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Predictions for the radiative return with the muon pair and pion pair
final state from KKMC and PHOKHARA Monte Carlo programs are com-
pared and discussed. The case of muon pairs is well understood, especially
of the initial state radiation (ISR), where three different second order calcu-
lations agree very well. The case of the final state radiation (FSR) requires
more tests. Matrix element in KKMC of the EEX type with the incomplete
second order NLL corrections is not good enough for the radiative return
at Q2 < 1 GeV with the precision requirement better than 1%. A method
of extending the superior CEEX-type matrix element in KKMC to the pion
pair final state is described.

PACS numbers: 12.38.Bx,12.38.Cy

1. Introduction

The aim of this contribution is to compare whatever the best we have at
hand for evaluation of the initial state radiation (ISR) effect in the process
e−e+ → µ−µ+γ using KKMC [1, 2] and PHOKHARA [3–5] Monte Carlo
programs. The above investigation will be partly extended to the process
e−e+ → π−π+γ.

2. ISR in muon pair production

Both KKMC and PHOKHARA programs are full scale MC event gen-
erators, which can provide for any experimentally observable distribution.
We concentrate, however, on the distribution of the squared mass spectrum
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Q2 = s′ of the muon pair, because this distribution is relevant for the radia-
tive return measurements of R(s), and also because this particular distribu-
tion we may compare with the classical semi-analytical calculations. Here
we shall also exploit the analytical formulas of Ref. [6] (see also [7]), which
implement analytical second order ISR calculation of Ref. [8] and third order
leading-logarithmic (LL) ISR calculation of Refs. [9,10]. The ISR formula of
Ref. [6] is provided by the KKsem facility of KKMC. In the actual KKsem
implementation we use a version of the formula where numerically negligi-
ble (at least at LEP energies, see Ref. [6]) second order NNLL terms are
neglected.

It is important to stress from the very beginning that authors of
PHOKHARA and KKMC use different terminology to describe Born level
matrix element and higher order matrix element. I shall not try to unify
terminology or fully explain the differences, referring the reader to original
works, like Refs. [1, 2] and [3–5]. Let me explain only very briefly the main
differences. The KKMC authors define Born as e+e− → f f̄ without any
photon emission and the radiative return is necessarily the first order process
with respect to such a Born level. The leading-logarithmic (LL) corrections
are of order αnLn, where n = 1, 2, 3 . . . ∞ is the standard perturbative or-
der, while mass logarithm L = ln(s/m2

e) is coming either from the virtual
photon correction or the phase space integration over the real photon angle
down to zero value. The NLL and NNLL corrections are of order αnLn−1

and αnLn−2, correspondingly. Concerning mass terms, they are routinely
neglected in KKMC for the electron (except those which integrate up to a
finite correction) while an effort is made to keep all of them for the final state
fermions, at least at the Born and the first order level. KKMC implements
several variants of the QED matrix elements, which feature different level of
higher order and mass term truncation. PHOKHARA authors employ the
leading-order (LO) as a name for the process in which one (and only one)
photon is emitted in the final state. They name as the next-to-leading-order
(NLO) their matrix element with the one-loop corrections and the second
real photon. This terminology may seem more adequate to discuss radiative
return. However, when trying to match the two terminologies one has to pay
attentions to the available phase space of the first real photon. Depending
on whether the minimum emission angle is imposed or not, one gets full fac-
tor L or not, even at the LO. This affects strongly the relative magnitude of
higher order corrections with respect to LO or LL. In this study we generally
exclude from the considerations “non-photonic” corrections due to emission
of additional lepton pair and vacuum polarization.

In Fig. 1 we compare results of KKMC and of PHOKHARA using the
best available ISR matrix element in both programs at

√
s = 1.01942 GeV.

In KKMC we use second order matrix element with coherent exclusive expo-
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Fig. 1. Muon pair mass (square) spectrum in case of ISR only.
√

s = 1.01942 GeV.

nentiation (CEEX) described in Refs. [2, 11]. The second order CEEX ma-
trix element has complete next-to-leading-logarithmic (NLL) contributions1

and complete next-next-to-leading-logarithmic (NNLL) contributions. The
magnitude of NLL and NNLL corrections was also examined in a separate
studies, see contribution of S. Yost in these proceedings. KKMC includes
most of the third order LL contributions by the virtue of exponentiation2.
On the other hand, PHOKHARA implements complete second order ISR,
including complete NLL and NNLL corrections (i.e. singular corrections pro-
portional to α

π
m2

e and α
π
m4

e, which integrate to finite corrections of order α
π
,

in the limit me → 0). PHOKHARA does not resum (exponentiate) soft
photon contributions to infinite order. It is worth to stress that the two
MC calculations, KKMC and PHOKHARA, and semianalytical formula of
KKsem of Refs. [6,8] represent a set of three completely independent second
order (using terminology of KKMC) calculations of the ISR in every aspect
of calculating QED matrix element and integrating the phase space.

The main comparison of the ISR calculations is shown in Fig. 1(a), where
the distributions dσ/dQ2 from KKMC and KKsem agree very well, within
0.2%, except very low Q2 where they diverge by about 0.3% 3, while Fig. 1(b)

1 For unpolarized beams, see discussion in Ref. [2] related to Eq. (128) therein.
2 It is also known that exponentiation of the YFS type sums up quite substantial part

of third order LL, see Refs. [9,10].
3 Note that similar comparison of KKMC and KKsem was done in Ref. [2] for LEP

energies. At the present lower energy
√

s = 1.01942 GeV subleading terms are,
however, more important.
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shows certain additional cross-check. The reason for this discrepancy is not
clear. Neglected NNLL in KKsem is a viable candidate, but to confirm
this hypothesis one would need more tests. In the same plot we see that
PHOKHARA agrees well with KKsem at low Q2 (aligning with KKsem)
and differs by about 0.25% in the central region (we need higher statistics
from PHOKHARA to confirm this number) from both KKMC and KKsem
and drops sharply at soft limit, high Q2, because of the lack of soft photon
resummation. In order to understand quantitatively the effect of lack of
exponentiation in PHOKHARA we compare its result in Fig. 1(b) with a
variant of KKsem in which we switch off exponentiation, i.e. all terms beyond
second order are truncated. The smooth curve in Fig. 1(b) representing
result of this truncation fits very well PHOKHARA result. In particular,
looking into this result, one may think that the deviation of PHOKHARA
by 0.25% in the central region is related to its neglect of the third order LL.
This conjecture needs more test to be confirmed.

We summarize on the results of Fig. 1 that KKMC with the second order
CEEX matrix element, PHOKHARA with its second order matrix element
and KKsem implementing second order analytical calculation agree very
well, within the expected range and the pattern of the discrepancies seems
to be understood.

In KKMC there is another more primitive QED matrix element denoted
as EEX, see Ref. [2] for its full description, which follows closely the classical
Yennie–Frautschi–Suura (YFS) exponentiation scheme and its implementa-
tion is limited to first order plus second order LL. In the second order EEX
matrix element (contrary to CEEX) the NLL corrections are incomplete.
(On the other hand EEX third order LL is complete, while in CEEX it is
incomplete.) For technical and historical reasons, see discussion below, EEX
type matrix element is used for the production of low energy hadronic final
states, for example for pion pair. It is, therefore, important to check how
good it is compared to KKMC with more complete coherent exclusive ex-
ponentiation (CEEX) matrix element. This is done for the muon final state
in Figs. 2. (CEEX is not yet available for π-pairs). In Fig. 2(a) we see
results from KKMC CEEX and several variants of EEX. We are actually
plotting dσ/dQ2, dividing all results by KKsem of Ref. [6], the same as in
previous Fig. 1. The curves marked EEX72 represent exponentiated EEX
matrix element based on complete first order, while EEX73 and EEX74 in-
clude also complete second and third LL, while CEEX2034 is the same as
in Fig. 1. As we see, at low Q2, that is for the hard photon emission, re-
sults of EEX matrix elements depart from other more complete results by
up to 3%! In the ρ region it is different from the KKsem, CEEX KKMC

4 Indices 203, 74 etc. follow numbering of MC weights in Ref. [1].
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by about 1%. The above result is also consistent with what we have seen
in Fig. 1. EEX is therefore not well suited for the use in the high precision

measurements of R(s) using radiative return below Q2=1 GeV. This result
is not very much surprising, as EEX of KKMC has incomplete second order
NLL. The observed effect at the low Q2 is a little bit bigger then what we
expected. We have therefore done certain additional tests. We have split
EEX results into three components, β̃i, i = 0, 1, 2, compared each of them
with analytical result of Table I of Ref. [2], also at

√
s = 10 GeV. We do

not show results of these tests here, but the overall pattern of discrepan-
cies seems to be consistent with NLL class of corrections. This additional
test indicates also that the main source of the problem is an approximate
double real emission matrix element in EEX and not the incomplete virtual
corrections. In particular we have included in these tests the complete NLL
contribution in β̃0 and β̃0. This did not help! The whole discrepancy seems
to result from the use of the LL-approximate matrix element for the double
real photon emission in EEX. The above observation is consistent with the
older tests in Ref. [2] at LEP energies.
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Fig. 2. Muon pair mass spectrum from KKMC and KKsem.

2.1. Muon pair, ISR+FSR

Let us not include FSR in the game, again for the muon pair final state.
In fact, at low Q2 the rate of muon pair in radiative return is higher than of
π pairs, hence dσ/dQ2 of muons can be used as a reference distribution for
measuring R(s). It is therefore worth to test FSR in KKMC and to check
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result for dσ/dQ2 once again. In Fig. 2(b) we show result from KKMC
for second order CEEX matrix element in which we include ISR, FSR and
its interference. We compare MC result with the semianalytical result of
KKsem in which with the same ISR radiative function of Ref. [6]. The FSR
distribution of Ref. [2] features incomplete NLL in KKsem, so it is definitely
inferior with respect to ISR counterpart — the complete list of the FSR
radiative corrections in KKsem can be found in Table II in Ref. [2]. This
above semianalytical formula also misses the interference of ISR and FSR,
which in first order is zero in the inclusive dσ/dQ2 so this omission does
not harm. In Fig. 2(a) we see the ratio of the corresponding results from
KKMC and KKsem. (NB. PHOKHARA is able to provide result with FSR
for muon pairs in the LO, and it would be interesting to include it in the
comparison.) This result is rather preliminary and has to be checked. In
any case, the agreement better than 1% found all over the dQ2 range is quite
satisfactory as a starting point for further investigation5.

3. ISR for π
+

π
− pair production

Let us now switch to low Q2 π-pair state produced at the radiative return
process. In Fig. 3 we compare KKMC with the EEX style matrix element
on one hand with PHOKHARA second order (marked as PHOKHARA2)
on the other hand. The EEX matrix element is the default one in KKMC,
with first order exponentiation, the completed second and third order LL
(EEX74). We limit ourselves to ISR only. The results of Figs. 3(a), (b)
are obtained without any cutoffs. In Fig. 3(a) we show the actual distribu-
tions, including also the distribution for the muon pairs. We see that for
Q2 < 0.33 the muon-pair cross section is bigger than that of π-pair. The ra-
tio PHOKHARA/KKMC is not so well understood as the analogous results
for the muon pair shown in the previous section. The discrepancy at high Q2

we attribute to lack of exponentiation in PHOKHARA6 while another larger
discrepancy at low Q2 is most likely due to incompleteness of second order
NLL in EEX matrix element on KKMC, and it corresponds to deviation
which was already seen in Fig. 2(a). In Fig. 3(c), (d) we show the analo-
gous results for relatively mild cut on photon momentum, where photon is
defined as a “missing four momentum” calculated knowing pion momenta
and beam momenta. We ask for the momentum of such a “collective un-
seen photon” to be directed below 15◦ from the beam and to have at least

5 In one bin we see trace of large weight fluctuation which is probably due to rounding
errors. This result was obtained using weighted events. For the MC run with weight-
one events this effect would disappear. Such numerical instabilities need further
investigation.

6 This does not hinder practical applications of PHOKHARA for radiative return mea-
surements, which concentrate at lower Q2.
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Fig. 3. Comparison of PHOKHARA NLO and KKMC with EEX matrix element.

ISR only.

10 MeV of energy. For each π we require that it is situated in wide angles,
e.g. separated by more than 40◦ from each beam. Results in Fig. 3(c), (d)
look quite similar, except that the discrepancy between PHOKHARA and
EEX KKMC is bigger (we need better statistics from PHOKHARA to see it
more clearly). This can be attributed to the fact that the leading logarithm
L due to real emission is diminished by the cut on the photon angle with
respect to beams.

3.1. How to extend CEEX ISR to hadronic final states?

In the following we show that the superior CEEX ISR matrix element
can be extended to hadronic final states at low Q2, like pion pair. This can
be done provided we have some decent modeling of the hadronic final state in
terms of the corresponding formfactor. In view of its practical importance,
let us elaborate on this point.
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In CEEX Born amplitude for ee → µµ is defined as a four-spinor tensor

B
(p
λ;X

)

= B

(

pa

λa

pb

λb
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pd
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;X

)

= B

[
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] [
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]
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∑
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(
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(

GB
f,µ

)

[cd]
≡ ū(pc, λc)G

B
f,µv(pd, λd) ,

GB
e,µ = γµ

∑

λ=±

ωλgB,e
λ , GB

f,µ = γµ

∑

λ=±

ωλgB,f
λ , ωλ = 1

2(1 + λγ5) ,

Π
µν
B (X) =

gµν

X2 − MB
2 + iΓBX2/MB

, (1)

and it enters as a basic building block in every spin amplitude in the CEEX
scheme, with arbitrary number of photons. See Eq. (43) in Ref. [2] for
notation. The above Born is calculated using Chisholm identity and replaced
with the bi-spinor objects of the Kleiss–Stirling method.

In case of hadronic final state the structure of the Born amplitude is

B
µ

[ba](X)Jµ(X, qi) , Jµ(X, qi)X
µ = 0 , (2)

where qi are momenta of the final state hadrons, X =
∑

qi, and

B
ν
[ba](X) = ie2

∑

B=γ,Z

HB

(

GB
e,µ

)

[ba]
Π

µν
B (X) =

∑

B=γ,Z

B
Bµ

[bc](X) . (3)

In the rest frame of X one has Jµ = (0, ~J) and we may split J into difference
of the two massless four-vectors Jµ = Jµ

+ − Jµ
−. In the arbitrary reference

frame the above prescription extends as follows7

Jµ
±

=
1

2
√

X2
(
√

−J2 Xµ ±
√

X2 Jµ) . (4)

Each of the two corresponding components in B can be expressed in terms of
the of the Kleiss–Stirling bi-spinors s±(p1, p2), see Eqs. (A4)–(A6) in Ref. [2].
This can be done using completeness relation for v̄(pb, λb) γνJν

± u(pa, λa)
taking advantage of J2

± = 0.
Note that the above CEEX implementation requires that we parametrize

the production amplitude of the each final hadronic state one by one in
terms of the formfactors in a completely exclusive manner. However, this
is necessary anyway for good phenomenological description of these often
resonant low energy hadronic states. We conclude that CEEX can be used
for ISR for low energy hadron production. The question is only how much
programming it will be and who will do it.

7 The author would like to thank J. Kuehn for suggesting him this solution.
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3.2. Conclusions

The case of radiative return with the muon pair final state is well under-
stood, especially for the ISR where three different second order calculations
agree very well. The case with FSR requires more tests. Matrix element
EEX of KKMC with the incomplete second order NLL is not good in the
radiative return at Q2 < 1 GeV for precision requirement better than 1%.
Method of porting CEEX matrix element of KKMC to pion pair final state
is outlined.

The author would like to thank J. Kuehn and A. Denig for useful dis-
cussion. Warm hospitality at TTP Karlsruhe University and INFN Frascati
where part of this work was done is also acknowledged.
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