′
ν . We are therefore interested in the invariant

function T1 in this work.
Using the Borel transformation

BM2

[

1

(s +Q2)k

]

=

[

1

(k − 1)!

]

e−s/M
2

M2(k−1)

with respect to Q2 = −p2 we then obtain the following result after double
Borel transformation of T1

BM2
1
BM2

2
T1 = −i ga0πη

ma0

λa0fη e
−m2

a0
/M2

1 e−m
2
η/M

2
2

+

∞
∫

s0

ds

∞
∫

s′
0

ds′ρcont.e−s/M
2
1 e−s

′/M2
2 . (8)

The unknown subtraction term in the dispersion relation disappears after
the Borel transformation.

We then calculate the perturbative and nonperturbative contributions
to the three-point correlation function of a0(p) → π(q)η(p′) decay. In the
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Euclidean region defined by p2 = −Q2, p′2 = −Q′2 where Q2 and Q′2 are
large, the perturbative contribution can be approximated by the lowest order
quark loop diagram shown in Fig. 1(a). Therefore we do not consider the
diagram in Fig. 1(b). The contribution of the diagram in Fig. 1(a) can be
written as

F1a = Nc

∫

d4k

(2π)4
Tr

[

DF (k)Γ 1DF (k + p′)Γ2DF (k + p)Γ3

]

, (9)

where the quark propagator is DF (p1) = i/(/p1 − m2
q), Γi are the vertex

functions of quark currents and Nc = 3 is the color factor.

+++++

+ +

+ + + + +

+ + . . . .++

a

+ + + + +b

p’

q

p

c

d

e

f

Fig. 1. Possible diagrams for three-point correlation function for d ≤ 6. (a) lowest

order bare-loop diagrams, (b) bare loop with a virtual gluon, (c) gluon condensate

diagrams (d) quark condensate diagrams (e) quark condensate diagrams with one

external field, and (f) diagrams obtained by simultaneous cutting of two quark lines

in the diagrams (b).

Diagrams of power corrections shown in Fig. 1(c) and Fig. 1(f) do not
give any contributions to a0(p) → π(q)η(p′) decay, because it is easily seen
that the trace terms in the expressions corresponding to diagrams in Fig. 1(c)
and Fig. 1(f) vanish. The relevant Feynman diagrams of power corrections
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for a0(p) → π(q)η(p′) decay are shown in Fig. 1(d) and Fig. 1(e). The
last two diagrams in Fig. 1(d) and the last four diagrams in Fig. 1(e) vanish
after double Borel transformation. We therefore do not consider them in the
following. The remaining three diagrams contribute to a0(p) → π(q)η(p′)
decay.

We perform the calculations of the power corrections in the fixed-point
gauge, xµA

µ = 0. The general forms of the contributions corresponding to
Feynman diagrams are derived with respect to their dimensions. For the first
diagram in Fig. 1(d), there are four contributions with different dimensions
for d ≤ 6 as

F1d(3d) = Nc〈ψψ〉
1

4
Tr

[

Γ1DF (p′)Γ2DF (p)Γ3

]

,

F1d(4d) = Nc
mq

16
〈ψψ〉 ∂

∂pλ
Tr

[

Γ1DF (p′)Γ2DF (p)Γ3γλ
]

,

F1d(5d) = −Nc

m2
q

16
〈ψψ〉1

2

∂

∂pλ

∂

∂pλ
Tr

[

Γ1DF (p′)Γ2DF (p)Γ3

]

−Nc
1

32
〈ψgGcλλ′(λc/2)σλλ′ψ〉

1

2

∂

∂pλ

∂

∂pλ
×Tr

[

Γ1DF (p′)Γ2DF (p)Γ3

]

+Nc
i

96
〈ψgGcλλ′(λc/2)σλλ′ψ〉

1

2

∂

∂pλ

∂

∂pλ′

×Tr
[

Γ1DF (p′)Γ2DF (p)Γ3σλλ′
]

,

F1d(6d) = Nc
i

2

∂

∂pλ

∂

∂pλ′

∂

∂pλ′′

×
{

B1gλ′λ′′ Tr
[

Γ1DF (p′)Γ2DF (p)Γ3γλ
]

+C1gλλ′′ Tr
[

Γ1DF (p′)Γ2DF (p)Γ3γλ′
]

+D1gλ′λ Tr
[

Γ1DF (p′)Γ2DF (p)Γ3γλ′′
]

}

, (10)

where B1, C1, and D1 are constants which are given as D1 = B1 = − ig2〈ψψ〉2
(35×24)

and C1 = −5B1. In the notation of F1d(Nd), 1d shows the diagram (d) in
Fig. 1 and (Nd) denotes the dimension N .

The first diagram in Fig. 1(e) has the d = 5 and d = 6 contributions that
are given by

F1e(5d)1 = Nc
2g

48 × 4
〈ψGcλρ(λc/2)σλρψ〉

× ∂

∂kλ
Tr

[

Γ1DF (p′)Γ2DF (p)γρDF (p− k)Γ3σλρ
]
∣

∣

k=0
,
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F1e(6d)1 = − i

3
Nc

g2

33 × 24
〈ψψ〉2 Tr[(λc/2)(λc/2)]

∂

∂kτ

∂

∂kλ
×Tr

[

Γ1DF (p′)Γ2DF (p)γρDF (p − k)Γ3(δτργλ − δτλγρ)
]
∣

∣

k=0

+
i

2
Nc

g2

33 × 24
〈ψψ〉2 Tr[(λc/2)(λc/2)]

∂

∂kτ

∂

∂pλ
×Tr

[

Γ1DF (p′)Γ2DF (p)γρDF (p − k)Γ3(δλτγρ − δλργτ − iǫλτρξγ5γξ)
]
∣

∣

k=0
.

(11)

Similarly, we obtain the d = 5 and d = 6 contributions from the second
diagram in Fig. 1(e) as

F1e(5d)2 = −Nc
2g

48 × 4
〈ψGcλρ(λc/2)σλρψ〉

× ∂

∂kλ
Tr

[

Γ1DF (p′)γρDF (p′ − k)Γ2DF (p− k)Γ3σλρ
]

k=0
,

F1e(6d)2 = − i

3
Nc

g2

33 × 24
〈ψψ〉2 Tr[(λc/2)(λc/2)]

∂

∂kτ

∂

∂kλ
×Tr

[

Γ1DF (p′)γρDF (p′ − k)Γ2DF (p− k)Γ3(δτργλ − δτλγρ)
]
∣

∣

k=0

+
i

2
Nc

g2

33 × 24
〈ψψ〉2 Tr[(λc/2)(λc/2)]

∂

∂kτ

∂

∂pλ
×Tr

[

Γ1DF (p′)γρDF (p′−k)Γ2DF (p−k)Γ3(δλτγρ−δλργτ−iǫλτρξγ5γξ)
]
∣

∣

k=0
.

(12)

For a0(p) → π(q)η(p′) decay the vertex functions are Γ1 = −(i/
√

6)γνγ5,
Γ2 = −(i/2)γµγ5, and Γ3 = −(i/2)I. Using these vertex functions in
Eqs. (9)–(12) we then get the non-vanishing contributions from power cor-
rections to the correlation function Tµν(p, p

′; q) in the limit mq → 0 as

Tµν(p, p
′; q) = F1d(3d) + F1d(5d) + F1e(5d)1 + F1e(5d)2

= −i 1√
6

3

4
〈ψψ〉 1

p′2p2

[

pµp
′
ν + pνp

′
µ − p · p′gµν

]

−i 3

16
√

6

〈

ψgGnλλ′

(

λn

2

)

σλλ′ψ

〉 (

1

p6 p′6

)

{

pµ[2p
2p′4pν + (p′4p2 − 2p2p′2p · p′ + p4p′2)p′ν ]

+p2(2p′2p · p′ − p2p′2)(−pνp′µ + p · p′gµν)

+p′2p2[p′2pνp
′
µ + 2p2p′µp

′
ν − p′2p · p′gµν − p2p′2gµν ]

}
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+
3i

16
√

6

〈

ψgGcλρ

(

λc

2

)

σλρψ

〉

pµp
′
ν + pνp

′
µ − p · p′gµν

p′2p4

+
i

16
√

6

1

8

〈

ψgGcλρ

(

λc

2

)

σλρψ

〉

{

8

p2p′6
[−p′2pνp′µ + 3p′2pµp

′
ν ]

+p′2(p · p′)gµν +
8

p4p′4
[2p · p′pνp′µ + 2p2p′µp

′
ν − 2p′2pµpν

+2p · p′pµp′ν + (−2(p · p′)2 + p2)gµν ]

}

, (13)

where 〈ψgGcλρ(λc/2)σλρψ〉 = m2
0〈ψψ〉. The lowest order perturbative quark-

loop diagram and the d = 6 contributions F2(6d), F3(6d)1 and F3(6d)2 do
not make any contribution in the limit mq → 0.

The structure pµp
′
ν is chosen to compare the theoretical and phenomeno-

logical parts and to obtain the coupling constant ga0πη. We then find the
theoretical part of the invariant function T1 for a0(p) → π(q)η(p′) decay as

T1 = − i√
6
〈ψψ〉 3

4

1

p′2p2

+
i√
6
〈ψψ〉 m

2
0

4

[

1

p4 p′2
+

1

p′4p2
− q2

p4p′4

]

.

(14)

The first line in Eq. (14) is d = 3 and the second line d = 5 contributions.
We perform double Borel transform with respect to the variables Q2 = −p2

and Q′2 = −p′2, using BM2(1/Q2)k = 1/[(k − 1)!M2(k−1)], we then obtain

BM2
1
BM2

2
T1 = − i√

6
〈ψψ〉

{

3

4
+
m2

0

4

[

1

M2
1

+
1

M2
2

+
q2

M2
1M

2
2

]}

, (15)

where M2
1 and M2

2 are Borel masses corresponding to a0 and η mesons,
respectively, and 〈ψψ〉 = 〈uu〉 + 〈dd〉 ≈ 2〈uu〉.

The η–η′ mixing may have a considerable effect on the ga0πη coupling
constant. We note that the physical eigenstates | η〉 and | η′〉 can be ex-
pressed as the linear combinations of two states | ηq〉 and | ηs〉 as

| η〉 = cosφ | ηq〉 − sinφ | ηs〉 ,
| η′〉 = sinφ | ηq〉 + cosφ | ηs〉 , (16)

where | ηq〉 = 1√
2
(uu + dd) and | ηs〉 = ss, and φ is the mixing angle [7].

The corresponding currents in terms of quark fields can be taken as the axial
vector currents jq5µ = 1√

2
(uγµγ5u+ dγµγ5d) and js5µ = sγµγ5s.



2012 H. Koru, B. Yilmaz

After performing a double Borel transformation the higher resonance and
continuum contributions are eliminated, and then matching the theoretical
and physical parts given in Eq. (8) and (15), respectively, we then obtain
the coupling constant ga0πη including η–η′ mixing effects as

ga0πη =

cosφ
2〈uu〉√

2

ma0

λa0fη
em

2
a0
/M2

1 em
2
η
/M2

2

{

3

4
+
m2

0

4

[

1

M2
1

+
1

M2
2

+
q2

M2
1M

2
2

]}

.

(17)

For the numerical evaluation of the sum rule the values m2
0 = (0.82 ±

0.02) GeV2, 〈uu〉 = (−0.014 ± 0.002) GeV3 [8], and ma0 = 0.98 GeV, mη =
0.547 GeV are used [9]. The overlap amplitude λa0 was determined by
employing QCD sum rules method as λa0 = (0.21 ± 0.05) GeV2 [6]. The
η-meson decay constant is obtained as fη = (0.13 ± 0.01) GeV using the
experimental data given by Particle Data Group [9]. The recent value of the
mixing angle is φ = (37.7 ± 2.4)◦ [7]. We note that in Eq. (17) q2 is large
and negative.

Fig. 2 shows that the stability region of the coupling constant ga0πη
is in the intervals 2 ≤ M2

1 ≤ 5 GeV2 and 0.4 ≤ M2
2 ≤ 0.5 GeV2 for

q2 = −1 GeV2. The dependence of the coupling constant ga0πη on the Borel
parameters M2

1 and M2
2 are studied in Fig. 3. The limits of the stability

1
2

3
4

5

M1
2

0.3

0.4

0.5

M2
2

2

3gaΠΗ

1
2

3
4M1

2

Fig. 2. The coupling constant ga0πη as a function of the Borel parameters M2

1

and M2

2
.
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Fig. 3. The coupling constant ga0πη as a function of the Borel parameter M2

1
for

different values of the Borel parameter M2

2
. The curves denote the limits of the

stability region.

region is shown for M2
2 = 0.4 GeV2 and M2

2 = 0.5 GeV2 in Fig. 3 for
q2 = −1 GeV2. We choose the middle value of M2

1 as M2
1 = 3 GeV2 and we

find the coupling constant ga0πη as ga0πη = (2.0±0.3) GeV. We also vary q2

from −0.5 GeV2 to −1.5 GeV2, and we observe that our result is practically
constant for this interval of q2 values.

The coupling constant ga0πη given in Eq. (6) is related to the decay width
of the a0 → π0η as

Γ (a0 → π0η) =
g2
a0πη

16π ma0

√

[

1 − (mπ +mη)2

m2
a0

] [

1 − (mπ −mη)2

m2
a0

]

. (18)

If we use the experimental limits given by Particle Data group [9] as 50 MeV<
Γ (a0 → π0η) < 100 MeV, we obtain the coupling constant ga0πη as 1.96 <
ga0πη < 2.78 GeV. Our QCD sum rule result is consistent with this result.
Furthermore, if we compare our value of the coupling constant ga0πη with
the value calculated using the light-cone QCD sum rule [10], our value is
less than the limit values of the light-cone QCD sum rule result which is
2.6 ≤ ga0πη ≤ 3.4 GeV.

The KLOE Collaboration estimated the coupling constant ga0K+K− as
ga0K+K− = (2.3±0.7) GeV [11]. We see that the SU(3) relation ga0πη = 0.85
ga0K+K− is satisfied within reasonable limits.
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