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Elastic and inelastic cross sections for pion scattering on 12C at pion
kinetic energy ranging from 50 to 260 MeV are computed using three in-
dependent methods of π±-nucleus optical potential, the 3α-particle model
of the nucleus, the equivalent local Kisslinger potential, and the Laplacian
one. Reasonable fits to the measured values are obtained for 12C without
adjusting free parameters. The ability of these methods to account for
elastic, inelastic, total, and reaction cross section data are somewhat simi-
lar. The Kisslinger-based local potential is the more suitable for describing
the elastic and inelastic cross sections of π±-nucleus scattering. It seems
that the 3α-particle model of 12C is not useful in the description of pion
scattering on 12C at least in the ∆-resonance region.

PACS numbers: 25.80.Dj, 25.80.Ek, 24.10.Eq, 21.60.Ev

1. Introduction

Pion-nucleus scattering at energies from about 100 to 300 MeV can be
described in terms of just a simple optical potential which is of the form
of the nuclear density multiplied by the elementary pion–nucleon off-shell
T -matrix; the first order pion–nucleus distorted wave impulse approxima-
tion code DWPI [1]. The success of this first order optical potential can be
understood as a consequence of the dominance of the pion–nucleon (3,3) res-
onance in this energy region, since due to the resonance the optical potential
is highly absorptive so that the mean free path of the pion is very small and
consequently most of the scattering takes place in the nuclear surface. At
the same time, second order corrections to the optical potential necessarily
involve the square of the density, so that they are strong only in the interior
of the nucleus where the pion never gets the opportunity to enter. If one
moves in energy away below the (3,3) resonance, the pion has more chance
to sample the interior region of the nucleus and consequently higher order
effects will start to appear [2].

(2071)
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The multiple scattering theory leading to the optical potential was first
developed by Watson and his collaborators [3], and subsequently in a more
complete form by Kerman, McManus and Thaler [4]. Calculations have
shown that if various effects are taken into account, then differences between
theoretical predictions and experimental data can be much reduced, see e.g.

Ref. [5].

On the other hand, 12C is a typical nucleus with the α-particle structure.
It is considered to consist of three α-particles and these α-particles basically
retain the feature of a free α-particle. The α-particle is bounded much more
weakly than a nucleon in the 12C nucleus. Local π-nucleus optical potential
was constructed based on the α-particle model of the 12C nucleus [6] where
the π–α amplitude was directly obtained from fitting the experimental data.
It was argued in Ref. [6] that the various effects indicated above would be
automatically included to a certain extent in the π–α amplitudes. This
simple model gave fairly good results over a wide energy region for π-12C
elastic scattering, particularly in the low-energy region [6].

Moreover, two forms of potential are commonly used to describe the
pion–nucleus interaction. These two forms are the Kisslinger [7] potential
and a Laplacian [8] one. Both contain explicitly terms which originate in
the p-wave pion–nucleon interaction which are important near the (3,3) res-
onance energy. The Kisslinger nonlocal potential [7] is:

UKis(r) =
(~c)2

2ω
{q(r) + ∇ · α(r)∇} , (1)

where ω is the total energy of the pion in the center of mass (c.m.) system,
the quantities q(r) and α(r) mainly result from the s- and p-waves of the
pion–nucleon interaction and they are complex and energy dependent and
given in detail in Ref. [9].

Recently, Johnson and Satchler [9] used the Krell–Ericson transforma-
tion [10], which leads from the Klein–Gordon equation for pion scattering
to a local potential for the transformed wave function, equivalent to the
Kisslinger nonlocal potential. This local potential was used to successfully
analyze the elastic scattering of π± from 12C, 16O, 28Si, and 40,44,48Ca in the
pion kinetic energy range of 30 to 292 MeV [11]. Elastic and inelastic scat-
tering of positive and negative pions from calcium isotopes and 54Fe were
studied [12] using the Kisslinger local potential, together with a zero-range
DWBA code. The DWUCK4 code [13] was used to calculate the differential
cross section angular distributions for elastically and inelastically scattered
pions from these targets. It was concluded that the DWUCK4 code and
the local-equivalent Kisslinger potential of Johnson and Satchler are reliable
models for pion–nucleus scattering.
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The aim of the present work is to calculate the angular distributions
of the differential cross sections of the π± elastically and inelastically scat-
tered to the lowest 2+ and 3− states in 12C in the energy range of 50 to
260 MeV, using three independent methods of π±-nucleus optical potential,
the 3α-particle model of the nucleus [6], the local-equivalent Kisslinger po-
tential [9], and the Laplacian local potential [8]. The results of the three
calculations are compared to the experimental data [14, 15]. The total and
reaction cross section for these reactions are calculated and compared to the
corresponding ones estimated by others. The methods employed here are
described in Section 2, the results and discussion are given in Section 3 and
the conclusions are presented in Section 4.

2. Method

Three different forms of the optical potential have been used to study
pion–nucleus interactions in the low and resonance regions. In the first form,
Li Qing-run [6] has demonstrated that the α-particle model interaction gives
a reasonable description of π-12C elastic scattering in the resonance region.
The nuclear π-nucleus optical potential in the α-particle model is local and
given by [6]:

U00(r) = B0 Q0(r) + B2 Q2(r) + B4 Q4(r) + B6 Q6(r) + B8 Q8(r) , (2)

where the expressions for the B’s and Q’s are given in detail in Ref. [6].
A second form of the pion–nucleus potential is obtained by the Kisslinger

local potential [9], in this treatment the transformed potential is local and
given by [9]:

ULoc(r) =
(~c)2

2ω
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with q(r) and α(r) the same as for the Kisslinger nonlocal potential, and
k the wave number of the pion–nucleon in the center of momentum frame.
The first term is nuclear local potential and the second term is the Coulomb
correction. Here, VC is the Coulomb potential due to the uniform charge
distribution of the target nucleus of radius RC = r

C
A1/3, A is the target

mass number and rC=1.2 fm [12].



2074 A.A. Ebrahim, S.A.E. Khallaf

A third method is the Laplacian model, where the potential is local and
is written as [8]:

ULap(r) =
(~c)2

2ω

{

q(r) − k2 α(r) − 1
2
∇2 α(r)

}

, (4)

q(r) and α(r) are similar to those in Eq. (1).
The first-order parameters bi and ci (i = 0,1) for various pion kinetic

energies Tπ considered here are calculated through the phase shifts, as they
are computed in the code of Ref. [16] . These parameters bi and ci are then
used to generate the complex local potential ULoc using the expressions from
Ref. [9]. The same parameters bi and ci are also used for calculations in the
Laplacian model to compare to the Kisslinger local potential calculations.
The second-order parameters B0 and C0 which are very important at lower
pion energies Tπ < 100 MeV are taken into account here and are taken from
Ref. [11].

For inelastic π-nucleus scattering, the radial parts of the hadronic tran-
sition potentials used here are as follows [17]:

V (r) = − γ
l

dU00(r) or dULoc(r) or dULap(r)

dr
, (5)

where U00(r) is the pion–nucleus optical potential in the α-particle model,
ULoc(r) is the local transformed potential, and ULap(r) is the Laplacian
potential. These potentials are those used to fit the corresponding elastic
scattering data. In the present work, all other factors are kept the same
as in the case of elastic π-12C scattering. When using the Kisslinger lo-
cal or Laplacian potentials, the transformed wave function used in π−12C
elastic scattering analysis is also employed in the case of inelastic scattering
without any changes. For a given transition, we use γ

l
to denote the corre-

sponding “deformation lengths” for the π± interactions, where l(= 2 or 3) is
the multipolarity.

To differentiate between the above mentioned potentials, the quality
of fits to the calculated differential cross sections using these potentials is
judged according to the following well known relation:

χ2 =

N
∑

i=1

([

dσexp(θi)

dΩ
−

dσth(θi)

dΩ

]/

∆

(

dσexp(θi)

dΩ

))2/

N . (6)

Here N is the number of data points, dσexp(θi)/dΩ and dσth(θi)/dΩ are,
respectively, the experimental and theoretical differential cross sections and
∆(dσexp(θi)/dΩ) is the error in each datum. The χ2 values obtained in the
present work are included in Tables II and IV.
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3. Results and discussion

To calculate the cross sections for π± elastic scattering we have used the
α-particle model, the Kisslinger local potential, and the Laplacian potential.
The calculated results for 12C involving no free parameters are compared
with the experimental cross sections [14,15] in Figs. 1 and 3. The resulting
kinematic and parameter values for the cases studied here are calculated
according to equations given in Ref. [17] and are listed in Table I. For
elastic and inelastic scattering from 12C, the values of the first- and second-
order parameters are of the same values for π+ and π− scattering at a certain
beam energy. In the present calculations we used the three parameter Fermi
shape for the density distributions of nucleons within 12C along with the
Ericson–Ericson Lorentz–Lorentz (EELL) parameter ζ=1.0, they were more
suitable for π±-nucleus scattering using the Kisslinger local potential [11],
in the same energy range considered here.

TABLE I

Kinematic factors for use in a nonrelativistic Schrödinger equation used in the
present work with pion kinetic energy Tπ. EL, Mπ, k, and p1 are the effective
bombarding energy, effective pion mass, pion wave number, and kinematic trans-
formation factor, respectively.

Tπ(MeV) EL (MeV) Mπ(u) k (fm−1) p1

50 43.63 0.20189 0.639 1.1825
150 113.30 0.30501 1.254 1.2726
180 132.20 0.33558 1.417 1.2992
220 156.32 0.37543 1.625 1.3345
260 180.66 0.41629 1.833 1.3687

We note that both α-particle model and the Kisslinger local potential
model give similar predictions except at large angles. In particular, both
models predict two diffraction minima, but the predicted minima are much
deeper than those observed. For Laplacian model, there exists a sizable dis-
crepancy in the magnitude and shape of the cross section and the calculated
values do not have the energy dependence of the data.

In Fig. 1 the elastic scattering differential cross sections at forward an-
gles and the positions of the minima and the maximum agree well with the
calculated values of the Kisslinger local potential but at 260 MeV calcula-
tions with the α-particle model and Laplacian potential do not reproduce
the depth and height of the structure around the minimum. Calculations
using the first-order Kisslinger local potential are in better agreement with
the experimental cross sections at the three energies 150, 180, and 260 MeV
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(χ2=2.80-4.63), and α-particle model calculations are in reasonable agree-
ment with data (χ2=9.13-11.65), while the Laplacian model calculations fail
to agree the data at these three energies especially at large angles (χ2=10.41–
14.12). The important difference between the Kisslinger local potential and
Laplacian model is the charge effect, in the ULoc potential the (1-α) denom-
inator applies also to the full local term, including the Coulomb term, while
ULap does not have any Coulomb effects other than those explicit in the
transformed wave equation.

Fig. 1. Elastic scattering differential cross sections for 150, 180, and 260 MeV π−

on 12C. The 3α-cluster model calculations use the solid curves, the Kisslinger local

potential calculations use the dotted curves, and the Laplacian potential calcula-

tions use the dot-dashed curves. Solid points are the experimental data taken from

Ref. [14].

π−-12C complex Kisslinger local potential, Laplacian model, and 3α-clus-
ter model are shown in Fig. 2 at 180 MeV. Both Kisslinger local potential
and 3α-cluster model are attractive for real and imaginary potentials, where
the Kisslinger local potentials are deeper and wider while those of α-particle
model are shallower and sharper. For Laplacian model, the imaginary part
is attractive while the real part is repulsive at smaller radii and attractive
at large radii.
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Fig. 2. Local optical potentials computed for 180 MeV π− scattered from 12C. The

full curves are for the 3α-cluster potentials, the dotted curves for the Kisslinger

local potential, and the dot-dashed curves for the Laplacian potentials. The left

panel is for the real potential while the right is for the imaginary potential.

At lower pion beam energies Tπ < 100 MeV, the elastic scattering differ-
ential cross sections of π± from 12C at the pion kinetic energy 50 MeV are
calculated using the three potential models. Most of these calculations show
non-negligible difference between the prediction of the differential cross sec-
tions by the three potentials used here. We get a good agreement between
the data and the Kisslinger local potential calculations when the second-
order parameters are included beside the first-order parameters, as shown as
dotted curves in Fig. 3 with χ2=4.12 for π+ and 3.44 for π−. Calculations of
the elastic scattering differential cross section based on Laplacian model, in-
cluded the second order interaction parameters, shown as dot-dashed curves
in Fig. 3 are in fairly agreement with data for both π+ (χ2=5.16) and π−

(χ2=5.98). α-particle optical potential calculations do rather poorly than
those of the other two considered potentials for both π+ (χ2=8.52) and π−

(χ2=6.75).

Table II shows the χ2 values calculated according to Eq. (6) for the three
potential models considered here. At each pion energy, the χ2 is minimum
for Kisslinger-based local potential.
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Fig. 3. As in Fig. 1 but for π±−12C elastic scattering differential cross sections at

50 MeV pion kinetic energy. The experimental data are taken from Ref. [15].

TABLE II

χ2-values calculated in the present work according to Eq. (6) for π±-12C elastic
scattering.

Tπ 3α-cluster cals. ULoc cals. ULap cals.
(MeV) χ2 χ2 χ2

50 π+ 8.52 4.12 5.16
50 π− 6.75 3.44 5.98
150 9.13 2.80 10.41
180 11.22 3.47 13.62
260 11.65 4.63 14.12

As k −→ 0, the s-wave scattering length a0=δ0/k and p-wave scattering
volume a1=δ1/k

3, where δ0 and δ1 are respectively the s- and p-wave phase
shifts. Here a0 and a1 are calculated at 1 KeV for pions of both signs with the
Coulomb potential omitted for the Kisslinger local and Laplacian potentials
[18]. The magnitude of a is a measure of the strength of the interaction and
its sign indicates whether the interaction is effectively repulsive or attractive.
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The scattering lengths and volumes calculated from the two potentials are
listed in Table III along with the values obtained from Ref. [18], and the
experimental s-wave scattering lengths as tabulated by Hüfner [19]. Table III
shows that magnitudes of a0 and a1 in the case of Kisslinger local potential
are greater than those of Laplacian potential. The quantities of a0 and a1

calculated here are in a good agreement both in sign and magnitude with
those of Refs. [18] and [19].

TABLE III

Zero-energy pion-12C s-wave scattering lengths a0 (fm) and p-wave scattering vol-
umes a1 (fm3) calculated using the Kisslinger local and Laplacian potentials com-
pared to other works.

ULoc cals. ULap cals. Exp. [19] others [18]

Re a0 −0.4398 −0.4021 −0.448 −0.438−→−0.449
Im a0 0.1235 0.1182 0.132 0.122−→ 0.129
Re a1 1.8366 1.7815 1.88−→ 1.93
Im a1 0.4482 0.3517 0.347−→ 0.553

Since inelastic scattering in the collective model is driven by the first
derivative of the optical potential, agreement with such data can be a possi-
ble means to remove the ambiguity from elastic scattering fits. Here, angular
distributions for the inelastic scattering of pions leading to the lowest 2+ and
3− states in 12C are computed by the DWBA method using the zero-range
code DWUCK4 due to Kunz [13]. The α-particle model optical potential
may be tested, to predict observables of π± inelastically scattered from nu-
clei. A collective model distorted-wave Born approximation (DWBA) pre-
diction using the three potential models considered in the present work shows
that the Kisslinger local optical potential adequately fits the shape and mag-
nitude of 50–260 MeV pion kinetic energies leading to the lowest 2+ and 3−

states in 12C as shown in Figs. 4–6. In the analysis presented here, the
deformation lengths are varied until agreement is obtained with π± data.

Fig. 4 displays the predictions of the inelastic scattering differential cross
sections of π± from 12C nucleus excited to the lowest 2+ state at 50 MeV.
The inelastic data [15] are well represented by the present Kisslinger cal-
culations with χ2=1.82 for π+ and 2.35 for π− and Laplacian potential
calculations with χ2=4.28 for π+ and 3.15 for π−, when the first and second
order parameters are included in both potentials, while calculations based
on the 3α-particle model fail to agree with data at forward angles for π+

with χ2=9.13 and also give a poor fit with π− data with χ2=6.13.
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Fig. 4. As in Fig. 3 but for inelastic scattering differential cross sections of 50 MeV

π± exciting the 4.44 MeV 2+ state of 12C. The experimental data are taken from

Ref. [15].

Figs. 5 and 6 display the predictions of the inelastic scattering differential
cross sections of π− from 12C nucleus excited to the lowest 2+ and 3− states
at 150, 180, and 260 MeV. The three forms for the optical potential models
give reasonable agreement with inelastic scattering data of Ref. [14], but
the Kisslinger local potential predictions seem to be better at all energies
considered in the present work with χ2 ranging from 5.05–6.21 for 2+ and
1.81–4.19 for 3− states. These values of χ2 are larger for Laplacian model
(χ2=6.35–8.16) for 2+ and (χ2=3.63–6.23) for 3− states, while for α-particle
model (χ2=4.13–7.04) for 2+ and (χ2=2.18–4.23) for 3− states except the
case of 150 MeV π− inelastic scattering.

From the above, we note that the fits reproduced on the basis of the
α-cluster model of 12C nucleus are more reasonable for low energy pions
than for pions of higher energies. This is consistent with the conclusions of
Li Qing-run [6]. This may indicate that the clustering phenomena in 12C
nucleus is more dominant for low pion energy scattering while pions of higher
energies prefer to interact with 12C nucleus as a whole. The predictions of
the Kisslinger local potential well fit the data for differential cross sections
at all energies under consideration.
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Fig. 5. As in Fig. 4, but for inelastic scattering differential cross sections of 150,

180, 260 MeV π− exciting the 4.44 MeV 2+ state of 12C. The experimental data

are taken from Ref. [14].

The values of the deformation lengths for all collective states analyzed
here are summarized in Table IV and compared to those extracted from K+

scattering [20] and to the corresponding ones previously extracted by others
[21–24]. It is clear from Table IV that the deformation lengths of the real
potential are greater than the corresponding ones for the imaginary potential
in all cases under consideration. Real deformation lengths extracted here at
150 MeV for 2+ and 180 MeV for 3− are minimum. All values of deformation
lengths extracted from the present work lie within or very close to the range
of the corresponding values previously extracted from K+ scattering and
other particles on 12C [20–24]. It can be seen from Table IV that the values of
imaginary deformation lengths determined here using the 3α-particle model
and Kisslinger local potential for 2+ and 3− excited states in 12C increase
with increasing pion kinetic energy, except for the case of 180 MeV π−

inelastic scattering off 3− state in 12C. This 180 MeV energy lies in the (3,3)
resonance region of pions. Deformation length values extracted from the
Kisslinger local and Laplacian potentials are higher than those extracted
from the 3α-particle model, except for the imaginary deformation lengths
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Fig. 6. As in Fig. 5, but for the 9.64 MeV 3− state of 12C.

for 180 and 260 MeV π− off 2+ state in 12C using the Laplacian potential.
Table IV also includes the calculated χ2 values corresponding to each case
under consideration. Again, it shows that χ2 is minimum for the local
Kisslinger potential at each of these cases except for π− inelastic scattering
of 150 MeV kinetic energy scattered to 2+ and 3− excited states in 12C.

The DWUCK4 code using either of the three forms of potential consid-
ered here calculates the reaction cross sections σR of pion scattering from
12C at pion kinetic energy ranging from 50 to 260 MeV. Following the same
procedure the total cross sections σT are calculated here [20]:

σT =
2π

k2

∑

L

(2L + 1) [1 − Re ηL] , (7)

where k is the incoming pion’s wave number and ηL is the projectile–nucleus
non-Coulomb amplitude. Table V shows the predicted σR and σT for pions
of both signs scattering on 12C at 50–260 MeV pion kinetic energy together
with the corresponding cross sections estimated by others. The values of
σR and σT predicted by these three potentials are found to be the same
to within 1% regardless of the potential used but in most cases the local
Kisslinger potential predictions are the nearest to the corresponding cross
sections estimated by others. This result is not surprising in view of the
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TABLE IV

Deformation lengths from π± inelastic scattering on 12C calculated using the three
potential methods considered in the present work compared to those extracted from
K+ inelastic scattering and other particles on 12C [20–24]. The corresponding χ2

values are also calculated.

Tπ (MeV) 50 50 150 180 260 150 180 260
pion π+ π− π−

state 2+ 3−

3α-cluster model
γreal (fm) 1.511 1.401 1.315 1.418 1.531 1.207 1.138 1.196
γimag (fm) 1.113 1.082 1.121 1.145 1.214 0.936 0.907 1.103
χ2 9.130 6.130 4.130 6.360 7.040 2.180 3.430 4.230

ULoc model
γreal (fm) 1.514 1.412 1.405 1.517 1.604 1.273 1.212 1.277
γimag (fm) 1.213 1.103 1.207 1.243 1.316 1.025 0.982 1.112
χ2 1.820 2.350 5.050 5.880 6.210 3.630 3.080 4.190

ULapmodel
γreal (fm) 1.622 1.488 1.471 1.511 1.589 1.810 1.208 1.262
γimag (fm) 1.219 1.207 1.203 1.119 1.128 1.262 0.976 1.125
χ2 4.280 3.150 6.350 9.490 8.160 1.115 5.440 6.230

K+ scattering [20]
γreal (fm) 1.355–1.725 1.302–1.512
γimag (fm) 0.978–1.114 0.955–1.214

others
γ (fm) 1.12–1.97 1.02–1.41 1.07 ± 0.05 1.50–1.21 0.65–1.23

reaction p–12C 3He–12C α–12C 16O–12C 12C–12C
d–12C α–12C

3He–12C 16O–12C

References [21] [22] [23] [24] [21]

short mean-free path of pions in nuclei in this energy range which should
make most of the scattering takes place in the nuclear surface. This is
in contrast to the situation with low-energy pions. From Table V with
the three forms of potential models, it is noticed for π± scattering of
Tπ ≥ 180 MeV from 12C that both calculated σT and σR decrease as the
beam energy increases, and at all considered energies values of σT for π−

are greater than those for π+ at a certain energy. This indicates that the
mean free path λ for π− is shorter than the corresponding λ for π+. This is
consistent with our previous results [12].
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TABLE V

Total and Reaction cross sections in mb for π± scattering on 12C calculated in the
present work compared to other works.

Tπ pion 3α-cluster cals. ULoc cals. ULap cals. others
σT σR σT σR σT σR σT σR Ref.

(MeV) (mb) (mb) (mb) (mb) (mb) (mb) (mb) (mb)

50 π+ 280.20 165.70 273.30 160.30 196.49 120.92 228.0 160.0 [18]
248±20 152±14 [25]

180 590.00 388.00 570.00 380.00 641.66 422.26 581.0 384.0 [18]
220 532.30 322.54 530.36 313.72 550.51 336.62 521.0 318.0 [18]

50 π− 302.10 190.80 292.70 189.15 258.74 153.19 290.0 200.0 [18]
150 703.30 467.63 683.50 442.80 703.25 467.63 696±7 [14]
180 675.03 439.97 666.20 424.10 675.33 439.25 615.0 400.0 [18]

670±7 [14]
220 612.19 343.14 590.23 340.13 578.72 349.41 552.0 330.0 [18]

586.0 [6]
260 499.10 325.40 529.40 315.60 487.62 277.27 536±6 [14]

4. Conclusion

Elastic, inelastic, total, and reaction cross sections are calculated using
DWBA and the three forms of potential models, Kisslinger local, Laplacian,
and the 3α-particle model formalisms. For the elastic scattering, there is
a noticeable disagreement between the 3α-particle model calculations and
data, especially at large angles in the region of (3,3) resonance; the data
are larger than theory by a large factor. In the case of inelastic scatter-
ing, relatively little difference is seen between data and the α-particle model
calculations. As the energy decreases the agreement with experiment gets
better. We are able to obtain a good fit to the data for the elastic and
inelastic scattering of 50–260 MeV pions from 12C, using the Kisslinger local
potential. The Kisslinger local potential calculations are much more compre-
hensive than α-particle model and Laplacian potential treatments, we may
say that Johnson and Satchler emphasize a careful treatment of the first
and second order optical potential. This potential includes also short-range
correlations ζ. The second order parameters will be necessary to explain
the data at lower pion energies < 100 MeV. The mean free path λ for π− is
shorter than the corresponding λ for π+.
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