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1. Introduction

There is a long-held belief that in quantum theory of gravitation space-
time must change its nature at distances comparable to the Planck scale. In
order to model such a situation one can invoke the Heisenberg uncertainty
rules. In their standard form they make the notion of classical phase space
meaningless on quantum level while configuration space retains its meaning.
However, one can further demand that the coordinates are noncommuting
operators which implies some uncertainty relations making also the notion
of the point in space-time no longer sensible. The simplest way to do this is
to impose the commutation rules

[xµ, xν ] = iΘµν ,

where Θµν is a constant c-number tensor. Recently, there has been much
activity concerning field theories on such noncommutative space-time [1,2].
They appear to have some attractive properties. On the other hand their
quantization seems to be more subtle problem than in the standard case.
In fact, the noncommutative space-time can be replaced by its commutative

† Supported by the Łódź University grant No. 690.
‡ Supported by the grant 1 P03B 021 28 of the Polish State Committee for Scientific

Research (KBN).

(2115)



2116 K. Bolonek, P. Kosiński

counterpart provided one simultaneously replaces ordinary product of field
variables by “star product” defined by

Φ1(x) ⋆ Φ2(x) = e
i
2
Θµν ∂

∂xµ
∂

∂yν Φ1(x)Φ2(y) |x=y .

Therefore, once Θ0i 6= 0, the resulting Lagrangian contains time derivatives
of arbitrary order; the theory is nonlocal in time. This makes the quan-
tization procedure much more complicated. Indeed, within the standard
framework, the first step to quantize a given classical theory is to put it in
the Hamiltonian form. There exists the general algorithm which allows to
construct the Hamiltonian formalism for higher-derivative [3–5] and nonlo-
cal [6–8] theories. However, its main drawback is that the Hamiltonian is
not bounded from below; the quantization can be formally carried out but
the resulting theory has serious disadvantages like, for example, the nonex-
istence of stable ground (vacuum) state. This is the price one has to pay for
the generality of Ostrogradski formalism. From this point of view it seems
reasonable to pose the question whether, for a given specific system, there
exist alternative canonical formalisms more adequate for quantization pur-
poses. It can happen that, due to the peculiar properties of the system un-
der consideration, there exists canonical formalism which, being quantized,
produce quantum theory with more desirable properties than Ostrogradski
approach. Our main motivation is to show, on the simplest example, that
such a situation is possible; namely, that, in some cases, there exists a vari-
ety of Hamiltonians and the corresponding symplectic structures including
those leading to the nice quantum theory (with stable ground state, etc.)

The Ostrogradski instability is shared by all theories described by the
Lagrangians containing time derivatives of at least second order. Moreover,
the instability phenomenon seems to be not directly related to the nonlinear
character of underlying dynamics. Therefore, the simplest model to be con-
sidered is the celebrated Pais–Uhlenbeck quartic oscillator [9], linear theory
of fourth order.

We will study here alternative Hamiltonian formalisms for quartic oscil-
lator. The starting point is the obvious observation that the general solution
to Lagrangian equation depends on four arbitrary constants. This implies
that the corresponding Hamiltonian system should have two degrees of free-
dom. By inspecting the explicit form of solutions we find that there are
always at least two independent globally defined constants of motion which,
in addition, are quadratic in dynamical variables. On the other hand, the
Hamiltonian must be also a constant of motion. Therefore, we can write
out the most general Ansatz for quadratic Hamiltonian. By demanding the
canonical equations to be equivalent to the initial Lagrangian one we find the
relevant Poisson structures. In principle, the family of candidates for Hamil-
tonian functions is much wider. First, one could take an arbitrary function



Hamiltonian Structures for Pais–Uhlenbeck Oscillator 2117

of the two above-mentioned constants of motion. Moreover, for some values
of parameters the dynamics is superintegrable, i.e. admits third independent
globally defined constant of motion; then the most general Hamiltonian is
a function of three integrals of motion. However, more complicated Hamil-
tonians result in more complicated or even singular symplectic structures.
This implies that the relation between basic dynamical variable, its time
derivatives and Darboux coordinates is a complicated nonlinear one and it
is not clear whether it can be promoted to quantum theory.

Let us conclude this section with the following remark. Our construc-
tion is neither a pure application nor an extension of Ostrogradski algorithm.
First, it cannot be applicable for all quartic systems. This can be seen by
noting that we need here second ( independent of the Ostrogradski Hamil-
tonian) globally defined integral of motion. This implies that Ostrogradski
dynamics is integrable which does not seem to be automatically true, in spite
of the fact that the canonical equations for Ostrogradski Hamiltonian have
a very specific form. Second, the family of Hamiltonians constructed here
includes in some cases the positive-definite ones, the property not shared by
Ostrogradski Hamiltonian.

The details of our construction are presented in Sec. 2 while Sec. 3 is
devoted to concluding remarks. Appendix contains some additional re-
marks concerning the problem of embedding the fourth-order system into
Lagrangian system of two degrees of freedom.

2. Hamiltonian structures

Our starting point is the following Lagrangian

L =
m

2
q̇2 − mω2

2
q2 − mλ

2
q̈2 . (1)

For λ = 0 one gets the harmonic oscillator of mass m and frequency ω.
The relevant dynamical equation reads

λq(IV) + q̈ + ω2q = 0 (2)

or, equivalently

λ

(

d2

dt2
+ ω2

1

)(

d2

dt2
+ ω2

2

)

q = 0 ; (3)

here

w2
1, 2 ≡ 1 ±

√
1 − 4λω2

2λ
. (4)

The form of solution to Eq. (3) depends on w2
1, 2. There are the following

possibilities:
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(i) 0 < λ < 1
4ω2 ; then ω2

1, 2 > 0 and ω2
1 6= ω2

2 ;

(ii) λ = 0; the harmonic oscillator case ;

(iii) λ < 0; then ω2
1 < 0, ω2

2 > 0, ω2
1 + ω2

2 6= 0 ;

(iv) λ = 1
4ω2 ; then ω2

1 = ω2
2 = 2ω2, i.e. we are dealing with degeneracy ;

(v) λ > 1
4ω2 ; both ω2

1, 2 are complex ;

w2
1, 2 =

1 ± i
√

4λω2 − 1

2λ
, ω1 = ω̄2 ≡ ω0 . (5)

We shall consider these cases separately.

(1) The oscillatory regime (i)

The general solution reads

q(t) = A1 cos(ω1t + α1) + A2 cos(ω2t + α2) . (6)

It depends on four arbitrary constants A1, 2, α1, 2 which can be found

knowing q, q̇, q̈ and
...
q at any given time. Consequently, there are at most

four independent locally defined integrals of motion; however, at least one
of them must depend explicitly on time. Two integrals can be readily found
by computing A2

1, 2 from Eq. (6) and its first three time derivatives. In this
way one obtains the global integrals (normalized for further convenience)

J1 =
m√

2(ω4
1 − ω4

2)

(

(
...
q +ω2

1 q̇)
2 + ω2

2(q̈ + ω2
1q)

2
)

,

J2 =
m√

2(ω4
1 − ω4

2)

(

(
...
q +ω2

2 q̇)
2 + ω2

1(q̈ + ω2
2q)

2
)

. (7)

For generic values of parameters no additional independent globally de-
fined integral (which does not depend explicitly on time) exists; our sys-
tem is integrable but not superintegrable. However, for λ, ω2 such that
ω1

ω2
is rational, ω1

ω2
= k

l
, it becomes superintegrable. The additional in-

tegral can be constructed as follows [10]. One writes sin(lα1 − kα2) =
sin(l(ω1t + α1) − k(ω2t + α2)); the latter is expressible polynomially in
sin(ω1, 2t + α1, 2), cos(ω1, 2t + α1, 2) which, in turn, can be computed from
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Eq. (6) and its first three time derivatives. In what follows we are interested
in generic values of λ. Therefore, we consider J1, 2 to be the only relevant
integrals.

As usual, the integrals of motion are related to some symmetries. Using
Noether theorem suitably generalized to higher-derivative theories one finds
the symmetries responsible for the existence of J1, 2. They read

q → q + ε(
...
q ±(ω2

1 − ω2
2)q̇) . (8)

We can now construct the Hamiltonian formalism. There exists standard
procedure called Ostrogradski formalism [3, 4] which works for any higher-
derivative theory. However, for a particular dynamics there can exist a
variety of suitable Hamiltonian structures.

For the reason explained in Sec. 1 we restrict ourselves to quadratic
Hamiltonians. Keeping in mind that the Hamiltonian itself is a constant of
motion and, moreover, its rescaling is equivalent to the time rescaling, one
can write the following Ansatz

H(β) = J1 cos β + J2 sin β , −π ≤ β < π . (9)

Using

q(n) = {q(n−1),H}, n = 1, 2, 3 (10)

one finds the following one-parameter family of Poisson structures

{q, q̇} = γ

(

1

cos β
+

1

sinβ

)

,

{q, q̈} = 0 ,

{q,
...
q} = −γ

(

ω2
2

cos β
+

ω2
1

sin β

)

,

{q̇, q̈} = γ

(

ω2
2

cos β
+

ω2
1

sinβ

)

,

{q̇,
...
q} = 0 ,

{q̈,
...
q} = γ

(

ω4
2

cos β
+

ω4
1

sinβ

)

, (11)

with

γ ≡ 1√
2mλ(ω2

1 − ω2
2)

. (12)
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Let us note the following:
(a) The Poisson structure exists for all β except β = −π, −π

2 , 0, π
2 (this can

be easily understood from Eq. (6) — both A1 A2 are needed to characterize
fully the motion); consequently, there exists four disjoint sectors for β :
(−π, −π

2 ), (−π
2 , 0), (0, π

2 ) and (π
2 , π). However, the transformation

H → −H, qi ↔ pi leaves Hamiltonian equations invariant. Therefore, it is
sufficient to consider the sectors (−π

2 , 0) and (0, π
2 ).

(b) One easily checks that

det
[

{q(m), q(n)}3
m, n=0

]

=

(

ω2
1 − ω2

2

cos β sinβ

)2

(13)

which is nonvanishing. We conclude that the Poisson structures (11) are
sympletic.
(c) For any admissible β

{q̈ + ω2
1q, q̈ + ω2

2q} = 0 ,

{
...
q +ω2

1 q̇,
...
q +ω2

2 q̇} = 0 ,

{q̈ + ω2
1q,

...
q +ω2

2 q̇} = 0 ,

{q̈ + ω2
2q,

...
q +ω2

1 q̇} = 0 . (14)

(d) The structures corresponding to different β′s are different (i.e. not canon-

ically equivalent). Indeed, q, q̇, q̈, and
...
q are well-defined functions of canon-

ical variables. Therefore, the canonical transformations cannot change the
numerical values of the Poisson brackets. On the other hand, due to ω2

1 6= ω2
2,

sin β and cos β are uniquely fixed once the r.h.s. of Eqs. (11) are known.
The canonical variables are found by passing to Darboux coordinates.

There is a freedom in defining such a transformation — one can always
perform an additional symplectic (in our case — also linear) transformation.
We shall impose a further constraint pi ∼ q̇i, i = 1, 2. Using (c) one finds
the following canonical variables:
— for the (0, π

2 ) sector:

q1 = δ
√

cos β(q̈ + ω2
1q) ,

p1 = mδ
√

cos β(
...
q +ω2

1 q̇) ,

q2 = δ
√

sinβ(q̈ + ω2
2q) ,

p2 = mδ
√

sin β(
...
q +ω2

2 q̇) ,

q =
1

√√
2λ
(

ω2
1 − ω2

2

)

(

q1√
cos β

− q2√
sinβ

)

,
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H(β) =

(

p2
1

2m
+

mω2
2

2
q2
1

)

+

(

p2
2

2m
+

mω2
1

2
q2
2

)

,

δ ≡
√ √

2λ

ω2
1 − ω2

2

. (15)

— for the (−π
2 , 0) sector:

q1 = δ
√

cos β(q̈ + ω2
1q) ,

p1 = mδ
√

cos β(
...
q +ω2

1 q̇) ,

q2 = δ
√

− sinβ(q̈ + ω2
2q) ,

p2 = −mδ
√

− sin β(
...
q +ω2

2 q̇) ,

q =
1

√√
2λ
(

ω2
1 − ω2

2

)

(

q1√
cos β

− q2√
− sinβ

)

,

H(β) =

(

p2
1

2m
+

mω2
2

2
q2
1

)

−
(

p2
2

2m
+

mω2
1

2
q2
2

)

. (16)

The formulae (15), (16) have a nice interpretation. The q variable is one
of the coordinates of two-dimensional quadratic system for which q1 and
q2 are normal coordinates [11]. However, for β ∈ (−π

2 , 0) the energy of
one of the normal oscillations enters with negative sign. Actually, in each
sector all systems look the same except the formula for q in terms of normal
coordinates q1,2.

Let us consider in some detail the sector (−π
2 , 0). Passing to the La-

grangian

L(β) =

(

m

2
q̇2
1 − mω2

2

2
q2
1

)

−
(

m

2
q̇2
2 −

mω2
1

2
q2
2

)

(17)

is a regular procedure. On the other hand, under the canonical transforma-
tion

q̃1 =
1

√

λ(ω2
1 − ω2

2)
(q1 − q2) ,

q̃2 =
1

m
√

λ(ω2
1 − ω2

2)
(p1 + p2) ,

p̃1 =

√

λ

ω2
1 − ω2

2

(ω2
1p1 + ω2

2p2) ,

p̃2 = m

√

λ

ω2
1 − ω2

2

(ω2
2q1 − ω2

1q2) (18)
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the Hamiltonian attains the Ostrogradski form

H(β) = p̃1q̃2 −
p̃2
2

mλ
− m

2
q̃2
2 +

mω2

2
q̃2
1 . (19)

Note that Eq. (19) defines now a singular Hamiltonian in the sense that
momenta are not expressible in terms of velocities and coordinates; in fact,
˙̃qi = ∂H

∂p̃i
imply ˙̃q2 = − p̃2

mλ
, but also ˙̃q1 = q̃2, so p̃1 cannot be expressed

in terms of q̃i, ˙̃qi. Therefore, some care is needed when passing to the
Lagrangian formalism which results in additional variable — the Lagrange
multiplier enforcing ˙̃q1 = q̃2; as a result q̃1 obeys Eq. (2). However, q̃1

coincides with q only for β = −π
2 ; for other values of β q and q̃1, are different

linear combinations of normal coordinates q1,2.
Using Eqs. (16) one can express the Lagrangian (17) in terms of q variable

(up to a total derivative)

L(β) =
mδ2

2
(cos β + sin β)

...
q

2

−mδ2(ω2
1

(

cos β +
1

2
sin β

)

+ ω2
2

(

sin β +
1

2
cos β

)

)q̈2

+
mδ2

2
((ω2

1 + 2ω2
2)ω

2
1 cos β + (ω2

2 + 2ω2
1)ω

2
2 sin β)q̇2

−mδ2

2
ω2

1ω
2
2(ω

2
1 cos β + ω2

2 sin β)q2 (20)

which leads to the following equation of motion

(

(cos β+sin β)
d2

dt2
+(ω2

1 cos β+ω2
2 sin β)

)(

d2

dt2
+ω2

1

)(

d2

dt2
+ω2

2

)

q=0 . (21)

We see from Eq. (21) that there appears a new mode ω2 =
ω2

1
cos β+ω2

2
sin β

cos β+sinβ

unless β = −π
4 . This is not surprising. First, let us stress that the theory

defined by Eqs. (16) and (17) solves the problem of finding the Hamiltonian
system containing Eq. (2) (or, equivalently, Eq. (3)) as one of dynamical
equations. Indeed, Eq. (2) is the direct consequence of the definition of q in
terms of q1,2 and the basic dynamical equations the latter obey. Moreover,
due to ω1 6= ω2, in order to determine time-dependence of q one has to know
both q1 and q2 which implies one has to impose four initial conditions on
q; therefore, the theory given by Eqs. (16) and (17) describes the general
solution to Eq. (2) for arbitrary value of β. In fact, the present formulation
does not differ very much in spirit from Ostrogradski formalism. In the
latter, one of the canonical equations implies that the substitution q1 →
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q, q2 → q̇ is consistent while in the former Hamiltonian equations imply
the consistency of the rule q1,2 ∼ q̈ + ω2

1,2q. For this reason, making the

substitution qi ∼ q̈ + ω2
i q in (17) one gets consistent equation in spite of the

fact that the number of independent variables is reduced. On the other hand
this is not a point transformation which in general results in new modes (see
Appendix).

Finally, let us compare our findings with those of Ref. [9]. Again, it is
a matter of simple computation to verify that the formalism developed in
Sec. 2.1 of [9] corresponds to β = −π

4 .

(2) The case λ < 0 (iii)

Let us pass to the case (iii). Putting ω2
1 = − | ω1 |2 one gets

(

d2

dt2
− | ω1 |2

)(

d2

dt2
+ ω2

2

)

q = 0 (22)

with the general solution

q = Ae|ω1|t + A′e−|ω1|t + B cos(ω2t + β) . (23)

As in the previous case one easily finds two integrals.

I1 =
m√

2(| ω1 |4 −ω4
2)

((
...
q − | ω1 |2 q̇)2 + ω2

2(q̈− | ω1 |2 q)2) ,

I2 =
m√

2(| ω1 |4 −ω4
2)

((
...
q +ω2

2 q̇)
2− | ω1 |2 (q̈ + ω2

2q)
2) . (24)

However, there exists also the third globally defined integral. The reason
for that is that there is now only one angle variable which has to be cyclic.
The additional integral can be found by computing ln(e|ω1|t) ≡| ω1 | t+lnA

and cos(ω2t + β). Then C ≡ arccos(cos(ω2t + β)) − ω2

|ω1|
ln(Ae|ω1|t) is time-

independent and cos C can be computed from q, q̇, q̈ and
...
q . The resulting

expression is rather complicated and will not be considered here.
We proceed along the same lines as in the first case. Define the Hamil-

tonian

H(β) = I1 cos β + I2 sin β , −π ≤ β < π . (25)

The family of admissible Poisson structures reads

{q, q̇} = γ

(

1

cos β
+

1

sin β

)

,

{q, q̈} = 0 ,
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{q,
...
q} = γ

( | ω1 |2
sin β

− ω2
2

cos β

)

,

{q̇, q̈} = −γ

( | ω1 |2
sinβ

− ω2
2

cos β

)

,

{q̇,
...
q} = 0 ,

{q̈,
...
q} = γ

( | ω1 |4
sin β

+
ω4

2

cos β

)

,

γ =
1

−
√

2mλ(| ω1 |2 +ω2
2)

. (26)

These structures can be obtained from Eq. (11) making the replacement
ω2

1 → − | ω1 |2. Again we have four sectors β and it is sufficient to consider
two of them only:
— for β ∈ (0, π

2 ) one gets

q1 = δ
√

cos β(q̈− | ω1 |2 q) ,

p1 = mδ
√

cos β(
...
q − | ω1 |2 q̇) ,

q2 = δ
√

sin β(q̈ + ω2
2q) ,

p2 = mδ
√

sin β(
...
q +ω2

2 q̇) ,

q =
1

√

−
√

2λ(| ω1 |2 +ω2
2)

(

q1√
cos β

− q2√
sin β

)

,

H(β) =

(

p2
1

2m
+

mω2
2

2
q2
1

)

+

(

p2
2

2m
− m | ω1 |2

2
q2
2

)

,

δ ≡
√

−
√

2λ

| ω2
1 | +ω2

2

. (27)

— for β ∈ (−π
2 , 0) one gets

q1 = δ
√

cos β(q̈− | ω1 |2 q) ,

p1 = mδ
√

cos β(
...
q − | ω1 |2 q̇) ,

q2 = δ
√

− sin β(q̈ + ω2
2q) ,

p2 = −mδ
√

− sinβ(
...
q +ω2

2 q̇) ,

q =
1

√

−
√

2λ(| ω1 |2 +ω2
2)

(

q1√
cos β

− q2√
− sin β

)

,

H(β) =

(

p2
1

2m
+

mω2
2

2
q2
1

)

−
(

p2
2

2m
− m | ω1 |2

2
q2
2

)

. (28)
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Again the conclusion is that the q variable is a linear combination of
normal coordinates for some quadratic system. The only difference as com-
pared with the previous case is that the forces are in part repelling.

(3) The degenerate case (iv)

Consider the double frequency case (iv):

(

d2

dt2
+ 2ω2

)2

q = 0 . (29)

Then

q(t) = A1 cos(
√

2ωt + α1) + A2t cos(
√

2ωt + α2) . (30)

The relevant integrals of motion are (again suitably normalized)

I1 =
m

ω4
((

...
q +2ω2q̇)2 + 2ω2(q̈ + 2ω2q)2) ,

I2 =
m

ω2
(2(

...
q +2ω2q̇)q̇ − q̈2 + 4ω4q2) . (31)

Again, our system admits third integral which is globally defined but com-
plicated and will not be considered.

We put

H(β) = I1 cos β + I2 sin β − π ≤ β < π (32)

and find

{q, q̇} = − cos β

2m sin2 β
,

{q, q̈} = 0 ,

{q,
...
q} =

(2 cos β + sinβ)ω2

2m sin2 β
,

{q̇, q̈} = −(2 cos β + sin β)ω2

2m sin2 β
,

{q̇,
...
q} = 0 ,

{q̈,
...
q} = −2(cos β + sin β)ω4

m sin2 β
. (33)

There are now two sectors, (−π, 0) and (0, π) and it is sufficient to consider
only one, say β ∈ (0, π). Note that for β = π

2 , H = I2; this is possible
because I2 depends on both A1 and A2.
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Let us define new variables

q1 =

√
sinβ

ω2
(q̈ + 2ω2q) ,

q2 =
cos β√
sinβω2

(q̈ + 2(1 + tgβ)ω2q) ,

p1 =
m cos β√
sinβω2

(
...
q +2(1 + tgβ)ω2q̇) ,

p2 =
m
√

sin β

ω2
(
...
q +2ω2q̇) . (34)

Then the Hamiltonian takes the form

H =
p1p2

m
+ mω2(2q1q2 − q2

1) (35)

while q is the linear combination of basic variables

q =
cos β

2
√

sin β

(

− q1

sin β
+

q2

cos β

)

. (36)

The Hamiltonian does not depend explicitly on β and the only β-depen-
dence comes from the expression for q in terms of basic variables q1, q2.

(4) Complex frequencies (v)

Finally, let us consider the complex frequencies case. Formally, one can
use the results of (i) and define the integrals

J1 =
m√

2(ω4
0 − ω̄4

0)
((

...
q +ω2

0 q̇)
2 + ω̄2

0(q̈ + ω2
0q)

2) ,

J2 =
m√

2(ω4
0 − ω̄4

0)
((

...
q +ω̄2

0 q̇)
2 + ω2

0(q̈ + ω̄2
0q)

2) . (37)

They are no longer real but rather obey

J̄2 = −J1 . (38)

The one-parameter Ansatz for the real Hamiltonian reads

H(β) = i(eiβJ1 + e−iβJ2) . (39)

The relevant Poisson structure is given by

{q, q̇} = −iγ(eiβ + e−iβ) ,
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{q, q̈} = 0 ,

{q,
...
q} = iγ(ω2

0e
iβ + ω̄2

0e
−iβ) ,

{q̇, q̈} = −iγ(eiβω2
0 + e−iβω̄2

0) ,

{q̇,
...
q} = 0 ,

{q̈,
...
q} = −iγ(ω4

0e
iβ + ω̄4

0e
−iβ) ,

γ ≡ 1√
2mλ(ω2

0 − ω̄2
0)

. (40)

Now, all values of −π ≤ β < π are admissible. Again, we could consider
only half of this domain, say 0 ≤ β < π, but there is no point to do this as
we are dealing with one sector only. Define

q1 =
1

ε
(q̈ + ω2

0q) ,

q2 =
1

ε̄
(q̈ + ω̄2

0) ,

p1 =
m

ε
(
...
q +ω2

0 q̇) ,

p2 =
m

ε̄
(
...
q +ω̄2

0 q̇) ,

ε2 ≡ −imγ(ω2
0 − ω̄2

0)
2e−iβ . (41)

The Hamiltonian takes the form

H(β) =

(

p2
1

2m
+

mω̄2
0

2
q2
1

)

+

(

p2
2

2m
+

mω2
0

2
q2
2

)

(42)

while the expression for q reads

q =
εq1 − ε̄q2

ω2
0 − ω̄2

0

. (43)

The canonical variables are not real. In fact, q̄1 = q2, p̄1 = p2. The real
canonical variables are obtained by taking the real and imaginary parts

q1 =
1√
2
(Q1 + iQ2) ,

q2 =
1√
2
(Q1 − iQ2) ,

p1 =
1√
2
(P1 − iP2) ,

p2 =
1√
2
(P1 + iP2) . (44)



2128 K. Bolonek, P. Kosiński

Then

H(β) =

(

P 2
1

2m
+

m(ω2
0 + ω̄2

0)

4
Q2

1

)

−
(

P 2
2

2m
+

m(ω2
0 + ω̄2

0)

4
Q2

2

)

+
im

2
(ω̄2

0 − ω2
0)Q1Q2 . (45)

Further change of variables transforming H(β) into the sum of dilatation
and rotation is also possible [9] (cf. Sec. 3).

3. Concluding remarks

Let us summarize our results. We have found essentially one-parameter
families of inequivalent quadratic Hamiltonian structures in all cases (i),
(iii), (iv), (v). In the first two cases these families consist of four disjoint
sectors while there are only two sectors in the (iv) case and one in the
(v) case. In each sector the Hamiltonian can be put into the parameter-
independent form; the structures belonging to any sector differ in the way
the q-variable is expressed in terms of basic variables.

Due to the symmetry H ↔ −H, qi ↔ pi, one can reduce by two the
number of sectors we have to consider. Therefore, in the case (i) one has
basically two sectors. The Hamiltonian is, respectively, the sum or difference
of two independent harmonic oscillators. Our q variable is a linear combi-
nation of two basic coordinates q1, q2. Taking into account the possibility of
rescaling the Hamiltonian and performing simple canonical transformation
q1 → ±qi, pi → ±pi one concludes from Eq. (15), (16) that q can be arbitrary
linear combination of q1, q2 except that both coefficients are nonvanishing.

Similar results hold for the case (iii). The only difference is that now
one oscillator describes the repelling linear force. In the degenerate case (iv)
there is essentially one sector (if one again takes into account the symmetry
qi ↔ pi, H ↔ −H). The Hamiltonian takes less familiar form (35) while q

is given by (36).
In the complex case (v) there is one sector even without taking into

account the above-mentioned symmetry. The Hamiltonian (45) is now the
difference of two harmonic oscillators coupled by the interaction term pro-
portional to the product of coordinate variables. Due to the fact that the
kinetic energy is not positive, definite passing to normal coordinates is now
impossible.

Obviously, the Hamiltonian structures considered in Ref. [9] are the par-
ticular elements of our families (β = −π

4 for (i) and (iii), β = π
2 for (iv) and

β = −π for (v)).
Finally, note that, apart from the Hamiltonian, there is always an addi-

tional quadratic integral of motion. Therefore, we expect that in all cases the
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separation of variables is possible. This is obvious for the first two families.
In the degenerate case one defines [9]

q1 = q′1 ,

q2 = q′1 −
1

mω
p′2 ,

p1 = p′1 − mωq′2 ,

p2 = mωq′2 . (46)

Then H, Eq. (35) takes the form

H = −ω(q′1p
′
2 − q′2p

′
1) − mω2(q′21 + q′22 ) (47)

which separates in polar coordinates.
Finally, consider the case of two complex conjugated frequencies squared.

Making an Ansatz [9]

q1 =
1

2
√

ω̄0
((q̃1 − p̃2) − i(p̃1 − q̃2)) ,

q2 =
1

2
√

ω0
((q̃1 − p̃2) + i(p̃1 − q̃2)) ,

p1 =
1

2

√
ω̄0((q̃2 + p̃1) − i(p̃2 + q̃1)) , (48)

p2 =
1

2

√
ω0((q̃2 + p̃1) + i(p̃2 + q̃1))

one obtains

H = −
(

ω0 + ω̄0

2

)

(q̃1p̃2 − q̃2p̃1) +
i

2
(ω0 − ω̄0)(q̃1p̃1 + q̃2p̃2) , (49)

i.e. the Hamiltonian becomes a commuting sum of angular momentum and
dilatation and separates in polar coordinates.

The Hamiltonian formalism provides the first step toward quantization.
The standard approach based on Ostrogradski formalism and Dirac proce-
dure [12, 13] provides a consistent quantum theory. However, its serious
drawback is that the quantum Hamiltonian is unbounded from below. One
is not surprised that the Hamiltonian is unbounded from below if the classi-
cal motion is unbounded (the cases (iii)–(v) above). On the contrary, in the
case (i) the motion is bounded while the Ostrogradski Hamiltonian is again
unbounded. We have shown that in this case there exists the whole family
of Hamiltonians which, after quantization, yield stable ground state.

We have to stress that in all cases under consideration the quantiza-
tion procedure is quite simple because the Hamiltonians are built with the
help of operators well-known from ordinary quantum mechanics: oscillator
Hamiltonian, angular momentum, dilatation operator etc.
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Appendix

Let us discuss in more detail the problem of embedding the fourth-order
dynamical system into Lagrangian system with two degrees of freedom. First
let us note the following. Assume we have the first-order Lagrangian

L = L(q, q̇) . (50)

Let us make the following substitution

q = q(x, ẋ, ẍ) ,

L̃(x, ẋ, ẍ,
...
x) = L(q(x, ẋ, ẍ), q̇(x, ẋ, ẍ,

...
x)) . (51)

Then one easily derives the following identity

∂L̃

∂x
− d

dt

(

∂L̃

∂ẋ

)

+
d2

dt2

(

∂L̃

∂ẍ

)

− d3

dt3

(

∂L̃

∂
...
x

)

=

(

∂q

∂x
− d

dt

∂q

∂ẋ
+

d2

dt2
∂q

∂ẍ

)(

∂L

∂q
− d

dt
(
∂L

∂q̇
)

)

. (52)

We see that, in general, the new equation of motion contains additional
solutions except the case ∂q

∂ẋ
= 0, ∂q

∂ẍ
= 0; in the latter case (51) describes

point transformation leading to the equivalent dynamics.
Consider now the system of two decoupled degrees of freedom,

L = L1(q1, q̇1) + L2(q2, q̇2) . (53)

Assume that

qi = qi(q, q̇, q̈), i = 1, 2 (54)

be the substitution, in terms of one variable, consistent with the equations
of motion. By the latter we mean that substituting (54) into both equations

∂Li

∂qi
− d

dt

(

∂Li

∂q̇i

)

= 0, i = 1, 2 (55)

produce the same equation for q:

∂Li

∂qi
− d

dt

(

∂Li

∂q̇i

)

= αiF
(

q, q̇, q̈,
...
q , q(IV)

)

(56)

with some constants α1,2. Then (52) implies for the Lagrangian

L̃(q, q̇, q̈,
...
q ) = L1(q1, q̇1) + L2(q2, q̇2) (57)
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the following identity

∂L̃

∂q
− d

dt

(

∂L̃

∂q̇

)

+
d2

dt2

(

∂L̃

∂q̈

)

− d3

dt3

(

∂L̃

∂
...
q

)

=
2
∑

i=1

(

αi
∂qi

∂q
− αi

d

dt

∂qi

∂q̇
+ αi

d2

dt2
∂qi

∂q̈

)

F (q, q̇, q̈,
...
q , q(IV)) . (58)

If it happens that αi’s are such that the second and third term on r.h.s. of
(58) vanish, L̃ gives no additional solutions.

In our case

L = α1

(

mq̇2
1

2
− mω2

1q
2
1

2

)

+ α2

(

mq̇2
2

2
− mω2

2q
2
2

2

)

(59)

and the consistent substitution reads

q1 ∼ q̈ + ω2
2q ,

q2 ∼ q̈ + ω2
1q .

Then q can be expressed in terms of q1 and q2 and one obtains the consistent
embedding of q into two-dimensional system of first order. Moreover, for
α1 = −α2 L̃ gives no additional mode. However, the procedure is consistent
for any α1,2 provided α1 · α2 6= 0 (we must have two degrees of freedom
in order to be able to express q algebraically in terms of basic dynamical
variables).
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