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We consider a version of QCD dipole cascading corresponding to a fi-
nite number n of discrete ∆Y steps of branching in rapidity. Using the
discretization scheme preserving the holomorphic factorizability and scale-
invariance in position space of the dipole splitting function, we derive an ex-
act recurrence formula from step to step which plays the rôle of a “discrete-
time” Balitsky–Kovchegov equation. The BK solutions are recovered in the
limit n = ∞ and ∆Y = 0.

PACS numbers: 12.38.–t, 12.38.Cy

1. Introduction

As was first suggested in [1], the distribution of partons inside a hadron,
in the limit of high-energy, and fixed (large) Q2 and large Nc, can be ap-
proximated by a cascade of colourless dipoles. Starting from this observa-
tion, and using the evolution equation describing the development of the
cascade in rapidity Y, it was possible to obtain — in the leading logarith-
mic approximation — an evolution equation for the scattering amplitude
of the dipole cascade on an “uncorrelated” target satisfying the unitarity
constraint [2]. The dipole cascading formalism gives a derivation of QCD
evolution equations obtained from the perturbative expansion in the lead-
ing logs approximation in energy. Both the linear regime corresponding to
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the Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution equation [3], and its
non-linear extension, the Balitsky–Kovchegov (BK) equation [2, 4], find a
convenient description in terms of dipoles. A general characteristics of the
solutions of the BK equation was recently discussed in [5]. It was shown that
an approximate geometrical scaling is the generic asymptotic energy prop-
erty of the system, related to mathematical solutions in terms of travelling
waves, and a general method of finding these solutions was developed.

The dipole cascading formulation of Refs. [1,2] corresponds to a classical
branching process where dipoles split with a probability distribution given
by the BFKL kernel [3] expressed in transverse position space, the rapidity
variable having the rôle of time, see Fig. 1 for illustration. As such it belongs
to the large family of random branching processes which is largely studied
in statistical mechanics and in mathematics (see [5–9]). While the original
QCD dipole formulation of [1, 2] is based on random branching, we remark
that well-known classes of branching processes are considered with discrete
steps in time [6], with interesting physical and mathematical properties, and
applications. We want to address here the question of a similar discretization
of dipole cascading.
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Fig. 1. Discretized branching process of QCD dipoles. The figure shows the rapidity

steps for Y evolution of one dipole x0, x1for successive splittings at transverse space

points x2 and then x3, x4, etc.

The attractive feature of the QCD dipole approach is that — being
formulated in the framework of the QCD perturbation theory — it is a well-
defined stochastic fragmentation system. In particular the cascade vertices
are uniquely given by the theory. Any departure from this scheme runs into
a problem of serious ambiguities even if one imposes the condition that in
some limit one should recover the known perturbative results.
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In the present paper we study one class of discrete-in-rapidity dipole
cascades whose vertices are scale-invariant in transverse space. In particular
we retain the important feature of holomorphic separability which is present
in the leading-logarithmic approximation. We show that such a theory nat-
urally leads to discretization of the dipole cascade and that in the limit
of a large number of rapidity steps one recovers the results of the leading-
logarithmic approximation. One may hope that this exercise will help to
understand the structure of gluon cascading beyond the lowest order of the
perturbation theory.

The plan of our study is the following. In Section 2, we derive a dis-
cretized version of the dipole cascading preserving scale-invariance and the
holomorphic separability of the original BFKL kernel. In Section 3 we de-
rive the corresponding non-linear master equation, which plays the rôle of
a “discrete time” Balitsky–Kovchegov (discrete-time BK) equation. In Sec-
tion 4, we use the method of travelling wave solutions in order to explore the
solutions of the discrete-time BK equation when the number of steps goes
to infinity. In particular we prove the convergence to the BK solutions when
the rapidity step size goes in the same proportion to zero. In Section 5, we
draw some possible interesting outcome of our discretisation procedure.

2. The master equation

Starting from the Balitsky–Kovchegov equation we show how the modi-
fication of the vertex leads to the discretization of the dipole cascade.

The BK equation reads:

dS

dY
(x01, Y ) =

∫

d2x2 K(x0, x1;x2) {S(x02, Y )S(x12, Y ) − S(x01, Y )} ,

(1)
where S(x01, Y ) is the S-matrix element for the dipole-target amplitude,
x01 ≡ x0−x1 being the dipole transverse size. The BFKL kernel

K(x0, x1;x2) d2x2 =
αsNc

2π2

x2
01

x2
02x

2
12

d2x2 (2)

has the classical interpretation [1] of a splitting probability in transverse
space by unit of rapidity. Note that this kernel verifies simultaneously
scale invariance, the x02 ↔ x12 symmetry and holomorphic separability.
To see this last property, it is worth using the 2-dimensional components of
scaled variables ξ(i) ≡ xi/x01 and transforming them into complex variables,
namely

ξ(1) + iξ(2) = z, ξ(1) − iξ(2) = z̄ . (3)
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Holomorphic separability means the factorization property of the kernel (2)
into analytic (function of z) and antianalytic (function of z̄) parts. It plays
an important rôle in the conformal symmetry properties of the BFKL am-
plitudes [10].

Let us consider a modified kernel preserving this property:

K̃(x0, x1;x2) d2x2 =
αsNc

2π2

(

x4
01

x2
02x

2
12

)1−a
d2x2

x2
01

≡
αsNc

2π2
(zz̄(1 − z)(1 − z̄))a−1 dzdz̄

2i
, (4)

and call

N =

∫

d2x2 K̃(x0, x1;x2) , (5)

where N is finite for 0 < a < 1/2.
We can now safely work separately on the two terms of (1) and write

1

N

dS

dY
=

{
∫

d2x2 Kd(x0, x1;x2) S(x02, Y )S(x12, Y )

}

− S(x01, Y ) , (6)

where Kd ≡ K̃/N is now a properly normalized probability distribution.
Using the known [11] mathematical identity1

1

2πi

∫

dzdz̄z(A−1)z̄(Ã−1) (1 − z)(B−1) (1 − z̄)(B̃−1)

=
Γ (A)Γ (B)Γ (1 − Ã − B̃)

Γ (1 − Ã)Γ (1 − B̃)Γ (A + B)
, (7)

we obtain the expression for the normalization

N =
αsNc

2π
×

Γ 2 (a) Γ (1 − 2a)

Γ 2(1 − a) Γ (2a)
, (8)

and the following expression for the probability distribution

Kd(x0, x1;x2) d2x2 =
1

π

(

x4
01

x2
02x

2
12

)1−a
d2x2

x2
01

×

{

Γ 2 (a) Γ (1 − 2a)

Γ 2(1 − a) Γ (2a)

}−1

.

(9)
Choosing a finite interval

N∆Y ≡ ∆n = 1 (10)

1 There is one condition for (7) to be valid, namely A − Ã, B − B̃ ∈ Z, which also

ensures that formula (7) is symmetric in the interchange A → Ã, B → B̃.
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and considering n ∈ N, n ≫ 1 allows one to transform Eq. (6) into a finite
difference equation

Sn+1(x01) − Sn(x01) =

∫

d2x2 Kd(x0, x1;x2) {Sn(x02)Sn(x12) − Sn(x01)} ,

(11)
leading to (the distribution Kd, see (9), being normalized to 1)

Sn+1(x01) =

∫

d2x2 Kd(x0, x1;x2) Sn(x02) Sn(x12) . (12)

As clear enough from its formal structure, Eq. (12) is a “discrete time”
version of the Balitsky–Kovchegov equation (1). It remains to be proven
that it leads back to the BK equation when going to its continuous limit,
which will be defined in the next section.

Indeed, Eq. (12) has the typical structure for S-matrix elements defined
for a branching process (or tree structure) with discrete steps of time evo-
lution, see figure 1. At each step n → n + 1 a dipole of size x01 splits into
two dipoles of sizes x02, x12 at the point x2 with a 2-dimensional probability
distribution Kd(x0, x1;x2). In this description, the formula (10) determines
the length of the “rapidity veto” ∆Y = 1/N .

3. The recurrence structure in momentum space

An even simpler form of equation (12) can be obtained in momentum
space, when one considers solutions independent of the impact-parameter. It
reveals even better the recurrence structure of the discrete-time BK equation.
Using a 2-dimensional Fourier transform, one defines

S̃(a)
n (k) ≡

∫

d2x01

x2
01

(x2
01)

a eik·x01 Sn(x01)
∫

d2x01

x2
01

(x2
01)

a eik·x01
=

∫

dx J0(kx) Sn(x) x2a−1

∫

dx J0(kx) x2a−1
(13)

with
∫

dx J0(kx) x2a−1 = 22a−1 k−2a Γ (a)

Γ (1 − a)
. (14)

Note that S̃
(a)
n (k), can be obtained from a convolution of the S-matrix ele-

ment in momentum space by the Fourier transform of the weight (x2
01)

a in
the integrand of (13).

It is straightforward to infer from (12) and (13) the following relation

S̃
(2a)
n+1(k) =

(

Γ (1 − a)

Γ (a)

)2

×

∫

d2x02

x2
12

d2x12

x2
12

(x2
02)

a (x2
12)

a eik·(x02+x21) Sn(x02) Sn(x12) , (15)
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where the substitution of the integration variable x2 → x12, with Jacobian
unity, has been performed.

Then, the discrete-time BK equation (12) can be rewritten in a particu-
larly simple way as

S̃
(2a)
n+1(k) =

{

S̃(a)
n (k)

}2
, (16)

which clearly expresses the nature of the non-linear recurrence relation from
step to step. This recurrence structure is also clear when expressed in terms
of transition matrix elements with the same conventional notation as (13)

T̃
(2a)
n+1 (k) = 2 T̃ (a)

n (k) −
{

T̃ (a)
n (k)

}2
. (17)

4. High energy limits

4.1. Linear regime

Let us examine the properties of the master equation (12) (also (16)).
Considering first the linearized form of Eq. (12) near S ∼ 1 we have

Tn+1(x
2
01) =

∫

d2x2 Kd(x0, x1;x2)
{

Tn(x2
02) + Tn(x2

12)
}

, (18)

where T ≡ 1−S is the transition matrix element. Using the complex scaled
variables (3) one writes

Tn+1(t) = 2

∫

dzdz̄ Kd(z, z̄) Tn(tzz̄) , (19)

where

Kd(z, z̄) =

(

Γ 2(1 − a) Γ (2a)

πΓ 2 (a) Γ (1 − 2a)

)

{zz̄(1−z)(1−z̄)}a−1 (20)

and the factor 2 comes from the z ⇄ 1 − z symmetry of Kd.
We now introduce the Mellin transform representation

Tn(t) =

∫

C

dγ

2iπ
tγ T̃n(γ) , (21)

and easily derive the recursive relation

T̃n+1(γ) = T̃n(γ) e χ(a)(γ), (22)
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where, using (7),

χ(a)(γ) ≡ log

(

2
Γ (a + γ) Γ (1 − a) Γ (1 − 2a − γ) Γ (2a)

Γ (a) Γ (1 − a − γ) Γ (1 − 2a) Γ (2a + γ)

)

. (23)

Hence, the solution of the linearized equation is simply

T̃n(γ) = T̃0(γ) exp
{

nχ(a)(γ)
}

= T̃0(γ) exp
{

NY χ(a)(γ)
}

, (24)

where Y is the total rapidity interval and N is given in (8).
Let us now consider the limit a → 0. A straightforward algebra gives

N χ(a) =

{

1

a

αsNc

π
+ O(a)

}

×
{

a [2Ψ(1) − Ψ(γ) − Ψ(1 − γ)] + O(a2)
}

=

[

αsNc

π
(2Ψ(1) − Ψ(γ) − Ψ(1 − γ))

]

+ O(a) , (25)

where one recognizes in the brackets the BFKL kernel function χ(γ). Hence,
from (24)

T̃n(γ) = T̃0(γ) exp {na [(2Ψ(1) − Ψ(γ) − Ψ(1 − γ)]}

= T̃0(γ) exp

{

αsNc

π
χ(γ)Y

}

, (26)

in which we recover the solution of the BFKL equation.

4.2. Non-linear regime

Let us now consider, in the spirit of [5] for the Balitskii–Kovchegov equa-
tion, the asymptotic solutions of the master equations (12) or (16) in the
continuous limit, i.e. for a large number n of steps of the cascade. Asymp-
totic solutions we are discussing now may be valid only at really extreme
energies. Nevertheless we feel that they may be of some interest. Indeed, as
we shall see now by inspecting the general properties of the full non-linear
equations for arbitrary a, the master equations (12) (or equivalently (16))
give similar solutions at large n as the Balitsky–Kovchegov equation in the
limit a → 0 or, in more mathematical terms, stay in the same universality
class. We will also extend our study to another type of continuous limit,
namely when n is large but a is kept fixed.

Let us start from the expressions (21) and (24) giving the solution of the
linearized problem. One has

Tn(t) =

∫

C

dγ

2iπ
tγ T̃0(γ) exp

{

NY χ(a)(γ)
}

, (27)
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where χ(a) has been obtained in (23). We will now follow mathematical
arguments used for the solution of discrete non-linear equations appearing
in a statistical mechanic context [6]. They are similar as those used in [5] for
the asymptotic solutions of the Balitsky–Kovechegov equations and are part
of more general mathematical results on non-linear equations, such as for
the Fisher and Kolmogorov, Petrovsky, Piscounov equations [7,8] of “pulled
front” type [9].

Similarly to the arguments developed in [5], the solution of the non-
linear equations (12) or (16) are travelling waves whose expressions can be
obtained starting from the linear equation (27).

Let us reinterpret (27) as a linear superposition of waves:

Tn(t) =

∫

C

dγ

2iπ
T̃0(γ) exp

{

−γ(LWF + vn) + n χ(a)(γ)
}

, (28)

where L ≡ log 1/t and LWF ≡ L − vn is looked for as the scaling variable
determining the region moving with the travelling wave front. χ(a)(γ) defines
the dispersion relation of the linearized equation. In particular, each partial
wave of wave number γ has a phase velocity

vϕ(γ) =
χ(a)(γ)

γ
(29)

whose expression is found by imposing that the exponential factor in Eq. (28)
is independent of n for v = vϕ(γ). By contrast, the group velocity is defined
by the saddle point γ∗ of the exponential phase factor

v∗ =
dχ(a)

dγ

∣

∣

∣

∣

∣

γ∗

≡ vg . (30)

The key point of the mathematical derivation of the asymptotic solution of
the non-linear equation is that, for appropriate initial conditions [5, 6], the
critical regime at γ = γ∗ is selected by the non-linear damping.

The velocity v of the front is defined by

v∗ =
χ(a)(γ∗)

γ∗
= min

γ

χ(a)(γ)

γ
, (31)

where the value of γ∗ is determined from the equation

dχ(a)

dγ
=

χ(a)(γ)

γ

∣

∣

∣

∣

∣

γ∗

. (32)
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Indeed, in this case, the group velocity is identical to the minimum of the
phase velocity2. Now, since

n = Y/∆Y = Y N (33)

we can write v∗n = vY Y , with

vY = v∗ N . (34)

Introducing these results in Eq. (28) gives the dominant term in the asymp-
totic expression for the form of the front:

T (Y, t) ∼ T̃0(γ
∗) exp

{

−γ∗ log 1/t + Nχ(a)(γ∗)Y
}

. (35)

Note that two more “universal prefactors” (i.e. independent of the initial
conditions and of the precise form of the non-linear damping terms) can be
obtained [5, 9] in the asymptotic expansion of the solution.

From (35), it is clear that the same result as for the Balitsky–Kovchegov
equation will be obtained in the limit a → 0, due to the equivalence of the
linear kernels and the universality properties due to the the non-linearities.
This achieves the proof.

Let us consider our high energy limits for n → ∞ with a 6= 0, 1/2 kept
fixed. Some features of the asymptotic solutions are displayed in Fig. 2.
As shown in the left part of the figure, the rapidity step ∆Y is displayed
as a function of a for a given value of αs = 0.1. There is a maximum
of the reachable rapidity step for a ∼ 0.3 whose value depends on αs. At
this stage this remains an intriguing feature of our scheme of discretization.
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Fig. 2. Features of the “discrete time” solutions. Left: Effective rapidity step ∆Y

in units of αsNc

2π
versus a. Right: Effective slope vY = v∗N (see formula (34)) at

αs = .1 versus a.

2 The relation vg = vϕ, in analogy with wave physics, has been written in Ref. [12].
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The right-hand part of the figure gives the effective slope (or “intercept”) in
rapidity, which, starting from the BK value, stays constant till approximately
a = 0.25 and then grows. Note that the energy momentum constraint on
the number of steps at given rapidity range cannot be taken into account in
this continuous limit, as will be discussed in the next section.

5. Conclusion and outlook

To summarize the main results of our paper, we have considered a “dis-
crete time” version of QCD dipole branching process characterizing the ap-
proximation of the perturbative expansion in the leading logs of the energy.
This is obtained by a modification of the splitting probability for finite steps
in rapidity preserving the holomorphic factorizability of the initial BFKL
kernel.

Our main result is the derivation of an exact counterpart of the BK
saturation equation in terms of recurrence formulae of quite simple form,
expressed both in position space (12) or in a (modified) Fourier-transformed
space (16).

We checked that we recover the BFKL and BK equations in the ap-
propriate ∆Y → 0 continuous limit while the high energy asymptotics for
∆Y 6= 0 have been investigated.

The principal outlook of our study concerns the problem of subasymp-
totics. Indeed, the master equations (12) and (16) allow for an iterative
solution of the non-linear evolution problem. Inserting any initial condition
T0 in (12) or in (modified) Fourier transform for (16), it is possible to gen-
erate the full solution, at each step of evolution. In particular, as explained
in Section 2, for a 6= 0, 1/2 the steps of the cascade are separated by a finite
distance ∆Y in rapidity. Therefore, for a given total energy, the number
of steps in the cascade is limited by nmax ≈ Y/∆Y , where Y is the total
available rapidity. Hence these equations give a convenient way to examine
the effect of a limited number of steps, and thus of dipoles, in the cascading
process. Indeed, the gluon cascade description of [1, 2] can only be justified
in the leading logarithmic approximation. The investigations of higher order
corrections show [13] that they tend to limit the number of emitted gluons3.
One possibility to take this effect into account is to forbid the emission of
gluons which are too close in rapidity [13,14]. Since the emitted gluons are at
the source of dipole splitting [1], it is expected that the formation of dipoles
is similarly limited in rapidity. Such a “rapidity veto” can — in turn — be
approximated by a discretized cascade where gluon (or dipole) emissions are
separated by a finite distance in rapidity. We thus feel that our equations

3 This is partly due to the simple effect of energy conservation which is ignored in the
LL approximation.
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(12),(16)) could give an efficient way to investigate this problem. It also can
be useful to develop the parallel with statistical mechanics properties which
appeared to be recently fruitful [5].

When completing the writing of the present work, the paper [15] has
appeared, claiming that the solution of an evolution with discrete rapidity
intervals may lead to a chaotic behaviour. It stems from a toy model of the
BK equation in the form of a logistic map. We note that our equation (17)
has the structure of a logistic map if one can neglect the shift (a) → (2a) in
the weight factor. However, the “Malthusian parameter” would be then 2 (see
Eq. (17)) instead of 3.77 (see the discussion in Ref. [15]) and thus is smaller
than the value leading to chaos. Since our equation (17) is a consistent
discretization of the BK equation, the investigation of its convergence (or
not) to the mean field problem deserves to be studied.
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