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The present work is a summary of the status of lattice pentaquark
calculations. After a pedagogic introduction to the basics of lattice hadron
spectroscopy we give a critical comparison of results presently available in
the literature. Special emphasis is put on presenting some of the possible
pitfalls of these calculations. In particular we discuss at length the choice
of the hadronic operators and the separation of genuine five-quark states
from meson–baryon scattering states.
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1. Introduction

The recent experimental searches for and the discovery [1, 2] of the pre-
viously theoretically predicted [3] exotic hadrons has sparked considerable
activity and gave rise to diverse speculations regarding their structure, unex-
pectedly small width, parity, isospin and spin. The only presently available
technique for computing low energy hadronic observables starting from first
principles (i.e. QCD) within systematically controllable approach is lattice
QCD.

All this said, it might seem surprising that of the more than 200 papers
devoted to the subject of exotic baryons in the past year, there were only
five lattice papers. Besides critically reviewing the currently available lattice
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results, in the present work we also try to resolve this apparent paradox by
discussing some of the difficulties and pitfalls of the lattice approach. The
presentation is aimed for the general particle and nuclear physics community.
For this reason, in Section 2 we start with an introduction to lattice hadron
spectroscopy and also address two points that are usually not discussed in
great detail in lattice papers, but are essential for the correct interpretation
of lattice pentaquark results.

In our opinion the biggest challenge lattice pentaquark calculations face
is how to choose the baryonic operators. Not only the errors, but also the
very possibility to identify certain states depends crucially on the choice of
operators. Unfortunately there is very little guidance here and many techni-
cal restrictions. Subsection 2.1 is devoted to this issue. Since the five-quark
bound states we want to study can be close to threshold, it is essential in any
lattice spectroscopy calculation to reliably distinguish between genuine five-
quark bound states and meson–baryon scattering states. In Subsection 2.2
we discuss how this can be done.

Having set the stage, in Section 3 we give a critical review of the currently
available lattice results and interpret them. In Section 4 we conclude by
summarising the status of lattice calculations and stressing what is needed
to be done for a final consolidation of the lattice results.

2. Hadron spectroscopy on the lattice

2.1. The choice of operators

In the framework of lattice QCD the role of the regulator is played by
a space–time lattice that replaces continuous space–time. As a result, in
a finite spatial volume the infinite dimensional functional integral turns into
a mathematically well defined finite dimensional integral. The lattice also
opens the way to the explicit numerical computation of hadronic observables
by Euclidean Monte Carlo techniques.

In hadron spectroscopy one would like to identify hadronic states with
given quantum numbers. Practically this means the following. We com-
pute the vacuum expectation value of the Euclidean correlation function
〈0|O(t)O†(0)|0〉 of some composite hadronic operator O. The operator O
is built out of quark creation and annihilation operators. In physical terms
the correlator is the amplitude of the “process” of creating a complicated
hadronic state described by O at time 0 and destroying it at time t.

After inserting a complete set of eigenstates |i〉 of the full QCD Hamil-
tonian the correlation function can be written as

〈0|O(t)O†(0)|0〉 =
∑

i

| 〈i|O†(0)|0〉 |2 〈i|O(0)|0〉 e−(Ei−E0)t , (1)
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where
O(t) = e−HtO(0)eHt (2)

and Ei are the energy eigenvalues of the Hamiltonian.
Note that since we work in Euclidean space–time (the real time coordi-

nate t is replaced with −it), the correlators do not oscillate, they rather die
out exponentially in imaginary time. In particular, after long enough time
only the lowest (few) state(s) created by O give contribution to the correla-
tor. The energy eigenvalues corresponding to those states can be extracted
from exponential fits to the large t behaviour of the correlator.

In the simplest cases one is typically interested in hadron masses. A
trivial but most important requirement in the choice of O is that it should
have the quantum numbers of the state we intend to study. Otherwise the
overlap 〈i|O†(0)|0〉 would be zero and the corresponding exponent could
not be extracted. In order to have optimal overlap with only one state |i〉,
O†(0)|0〉 should be as “close” to |i〉 as possible.

A hadron mass is the ground state energy in a sector with given internal
quantum numbers and zero momentum. Projection to the zero momentum
sector is achieved by summing a local operator over all of three-space as

O(~p = 0) =
∑

~x

e−i~p~xO(0, ~x)|~p=0 =
∑

~x

O(0, ~x) . (3)

One of the most important experimentally still unknown quantum num-
bers of pentaquark states is their parity. Thus, we also briefly touch upon
the parity assignment on the lattice. The simplest baryonic operators do
not create parity eigenstates, rather they couple to both parity channels.
Projection to the +/− parity eigenstates can be performed as

O± =
1

2
(O ± POP−1) . (4)

For the simplest operators the parity operator P acts on O as

POP−1 = ηγ0O , (5)

where η = ±1 is the internal parity of the operator O. For more com-
plicated operators, in particular for non-pointlike ones, this might become
more involved. If the parity of a state is not known, it can be determined by
computing the correlator in both parity channels and deciding which channel
produces a mass closer to the experimentally observed one.

All quantum numbers fixed, there is still considerable freedom in the
choice of O. This freedom has to be exploited to ensure maximal overlap of
O†(0)|0〉 with the desired state and minimal overlap with close-by competing,
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but unwanted states. This is essential not only for smaller errors. With the
wrong choice of O the desired state might be practically undetectably lost
in the noise. Unfortunately, beyond the quantum numbers there is usually
little if any guidance in the choice of O and herein lies the biggest challenge
of lattice pentaquark spectroscopy. It is almost impossible to disprove the
existence of a given state. If one cannot detect it with a given operator O,
it might just mean that O has too small overlap with the desired state and
the signal is lost in the noise. Indeed, even in the case of the nucleon simple
operators are known that have the correct quantum numbers, but too little
overlap with the nucleon ground state and no nucleon signal can be extracted
from their correlator [4].

If the wave function of the quarks in the given hadronic state were known,
that would dictate the form of the operator to be used. In the case of
pentaquarks there are several suggestions in the literature and in principle
it would be interesting to try operators corresponding to at least some of
them. There are, however, two serious restrictions lattice calculations face
in this respect. The first one concerns the spatial structure of the wave
function, the second one its index structure. In the remainder of this section
we discuss these.

Concerning the spatial structure of the wave function, we have to note
that the correlation function in Eq. (1) is computed on the lattice by de-

composing it in terms of single quark correlators 〈0|qα(x)q†β(y)|0〉. Those

in turn are simply the matrix elements D−1(x, α; y, β) of the inverse of the
lattice Dirac operator. If O were to be based on an arbitrary five-quark
wave function, the brute force computation of the correlator of O would in
general require quark propagators D−1(x, α; y, β) from any space–time point
x to any other point y. On currently used lattice sizes this would require
the computation and storage of order 1013 matrix elements, taking up about
100 Terabytes and requiring hundreds of Teraflops of CPU power. This is
clearly out of reach for presently available computers.

The only way around is to fix a quark wave function ψβ(~y) and store
only the matrix elements

d(xα) =
∑

~yβ

D−1(x, α; y0 = 0, ~y, β)ψβ(~y) . (6)

This choice drastically cuts down the computing requirements. Unfortu-
nately, at the same time it also restricts O to be built as a product of single
quark wave functions with the single quarks being in some state ψ. One
needs to perform as many Dirac operator inversions as the number of differ-
ent quark wave functions contained in O. Since Dirac operator inversion is
usually the most expensive part of these computations, one typically settles
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with using only two different quark sources, one for the light quarks and one
for the strange quark. In fact, all five lattice pentaquark studies have used
this simplest choice.

Besides the spatial structure of O the single quark spin, colour and
flavour indices also have to be arranged properly for O to have the desired
quantum numbers. Even then the arrangement of indices is also not unique.
An additional difficulty one faces here compared to conventional three quark
hadron spectroscopy is that index summation becomes exponentially more
expensive if we increase the number of quarks. While with three quarks
this part of the calculation is usually negligible, even for the simplest five
quark operators it takes up around 50% of the CPU time. This circumstance
restricted the choice of pentaquark operators so far to the simplest ones.

To illustrate how these issues appear in practice we now discuss a few
specific examples of O that have already been used. In the first lattice
study [5] O had the same Dirac structure as that of nucleon plus kaon
system, but colour indices were contracted differently, as [6]

OI=0/1 = εabc [uT
aCγ5db] {ue s̄eiγ5dc ∓ (u↔ d)} , (7)

where I = 0/1 and the two alternative signs correspond to the isospin singlet
and triplet channel respectively. One could also contract the colour indices
as in the nucleon×kaon, a choice used by Mathur et al. [14].

Another possible way to contract the quark indices in O is according
to the diquark–diquark–antiquark picture of Jaffe and Wilczek [7]. They
proposed to insert the two diquarks in

OI=0 = εadg

[

εabc u
T
b Cγ5dc

]

[εdef u
T
e Cγ5df ] Cs̄T

g (8)

in a relative P -wave.
In general, in a diquark–diquark–antiquark wave function of the form (8)

the two diquarks must be in different quantum states1. On the lattice, that
would require the computation of several quark propagators. Instead, Sasaki
avoided the diquark–diquark symmetry by omitting a γ5 from one of the
diquarks [8]. The operator he, and following in his footsteps subsequently
Chiu & Hsieh [9] considered, was

OI=0 = εadg [εabc u
T
b Cdc] [εdef u

T
e Cγ5df ] Cs̄T

g . (9)

In summary, both in terms of spatial and index structure there are many
more possibilities for O, but on the lattice they all require considerably more
CPU time than the ones explored so far. However, we expect that several
other possibilities will be tried in the near future.

1 Otherwise the operator identically vanishes due to its symmetry with respect to the

interchange of the diquarks.
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2.2. Separating two particle states

Pentaquark spectroscopy is further complicated by the presence of two-
particle scattering states lying close to the pentaquark state. Lattice cal-
culations are always performed in a finite spatial volume, therefore, these
scattering states do not form a continuum. They occur at discrete energy
values dictated by the discrete momenta

pk =
2kπ

L
, k = 0, 1, . . . ,

allowed in a box of linear size L. In lattice pentaquark computations it
is absolutely essential to be able to distinguish between these two-particle
nucleon–meson scattering states and genuine five quark bound states.

In fact, the first experimentally found exotic baryon state, the Θ+(1540)
lies just about 100 MeV above the nucleon–kaon threshold. This implies
that for large enough time separation the correlation function is bound to be
dominated by the nucleon–kaon state. However, the mass difference between
the two states is quite small and the mass of the Θ+ might still be reliably
extracted in an intermediate time window, provided that

|〈Θ+|O|0〉| ≫ |〈N +K|O|0〉| . (10)

Even then, identifying the Θ+ is still a non-trivial matter since the Θ+

ground state is embedded in an infinite tower of nucleon kaon scattering
states with relative momenta allowed by the finite spatial box. Since the
parity of the Θ+ is unknown, we have to consider both parity channels. The
situation is qualitatively different in the two channels.

If the Θ+ had positive parity, its lattice identification would be somewhat
simpler. This is because due to the negative internal parity of the kaon it is
only the scattering states with odd angular momentum that produce positive
parity. The scattering state with zero relative linear momentum does not
couple to these and consequently it does not appear in the positive parity
channel. Therefore, the lowest scattering state here has relative momentum
p = 2π/L and it is above the Θ+, provided the linear size of the spatial box
is smaller than 4.5 fm. The box can thus be chosen small enough to ensure
that the Θ+ is the lowest state with positive parity and also to leave a large
enough energy gap for its safe identification.

The situation is much less favourable in the negative parity channel.
Using a similar argument one can show that here it is always the prel = 0
scattering state that is the lowest. The best we can do is that with the proper
choice of the spatial volume the Θ+ ground state can be the second lowest
state. Due care must be taken to ensure that Θ+ is between the first two
scattering states, well separated from both of them. This is essential because
the reliable identification of higher lying states is much more difficult.
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Finally, for a convincing confirmation of the pentaquark state in either
parity channel, one also has to identify the competing scattering states ob-
serving the volume dependence dictated by the allowed smallest momentum.
This would clearly require a finite volume analysis combined with a reliable
method to extract several low lying states from the spectrum. Apart from
the volume dependence of the masses, another powerful tool to distinguish
between two-particle and one-particle states is to check the volume depen-
dence of their spectral weights [14].

There are essentially two possible ways of identifying more than one low
lying state from correlators. Firstly, if there is a time interval where more
than one state has an appreciable contribution to the correlator, a sum of
exponentials can also be fitted as

〈0|O(t)O†(0)|0〉 = C1e
−E0t + C2e

−E1t + . . . . (11)

For this method to yield reliable energy estimates for higher states, one
usually needs extremely good quality data.

The other possibility is to make use of several different operators, com-
pute all possible cross-correlators and diagonalise the Hamiltonian in the
subspace spanned by the states created by those operators [4,12,13]. This is
a very powerful method to identify excited states and it can also be combined
with the first possibility.

2.3. Extrapolations, sources of errors and uncertainties

The lattice spectroscopy of hadrons built out of light quarks involves
two extrapolations. Firstly, simulations at the physical u/d quark masses
would presently be prohibitively expensive, therefore, one has to do several
calculations with heavier quarks and then extrapolate to the physical quark
masses. A set of typical chiral extrapolations are shown in Fig. 1.

The lightest quarks used in presently available pentaquark studies cor-
respond to pion masses in the range 180–650 MeV (see Table I).

Secondly, the space–time lattice is not a physical entity, it is just a regula-
tor that has to be eventually removed to recover continuous space–time. This
implies that physical quantities have to be computed on lattices of different
mesh sizes and extrapolated to the zero lattice spacing (continuum) limit.
Lattice simulations can differ from one another in many technical details
and it is only the continuum limit of physical quantities that is meaningful
to compare among different simulations.

In the remainder of this subsection we briefly summarise the sources of
errors and uncertainties in lattice simulations indicating also how to handle
them.
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Fig. 1. Chiral extrapolation of the masses different five quark states from Ref. [7].

TABLE I

Lattice spacing and smallest pion mass of lattice pentaquark calculations.

Action a (fm) Smallest mπ (MeV)

Csikor et al. Wilson 0.17–0.09 420

Sasaki Wilson 0.07 650

Mathur et al. chiral 0.20 180

Chiu & Hsieh chiral 0.09 400

Ishii et el. improved Wilson 0.15 850

• Statistical errors are well understood and can be kept at bay by in-
creasing the statistics.

• Extrapolations in quark mass and lattice spacing are another source
of uncertainty. Fortunately mass ratios of hadrons are usually quite
insensitive in the present range of parameters.

• Quenching, i.e. neglecting the fermion determinant (omitting quark
loops) is still a necessary compromise we have to live with in most
of the lattice calculations. Fortunately experience tells us that stable
hadron mass ratios have only a few per cent quenching error.
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• Finite volume effects constitute another potential source of error. There
are different sources of volume dependence that can be properly ac-
counted for and even be used to distinguish between bound states and
two particle scattering states.

• As we have already discussed the desired state can be contaminated

from other nearby states, but this can be taken care of by a combination
of the cross correlator technique and a careful finite volume analysis.

• Finally there is a theoretical uncertainty originating in the lack of
any guidance in the choice of operators and the inability to choose
O optimally. This can result in larger statistical errors or even in
a complete failure to identify an existing state. For this reason it is
almost impossible to rule out the existence of a state with given energy
and quantum numbers.

3. Results

Having set the stage we can now present the lattice results along with
our interpretation. Five independent lattice pentaquark studies have been
presented. Except for one (Chiu & Hsieh, whose conclusion is exactly the
opposite) they all agree that the lowest state with positive parity lies much
higher than the Θ+ and a state consistent with the Θ+ can only be seen
in the negative parity channel. Some groups interpret this as a two-particle
scattering state, others as a Θ+, however, we would not consider either of
these conclusions as the final word. In more detail the main results can be
summarised as follows:

• Csikor, Fodor, Katz and Kovacs [5] identified a state in the IP = 0−

channel with a mass consistent with the experimental Θ+ and the
lowest mass found in the opposite parity IP = 0+ channel was signifi-
cantly higher. Using 2× 2 cross correlators an attempt was also made
to separate the Θ+ and the lowest nucleon kaon state.

• Sasaki [8] using a different operator and double exponential fits, subse-
quently also found a state consistent with the Θ+ also in the IP = 0−

channel. He also managed to identify the charmed analogue of the
Θ+ 640 MeV above the DN threshold. (The experimentally found an-
ticharmed pentaquark lies only about 300 MeV above the threshold.)

• Mathur et al. [14] reported that they could not see any state compatible
with the Θ+ in either parity isosinglet channel. Although their smallest
pion mass was the closest to the physical one and they use an improved,
chiral Dirac operator, they utilised the nucleon×kaon operator and
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their lattice is the coarsest of the four studies. On the other hand they
made use of sophisticated multi-exponential fits with Bayesian priors.

• Ishii et al. [11] find lowest states in both parity channels consistent with
the previous studies, however, using special mixed boundary conditions
to tell a resonance from a two-particle state, they interpret the negative
parity state as a two-particle signal.

• Finally Chiu & Hsieh [9], in disagreement with the first two studies,
saw a positive parity isosinglet state compatible to the Θ+, whereas the
lowest state they found in the negative parity state was much higher.
In a subsequent paper [10] they also identified states claimed to be
charmed counterparts of the Θ+.

At this point we can only offer our largely speculative interpretation of
the results. The most disturbing is the mismatch between the states found
by Chiu & Hsieh on the one hand and the other studies on the other hand.
According to the interpretation of Chiu & Hsieh their different masses can be
explained by their use of a quark action with better behaviour at small quark
masses. However, the pion mass range they consider (≥ 400 MeV) overlaps
with those of Sasaki (≥ 650 MeV). In this region using the same hadron
operator all other hadron masses in the literature obtained with these two
quark actions agree (see e.g. [9, 15]). Thus it is extremely unlikely that the
same operator with different lattice actions produces such vastly different
masses.

The disagreement in the interpretation of the negative parity state con-
sistent in energy with the Θ+ mass is more understandable. In our opinion
a clearcut picture will not emerge until all the scattering states and potential
Θ+ candidate states up to the expected mass of the Θ+ have been clearly
identified. Only when these eigenstates have been separated can one ap-
ply the tools available to tell whether a given state is a resonance or a two
particle state. We would like to emphasize that so far none of the lattice
studies could identify even the lowest expected scattering state in both parity
channels.

4. Conclusions

In summary, lattice QCD is the only known systematic approach to
calculate the features of the pentaquarks from first principles (i.e. QCD).
There have been five independent exploratory lattice pentaquark studies,
so far with somewhat altogether inconclusive results. In order to justify
the claimed signals as pentaquark states one should convincingly separate
them from the existing nearby scattering states as we indicated above. More
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specifically, it cannot be ruled out that pentaquark states observed so far
on the lattice turn out to be mixtures of nucleon–kaon scattering states. It
is also possible that negative pentaquark search results will turn out to be
a consequence of non-optimal choice of operators. As we already emphasised,
for a full picture one needs to systematically map out the lowest few states
in all interesting channels. This will most likely be possible only with the use
of non-trivial spatial quark wave functions, the study of several operators
and the cross-correlator technique combined with a careful finite volume
analysis. This is currently under way and we hope to be able to report new
results in the near future.

4.1. Note added

Between the Conference and the submission of this writeup six more
lattice studies appeared [16]- [21] and we certainly do not want to discuss
their results here in detail. In a nutshell, the main new developments are that
Holland & Juge repeated the pentaquark search with a different, but equally
good chiral action [20] as was used by Chiu & Hsieh, with negative result.
Csikor et al. widened their pentaquark search considering spatially non-
trivial operators, including one modelled after the Jaffe–Wilczek diquark–
diquark–antiquark proposal. They managed to identify the lowest expected
scattering states in both parity channels, but found no Θ+. Finally, Lassock
et al. reported a signal consistent with the Θ+ in the spin 3/2 channel [21].
(All previous lattice searches concentrated only on the spin 1/2 channel.)
In spite of these developments, it is fair to say that the lattice still does not
have the final word on pentaquarks and further work is needed.
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