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Two generalisations of the blast-wave model to non-central nuclear col-
lisions are constructed, and elliptic flow as well as azimuthal dependence of
correlation radii are calculated. Particular attention is paid to how different
azimuthal dependences of transverse flow direction can cause qualitatively
different anisotropic fireballs to give same v2 as a function of the trans-
verse momentum. The simultaneous dependence of v2 and the oscillation
of correlation radii on both spatial and flow anisotropy is studied in great
detail.

PACS numbers: 25.75.–q, 25.75.Gz, 25.75.Ld

1. Introduction

The so-called “elliptic flow” v2 [1], observed in non-central nuclear col-
lisions at highest available energies [2, 3], has had important implications
on understanding of the collision dynamics in framework of hydrodynamic
and cascade models [4, 5]. After exclusion of non-flow effects the “elliptic
flow” can be caused by azimuthal anisotropy in transverse expansion and/or
anisotropic shape of the fireball. It was noticed that it was not possible
to conclude on the spatial anisotropy of the freeze-out state simply from
data on v2. However, a conjecture [6] was made that measurements of HBT
correlation radii as functions of azimuthal angle [7] will give access to the
spatial shape of the fireball. Indeed, this was observed [8] in hydrodynamic
simulations with two different sets of initial conditions: they lead to different
final states which could have been distinguished by pion interferometry.

This paper focuses in great detail on the question to what extent the
spatial shape and the anisotropy of transverse flow can be identified from
data. In contrast to hydrodynamic simulations, where given model and
initial conditions lead to a single freeze-out state, parameterisations of the
final state will be employed here. These parameterisations, which will be
constructed by generalising the blast-wave model [9], allow to investigate a
broad range of various freeze-out states and find their possible signatures in

(2087)



2088 B. Tomášik

the data. A much more systematic study than in a hydrodynamic simulation
is thus possible; the price to pay is that no connection to fireball evolution
is made.

The generalisation of the blast-wave model to non-central collisions is
not unique. In order to explore possible ambiguities due to various angular
dependences of the expansion velocity, I will study two models.

There is a correlation between the spatial and the flow anisotropy in
determining v2; same v2 can be caused by many different combinations of
the two anisotropies. This correlation depends on the mass of particles but
— unfortunately — it also depends crucially on the used model. Thus the
flow anisotropy cannot be disentangled from the spatial anisotropy unless the
model is known. On the other hand, irrespective the model, the azimuthal
dependence of correlation radii seems to be mostly sensitive to the spatial
anisotropy, at least in the low-pt region.

First, in the next Section I will introduce a generalised blast-wave model.
Then, v2 (Section 3) and correlation radii (Section 4) are calculated and
their dependence on spatial and flow anisotropy is studied. Technical details
concerning the calculations can be found in Appendices.

2. A generalisation of the blast-wave model

This generalisation follows mainly Ref. [10] with some variations in in-
troducing the azimuthal dependence of the transverse velocity. (Experts in
the field can skip most of this section and look just at the introduction of
two different azimuthal dependences of the transverse flow velocity, after
Eq. (10).)

It is assumed that at the end of its evolution the fireball is in a state of
local thermal equilibrium characterised by a temperature T . Decoupling of
particles is (almost) instantaneous and can be modelled by the Cooper–Frye
formalism [11] along a freeze-out hyper-surface.

The time of freeze-out does not depend on position in direction transverse
to the beam, only the longitudinal coordinate matters. Motivated by the
Bjorken boost-invariant longitudinal expansion [12], the freeze-out hyper-
surface is given by a hyperbola

τ0 =
√

t2 − z2 = const , (1)

where t and z are temporal and longitudinal coordinate, respectively. We
will allow for some smearing of the freeze-out time τ0 by amount ∆τ .

We assume that the decoupling matter is distributed uniformly and the
transverse cross-section has ellipsoidal shape. Thus the density will be pro-
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portional to Θ(1 − r̃), where

r̃ =

√

x2

R2
x

+
y2

R2
y

. (2)

In this equation, x and y are Cartesian coordinates in the direction of the im-
pact parameter and perpendicular to the reaction plane, respectively. They
can be rewritten with the help of the usual radial coordinates

x = r cosφs , (3a)

y = r sinφs , (3b)

(the reason for subscript “s” on the angular coordinate will become clear
later). The radii Rx and Ry in Eq. (2) stand for the sizes in the corresponding
directions. They will be expressed via the average radius R and the spatial
anisotropy parameter a

Rx = aR , Ry =
R

a
. (4)

Thus a fireball elongated out of the reaction plane corresponds to a < 1,
while a > 1 stands for an in-plane elongated source.

We do not assume any geometric limitation in the longitudinal direction,
therefore the fireball is actually infinite in this direction. We can do this as
we will be only interested in observables at mid-rapidity in collisions at very
high energy (at RHIC e.g.) where boost invariance is locally established.
The actual finiteness of the effective source is established dynamically [13].
Those parts of the fireball moving too fast forward or backward cannot emit
mid-rapidity particles.

The source is modelled by an emission function. This is the Wigner
phase space density of particle emission

S(x, p) d4x =
mt cosh(y − η)

(2π)3
dη dx dy

τ dτ√
2π∆τ

× exp

(

−(τ − τ0)
2

2∆τ2

)

Θ(1 − r̃) exp

(

−p
µuµ

T

)

. (5)

Here, we use space-time rapidity η and longitudinal proper time τ instead
of t and z

t = τ cosh η , (6a)

z = τ sinh η . (6b)
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Momentum p will be parametrised in terms of rapidity y, transverse mo-
mentum pt, transverse mass mt =

√

m2 + p2
t and azimuthal angle φ

pµ = (mt cosh y, pt cosφ, pt sinφ, mt sinh y) . (7)

The term mt cosh(y − η) in the emission function comes from the flux of
particles through an infinitesimal piece of the freeze-out hyperbola: pµdσµ

[11]. In the Boltzmann distribution, energy is taken in the rest frame of the
emitting piece of the fireball

E∗ = pµuµ(x) , (8)

where uµ is local collective velocity of the fireball. The use of Boltzmann
distribution is justified as long as the temperature is not too low and the
chemical potential (for pions) is small; here we put µ = 0.

Velocity field uµ(x) describes the collective expansion of the fireball [9].
In longitudinal direction we assume a boost-invariant expansion which is
given by

vz = tanh η . (9)

The transverse velocity will be parametrised with the help of transverse
rapidity ρ

v⊥ = tanh ρ . (10)

Rapidity ρ will depend on the position in the transverse plane. We will con-
sider two models which will differ in the azimuthal variation of the transverse
velocity.

Model 1. In this model transverse expansion velocity is always directed
perpendicularly to the surface given by r̃ = const [10]. Its angle with respect
to the reaction plane is thus

φb = Arctan
y

x
(11)

(see figure 1). Note that

tan φb =

(

Rx

Ry

)2

tanφs = a4 tan φs . (12)

The magnitude of the transverse rapidity also varies with φb

ρ = r̃ ρ0(1 + ρ2 cos(2φb)) , (13)

where ρ0 and ρ2 are tunable parameters. (Note the slight difference to the
parametrisation of Retière and Lisa [10] who write ρ = r̃(ρ0 + ρ2 cos(2φb)).)
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Model 1 Model 2

Fig. 1. Two used models of azimuthal variation of the transverse flow velocity. The

depicted anisotropies correspond to a < 1 and ρ2 > 0.

The velocity field uµ(x) is then written as

uµ = (cosh ρ cosh η, cosφb sinh ρ, sinφb sinh ρ, cosh ρ sinh η) . (14)

Later in the calculation it will be convenient to use coordinates r̃ and φb

in the transverse plane instead of x and y. It is shown in Appendix A that

dx dy = J1(φb)R2 r̃ dr̃ dφb , (15a)

J1(φb) = (a2 cos2 φb + a−2 sin2 φb)−1 . (15b)

Model 2. Here it will be assumed that the transverse velocity is always
directed radially. Then the angle between transverse velocity and the reac-
tion plane coincides with φs (see Eq. (3)). Transverse rapidity will be given
by

ρ = r̃ ρ0(1 + ρ2 cos(2φs)) . (16)

The difference to Model 1 is in the use of φs instead of φb, cf. equation (13).
The velocity field is similar to Eq. (14), except for the replacement φb → φs

uµ = (cosh ρ cosh η, cosφs sinh ρ, sinφs sinh ρ, cosh ρ sinh η) . (17)

In this case, the appropriate coordinates to use are r̃ and φs. The Jaco-
bian is calculated in Appendix A

dx dy = J2(φs)R
2 r̃ dr̃ dφs (18a)

J2(φs) = (a−2 cos2 φs + a2 sin2 φs)
−1 . (18b)

All parameters of the models are summarised in Table I.
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TABLE I

Summary of model parameters.

freeze-out temperature T
average transverse flow gradient ρ0

variation of the flow gradient ρ2

average transverse radius R
spatial anisotropy a
mean Bjorken lifetime τ0
freeze-out time dispersion ∆τ

3. Elliptic flow

The elliptic flow coefficient v2 is introduced through the Fourier decom-
position of the azimuthal dependence of single-particle spectrum [1]. At
mid-rapidity in symmetric collision systems such a decomposition includes
only even cosine terms

P1(pt, φ) =
d3N

pt dpt dy dφ

∣

∣

∣

∣

y=0

=
1

2π

d2N

pt dpt dy

∣

∣

∣

∣

y=0

(1 + 2v2(pt) cos(2φ) + . . . ) . (19)

In this formulation, φ is the angle between the transverse momentum and
the reaction plane. The coefficient v2 can thus be calculated as

v2(pt) =

∫ 2π

0 P1(pt, φ) cos(2φ) dφ
∫ 2π

0 P1(pt, φ) dφ
. (20)

Single-particle spectrum is obtained from the emission function by integrat-
ing over the space-time

P1(pt, φ) =

∫

d4xS(x, p) . (21)

Combining Eqs (20) and (21) we obtain expressions for v2 in our models;
see Appendix B for details of the calculation. For Model 1 (velocity perpen-
dicular to the surface) we obtain

v2 =

∫ 1
0 dr̃ r̃

∫ 2π

0 dφb cos(2φb)J1(φb)K1

(

mt cosh ρ(r̃,φb)
T

)

I2

(

pt sinh ρ(r̃,φb)
T

)

∫ 1
0 dr̃ r̃

∫ 2π

0 dφb J1(φb)K1

(

mt cosh ρ(r̃,φb)
T

)

I0

(

pt sinh ρ(r̃,φb)
T

)

[Model 1] (22)
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while for Model 2 (radially directed transverse velocity) we have

v2 =

∫ 1
0 dr̃ r̃

∫ 2π

0 dφs cos(2φs)J2(φs)K1

(

mt cosh ρ(r̃,φs)
T

)

I2

(

pt sinh ρ(r̃,φs)
T

)

∫ 1
0 dr̃ r̃

∫ 2π

0 dφs J2(φs)K1

(

mt cosh ρ(r̃,φs)
T

)

I0

(

pt sinh ρ(r̃,φs)
T

)

[Model 2] (23)

where K1, I0, and I2 are modified Bessel functions. Since we integrate over
the angle, the only difference between the two results is in the use of the
Jacobian terms J1 or J2. Moreover, the difference between these two terms
is only in the replacement a → a−1. As the anisotropy parameter a does
not appear anywhere else in relations (22) and (23), any v2 calculated in
one model is equal to v2 calculated in the other model under transformation
a→ a−1. Thus we have an analytic example of two models which lead to the

same v2, while one is elongated in-plane and the other out-of-plane. This
clearly demonstrates that there is no possibility to distinguish in-plane source

from out-of-plane source just by measuring v2.

Physics reason behind the observation that the two models are “inverse”
to each other can be deduced from figure 1. The arrows denote expansion
velocity and their lengths indicate its magnitude. Both situations in that
figure correspond to ρ2 > 0 and a < 1. In case of Model 1, most arrows point
rather in the reaction plane (which is taken to be horizontal in this figure),
so the major boost effect leading to enhancement of the spectrum happens
in this direction. For Model 2, a larger part of the flow is directed out of
the reaction plane and the enhancement of spectra due to the boost is in
that direction. Thus Model 1 would lead to positive v2 while Model 2 — in
this setup — to negative v2. This is, of course, just a qualitative argument.
The equivalence of the two models under replacement a → a−1 is derived
analytically.

We can therefore calculate v2 just for one of the models; results for the
second one are then obtained trivially. I will choose Model 1.

Dependence of v2 on the transverse momentum and particle identity in
Model 1 was thoroughly studied in [10]. In the data [2, 3] for small pt, v2
is positive, increases with increasing pt and decreases with growing mass of
particles. This behaviour is reproduced in Model 1 if a < 1 and ρ2 > 0.
(Loosely speaking, one of these conditions may be broken, but not “too
much”; see later when the results are shown.) In this parameter region,
calculation shows that v2 of heavier particles can become negative at low pt

and start growing and be positive above some value of pt [10, 14]. Such a
dip to negative v2 is also observed by STAR Collaboration for antiprotons in
certain centrality bins [3], but the effect may not be statistically significant.
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Fig. 2. Contour plots of v2 as a function of a and ρ2, calculated in Model 1 for

T = 100 MeV and ρ0 = 0.88. Upper row: pions, lower row: protons. Left column:

pt = 200 MeV/c, right column: pt = 500 MeV/c. The thickest lines show where v2
vanishes. Consecutive lines correspond to increments/decrements by 0.02.

We will be interested in how the spatial and the flow anisotropies are
entangled in determining v2 for various identified particle species.

In comparing v2 of different species it turns out to be unwise to use
the pt-averaged v2. This is because the averages are weighted with the
single-particle spectra which are not alike for different species: those for
heavier particles are flatter. Hence, averaging v2(pt) for heavy particles can
sometimes lead to larger resulting values than the same procedure yields with
light particles, although the value of v2 at any pt is lower for heavy particles.
The reason is that flatter spectrum for heavy particles gives stronger weight
to larger v2 at higher pt.

Therefore, we study the entanglement of a and ρ2 in determining v2 for
pions and protons at two fixed values of pt. As can be seen from Eqs (22)
and (23), v2 does not depend on R, τ0 and ∆τ . Since the dependence on
all other parameters was studied in detail in [10], here we just fix T and ρ0,
and plot v2 as a function of a and ρ2 in figure 2. We clearly see how the
two anisotropy parameters are correlated and that the correlation depends
strongly on the type of particles. Recall that a figure for Model 2 would be
obtained just by inverting the a-scale.
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Temperature and radial flow can be roughly obtained from azimuthally
integrated spectra which are weakly sensitive to a and ρ2 [10]. Then, if one

was able to determine the correct model for the description of the freeze-out,
spatial and flow anisotropy could be disentangled from measurements of v2
as a function of pt for different identified particle species [3]. However, the
choice of the model cannot be based on v2 measurement.

4. Azimuthal angle dependence of correlation radii

In this section we focus on azimuthal angle dependence of correlation
radii due to spatial and flow anisotropy. First, explicit and implicit φ-
dependences are discussed. Then, necessary formalism is introduced. Ex-
perts can skip this and proceed directly to Section 4.3 where the results are
presented.

4.1. Explicit and implicit azimuthal angle dependence

In non-central collisions one can study Bose–Einstein correlations of iden-
tical pions for particles emitted under different azimuthal angles [7]. To start
the argument, let us just take a single emitter which emits particles in all
directions. The directions in which the sizes of the emitter are measured,
are given by the momentum. Therefore, by changing azimuthal angle φ
of the momentum, the correlation radii measure the size of the anisotropic
source in different directions. This leads to explicit dependence of the corre-
lation radii on φ. (See below how correlation radii are defined.) The explicit
azimuthal dependence is thus connected with the spatial anisotropy.

In a real case, we have an expanding fireball of which only a part — the
homogeneity region — effectively produces particles with a given momen-
tum [13]. Thus particles in different directions can be produced from differ-
ent homogeneity regions which differ in sizes. This mechanism leads to an
additional, so-called implicit azimuthal dependence of the correlation radii.
It is intimately connected with transverse expansion and its anisotropy. Here
we want to see how these two kinds of effects act together in azimuthally
sensitive correlation studies.

4.2. Formalism

We will confine ourselves to theoretical calculations at mid-rapidity for
symmetric collision systems. The reader is referred to [15, 16] for summary
of the formalism of Bose–Einstein interferometry in non-central collisions.
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Correlation radii are width parameters of a Gaussian parametrisation of
the measured correlation function

C(q,K) = 1 + λ exp(−R2
s (K)q2s −R2

o(K)q2o −R2
l (K)q2l

−2R2
os(K)qoqs − 2R2

ol(K)qoql − 2R2
sl(K)qsql) , (24)

where the momenta of the pair have been parametrised in terms of

q = p1 − p2 , (25a)

K = 1
2(p1 + p2) (25b)

and the phenomenological parameter λ ≤ 1 is due to a variety of effects
ranging from partial coherence of the source up till particle misidentification.
The standard out-side-long coordinate system is used, with longitudinal axis
in beam direction, outward axis parallel to the transverse component of K,
and sideward direction perpendicular to the previous two. Correlation radii
are given by sizes in these directions. Recall that in non-central collisions we
identify the Cartesian x-y-z frame with the collision geometry: z-axis points
in beam direction, x-axis is parallel to the impact parameter, and y-axis is
perpendicular to the reaction plane. Hence, there is an angle φ between the
x-axis and the outward direction and we are interested in the φ-dependence
of the correlation radii.

If there is no tilt of the fireball in the reaction plane [17], the two radii
R2

ol and R2
sl vanish. This is the case with the used models. The remaining

radii can be calculated as [7]

R2
s = 1

2(〈x̃2〉 + 〈ỹ2〉) − 1
2 (〈ỹ2〉 − 〈x̃2〉) cos 2φ− 〈x̃ỹ〉 sin 2φ , (26a)

R2
o = 1

2(〈x̃2〉 + 〈ỹ2〉) + 1
2 (〈ỹ2〉 − 〈x̃2〉) cos 2φ+ 〈x̃ỹ〉 sin 2φ

+ β2
⊥〈̃t2〉 − 2βt 〈̃tx̃〉 cos φ− 2βt〈̃tỹ〉 sin φ , (26b)

R2
os = 1

2(〈ỹ2〉 − 〈x̃2〉) sin 2φ+ 〈x̃ỹ〉 cos 2φ

+ βt〈̃tx̃〉 sinφ− βt〈̃tỹ〉 cosφ , (26c)

R2
l = 〈(z̃ − βlt̃)

2〉 , (26d)

where

〈f(x)〉(K) =

∫

f(x)S(x,K) d4x
∫

S(x,K) d4x
, (27a)

x̃µ = xµ − 〈xµ〉 . (27b)

The explicit azimuthal dependence is displayed in Eqs (26). In addition,
the (co-)variances 〈x̃µx̃ν〉 can depend on φ and this is the implicit azimuthal
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dependence. From Eqs (26), correlation radii can be calculated for both
Models just by inserting the corresponding emission function.

Azimuthal dependence of the correlation radii can be analysed with the
help of Fourier decomposition. Due to a number of symmetry arguments
[16] in our setup, the relevant Fourier series, truncated after the leading
oscillating terms, are

R2
o(φ) = R2

o,0 + 2R2
o,2 cos 2φ+ . . . , (28a)

R2
s (φ) = R2

s,0 + 2R2
s,2 cos 2φ+ . . . , (28b)

R2
os(φ) = 2R2

os,2 sin 2φ+ . . . , (28c)

R2
l (φ) = R2

l,0 + 2R2
l,2 cos 2φ+ . . . . (28d)

4.3. Results

We will focus on R2
o and R2

s , as we are interested in anisotropies in
the transverse plane. The absolute sizes of these radii together with their
oscillation amplitudes scale with the total geometric size R. We can get rid
of this scaling and thus observe the effect due to anisotropies more cleanly
when we study the ratios R2

o,2/R
2
o,0 and R2

s,2/R
2
s,0 [10].

These ratios for Model 1 and Model 2 are plotted in figure 3. In most
cases, oscillations of correlation radii are mainly determined by the spatial
anisotropy and not so much by the flow anisotropy. The only exception is R2

s

at high pt in Model 2: the φ-dependence in this model changes from shape-
determined to flow-determined, i.e. dominated by the implicit azimuthal
dependence. In all other cases, φ-dependence of the correlation radii follows
the explicit azimuthal angle dependence rather well.

The behaviour of R2
s in Model 2 is shown in figure 4. The azimuthal angle

dependence changes qualitatively with increasing pt: at the given parameter
values oscillation amplitude is positive at low pt and becomes negative at
large pt.

Now we come to the question whether one of the models can be disquali-
fied by comparing to data. In figure 5 we see two models which reproduce v2
quite well (this is shown in [18]); they are related by transformation a→ a−1.
However, since the oscillation of correlation radii is mostly shaped by the
spatial anisotropy, the two models lead to opposite predictions of the sign
of the oscillation amplitudes — and Model 2 is in qualitative disagreement
with the data. I do not try to find the perfect fit here; this turns out to be a
problematic task with the blast-wave model [18,20]. Nonetheless, note that
the qualitative features of the azimuthal angle dependence of the correlation
radii are reproduced in Model 1 under the assumption of an out-of-plane

extended source, which confirms the earlier conclusion of STAR [19].
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Fig. 3. Dependence of the normalised second order oscillation terms R2

o,2
/R2

o,0

(upper rows) and R2

s,2
/R2

s,0
(lower rows) on spatial anisotropy a and flow anisotropy

ρ2, calculated for Kt = 300 MeV/c (left columns) and Kt = 900 MeV/c (right

columns), with Model 1 (left panel) and Model 2 (right panel). Thick contour

lines correspond to 0, consecutive curves to increments/decrements by 0.1. Other

model parameters in the calculation were T = 0.1 GeV, ρ0 = 0.88, R = 9.41 fm,

τ0 = 9 fm/c, and ∆τ = 1 fm/c.
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s
in Model 2 at various transverse mo-

menta. Values of parameters used in the calculation: T = 0.1 GeV, ρ0 = 0.88,

ρ2 = 0.2, R = 9.41 fm, a = 0.95, τ0 = 9 fm/c, and ∆τ = 1 fm/c. Different curves

correspond from top to bottom to transverse momenta of 0.2, 0.4, 0.6, 0.8, and

1 GeV/c.
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Fig. 5. Azimuthal angle dependence of correlation radii in Model 1 (upper panel)

and Model 2 (lower panel) in comparison with data. Curves and data points corre-

spond from top to bottom to transverse momenta of 0.2, 0.3, 0.4, and 0.52 GeV/c.

Values of parameters used in the calculation are chosen such that v2(pt) is repro-

duced (not shown here, see [18]): T = 0.12 GeV, ρ0 = 0.99, ρ2 = 0.035, R = 9.41 fm,

τ0 = 5.02 fm/c, and ∆τ = 2.90 fm/c. Spatial anisotropies are a = 0.946 (Model 1)

or a = 1.057 (Model 2). Data points are measured by the STAR collaboration [19]

in 20–30% centrality events of Au+Au collisions at
√
s = 200AGeV.
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5. Conclusions

Generalisation of the popular blast-wave model to non-central collisions
is not unique. Many possible ways differ in how the transverse velocity
depends on the azimuthal angle φs.

In this paper two such generalisations were constructed. Then, a number
of statements scattered in literature were demonstrated in a unified frame-
work of a generalised blast-wave model, which is often used in many vari-
ations. The interplay of HBT analysis with v2 for identified species should
be stressed.

I showed analytically how two very different fireballs can lead to the
same v2, such that from measuring only this quantity one cannot conclude
whether the source is elongated in-plane or out-of-plane [6].

The azimuthal angle dependence of the correlation radii, on the other
hand, can be used for this. It is mostly sensitive at low pt to the spatial
anisotropy of the fireball [8].

When the type of the model is identified from comparison to data on
two-pion correlations, spatial and flow anisotropy can be disentangled from
reproducing v2(pt) of different identified species and φ-dependence of corre-

lation radii. Before measuring anisotropies, temperature and radial flow can
be determined from azimuthally integrated single-particle spectra which are
nearly independent of the anisotropy parameters.

Among the two models used here, Model 2 fails qualitatively in repro-
ducing data on azimuthal angle dependence of the correlation radii. In a
simple qualitative comparison with the data, the other Model indicates that
the observed fireball in non-central Au+Au collisions at

√
s = 200AGeV is

elongated out of the reaction plane, in agreement with conclusions of [19].

I thank Evgeni Kolomeitsev, Mike Lisa, Scott Pratt, and Fabrice Retière
for stimulating discussions. This research was supported by a Marie Curie
Intra-European Fellowship within the 6th European Community Framework
Programme.

Appendix A

Jacobians for integration in transverse plane

As it is simpler, we begin with the Model 2. The aim is to use r̃ and φs

as coordinates in the transverse plane. Because

x = r cosφs , (A.1a)

y = r sinφs , (A.1b)
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we only have to replace r by r̃. From Eqs (2) and (4) we obtain

r̃ =
r

R

√

a−2 cos2 φs + a2 sin2 φs . (A.2)

This leads to

x =
r̃ R cosφs

√

a−2 cos2 φs + a2 sin2 φs

, (A.3a)

y =
r̃ R sinφs

√

a−2 cos2 φs + a2 sin2 φs

, (A.3b)

and

dx dy =
R2 r̃ dr̃ dφs

a−2 cos2 φs + a2 sin2 φs
. (A.4)

Thus we derived Eq. (18).
For the Model 1 we want to use the angle φb as a coordinate instead of

φs. By making use of Eq. (12) we can rewrite Eq. (A.3) into

x =
r̃ R sgn(cosφs)

√

a−2 + a2 tan2 φs

=
r̃ R a2 cosφb

√

a2 cos2 φb + a−2 sin2 φb

, (A.5a)

y =
r̃ R sgn(sinφs)

√

a−2cotan2φs + a2
=

r̃ R a−2 sinφb
√

a2 cos2 φb + a−2 sin2 φb

. (A.5b)

In the last expression we introduced

sgn(x) =
{

+1 : x ≥ 0
−1 : x < 0

,

and exploited that

sgn(sinφs) = sgn(sinφb) ,

sgn(cosφs) = sgn(cosφb) .

From Eqs (A.5) it is straightforward to obtain the Jacobian for Model 1

dx dy =
R2 r̃ dr̃ dφb

a2 cos2 φb + a−2 sin2 φb
. (A.6)

Notice that apart from the use of φb instead of φs, one obtains the Jacobian
for Model 2 from that of Model 1 just by replacing a→ a−1.
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Appendix B

Calculation of v2

Let us calculate v2 for Model 1. First, we need the azimuthally integrated
single-particle spectrum in the denominator of Eq. (20). From Eqs (7) and
(14) we obtain that

pµuµ = mt cosh(η − y) cosh ρ(r̃, φb) − pt sinh ρ(r̃, φb) cos(φ− φb) . (B.1)

This is the energy argument for the Boltzmann distribution. In accord with
Eqs (21) and (5), azimuthally integrated spectrum is obtained as

2π
∫

0

P1(pt, φ) dφ

=

2π
∫

0

dφ

∫

d4xS(x, p)

=

2π
∫

0

dφ

2π
∫

0

dφb J1(φb)

1
∫

0

dr̃ r̃ R2

∞
∫

−∞

dη
mt cosh(η − y)

(2π)3

×
∞
∫

−∞

dτ τ√
2π∆τ2

exp

(

−(τ − τ0)
2

2∆τ2

)

×exp

(

−mt cosh(η − y) cosh ρ(r̃, φb) − pt sinh ρ(r̃, φb) cos(φ− φb)

T

)

,

(B.2)

where J1(φb) was defined in Eq. (15). The integration over τ is trivial. We
are interested in mid-rapidity particles in the centre-of-mass frame, so y = 0.
Then, integration over η can be performed and leads to the modified Bessel
function K1 [21]. We can exchange the order of integrations in φ and φb,
and perform a transformation φ→ φ− φb = ψ. The integral in ψ can then
be performed analytically and leads to the modified Bessel function I0. We
finally arrive at

2π
∫

0

P1(pt, φ) dφ =
R2 τ0mt

2π2

1
∫

0

dr̃ r̃

2π
∫

0

dφb J1(φb)

×K1

(

mt cosh ρ(r̃, φb)

T

)

I0

(

pt sinh ρ(r̃, φb)

T

)

.(B.3)
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The numerator of Eq. (22) is obtained in a similar way as the azimuthally
integrated spectrum, we just add a factor cos(2φ). After performing the
integration over τ and η we obtain

2π
∫

0

P1(pt, φ) cos(2φ) dφ

=
R2 τ0mt

4π3

1
∫

0

dr̃ r̃

2π
∫

0

dφb J1(φb)K1

(

mt cosh ρ(r̃, φb)

T

)

×
2π
∫

0

dφ cos(2φ) exp

(

pt sinh ρ(r̃, φb)

T
cos(φ− φb)

)

. (B.4)

Now again, we write φ = ψ + φb and decompose

cos(2φ) = cos(2ψ + 2φb)

= cos(2ψ) cos(2φb) − sin(2ψ) sin(2φb) .

The ψ-integral with the term proportional to sin(2ψ) vanishes. The sec-
ond term, proportional to cos(2ψ) exp(# cosψ) leads to a modified Bessel
function I2 [21]. As a result we thus obtain

2π
∫

0

P1(pt, φ) cos(2φ) dφ

=
R2 τ0mt

2π2

1
∫

0

dr̃ r̃

2π
∫

0

dφb J1(φb) cos(2φb)

×K1

(

mt cosh ρ(r̃, φb)

T

)

I2

(

pt sinh ρ(r̃, φb)

T

)

. (B.5)

By dividing this equation with the denominator derived in Eq. (B.3) we
obtain the expression (22) for v2.

Calculation for Model 2 follows exactly the same steps as we have gone
with Model 1. The only difference is that φb is replaced by φs and one uses
J2(φs) instead of J1(φb).
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