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Recently introduced Detrended Moving Average (DMA) method is
examined and compared with Detrended Fluctuation Analysis (DFA)
technique for artificial stochastic Brownian time series of various length
L ∼ 103 ÷ 105. Our analysis reveals some statistical properties of the Hurst
exponent values measured with the use of DFA and DMA methods. Good
agreement between DFA and DMA techniques is found for long time series
L ∼ 105, however for shorter series two methods are clearly distinguishable.
No clear systematic relation previously postulated in literature between
DFA and DMA results is found. However, it is shown that on the average,
DMA method gives overestimation of the Hurst exponent compared with
DFA technique.

PACS numbers: 05.40.Jc, 05.45.Tp, 89.65.Gh, 89.75.Da

1. Introduction

Investigation of stochastic time series is crucial for better understanding
of various physical, biological, financial and economical processes. The main
problem discussed in this context is the presence or absence of the autocor-
relations in data. There are various techniques to do so. One of them is
based on the measurement of the fractal structure of the given time series
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and is related to the so called scaling exponent H sometimes denoted also
as α [1–3]. This exponent plays a significant role as the main concept upon
which fluctuations of a time series around its local trend (drift) are formed.
Therefore it may be considered as the one of the crucial points responsible
for ‘genetic code’ of time series of various origin.

The scaling exponent α is variously defined in literature. For the purpose
of fractal analysis it can be introduced as follows.

Let x(t) (t = 1, . . . , L) is the time series defined for discrete time points t.
By rescaling time axis γ times (e.g. enlarging it ×10n), one reveals the tiny
structure of time series not visible for smaller resolution (γ ∼ 1). The fractal
structure of the series comes from the relation:

x′(t′) = Γx(γ−1t) ∼ x(t) . (1)

The above formula indicates that the magnitude of a time series should
be simultaneously rescaled Γ times in order to get (local) self similarity
correspondence between x(t) and x′(t′) series. It turns out that the scaling
factor Γ can be expressed in terms of time rescaling factor γ as:

Γ = γα , (2)

where α > 0 is the real parameter known in literature as Holder exponent [1]
called sometimes also Hurst or Hausdorff exponent [2, 3].

The best known method to measure α exponent for both stationary and
nonstationary series is Detrended Fluctuation Analysis (DFA) [4]. Recently,
new method called Detrended Moving Average (DMA) has also been pro-
posed [5, 6]. Searches for better understanding how the results of these two
methods relate to each other are in progress [6–8].

A DFA method first developed for biological purposes [4] and then ap-
plied also to finances [9–11] is a detrendisation technique basically measuring
fluctuations of a given time series around its local trend as a function of its
length. It is based on the following steps:

1. A given signal x(t) (t = 1, . . . , L) of time series is divided into L/τ not
overlapping boxes of length τ each.

2. A polynomial fit xτ,k is constructed in each box representing the local
trend in that box, where k is the order of polynomial fit.

3. A detrended signal Xτ,k(t) is found:

Xτ,k(t) = x(t) − xτ,k(t) (3)
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and then its fluctuation (standard deviation)FDFA(τ, k) is calculated

FDFA(τ, k) =

√

√

√

√

1

L

L
∑

t=1

X2
τ,k

(t) . (4)

4. From the basic differential stochastic equation of the time series x(t)
with a local drift µ(t) and a local dispersion σ(t)

dx(t) = µ(t)dt + σ(t)dX(t) (5)

one expects the power law behavior:

FDFA(τ, k) ∼ τα(k) , (6)

where α(k) is the searched Hurst exponent.

The last equation enables us to calculate α exponent directly from
log–log linear fit

log FDFA(τ, k) ∼ α(k) log τ . (7)

It can be proved that α(k) depends very weakly on k [11, 12] so in most
applications one takes linear function (k = 1) as a good candidate for xτ,k.
This approach will be used further in our paper.

The examples of artificial time series constructed for different values of
α exponent are shown in Fig. 1. It is seen that the bigger α the more
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Fig. 1. Examples of time series with different α exponents.
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‘quiet’ time series is, i.e. a signal fluctuates in a more correlated way. In
fact, for 0 < α < 1/2 we have negative autocorrelations (antipersistence)
in time series. On the other hand, if 1/2 < α ≤ 1, there are positive
autocorrelations (persistence) in signal. The case α = 1/2 corresponds to
completely uncorrelated signal, so called integer Brownian walk. An existing
link between α exponent and the probability that a given trend will last in
the immediate future, if it did so in the immediate past, gives an additional
hint about trend changes forecast possibility [13].

A Detrended Moving Average (DMA) technique looks very similar to
DFA. The main difference one meets here is that instead of linear or poly-
nomial detrendisation procedure in equally sized boxes, one uses moving
average of a given length λ. Thus basic steps of DMA analysis are as fol-
lows:

1. A simple moving average of length λ (λ = 1, . . . , L) is constructed for
x(t) series (t ≥ λ):

〈x(t)〉λ =
1

λ

λ−1
∑

k=0

x(t − k) . (8)

2. A detrended signal is found similarly to Eq. (3):

Xλ(t) = x(t) − 〈x(t)〉λ (9)

and its fluctuation within a window of size λ reads now:

FDMA(λ) =

√

√

√

√

1

L − λ + 1

L
∑

t=λ

X2
λ(t) . (10)

3. Similarly to DFA a power law should be observed

log FDMA(λ) ∼ α log λ , (11)

where α is the searched Hausdorff–Holder–Hurst exponent.

The DMA technique is less complicated and seems to be faster in prac-
tical application than DFA algorithm. But does it give the same results as
DFA? So far no final conclusion has been reached. This article contributes
to the above area of interest.
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2. DMA–DFA comparison study

Preliminary results obtained for real financial series [6] suggest that
αDMA values are lower than corresponding αDFA results. Also for the set of
artificial time series of length L ∼ 218 constructed with the use of Random
Midpoint Displacement (RMD) algorithm one finds αDFA ∼ αDMA +0.05 [5]
what supports the existence of systematic displacement between DFA and
DMA results, at least for series of length mentioned above. On the other
hand, in many practical applications the length of time series we deal with
is shorter (e.g. finance, biology, genetics, medicine), especially if one looks
at the local α exponent value rather than the global one [9].

To attack the problem of mutual dependence between DMA and DFA
results we looked first at the set of artificial arithmetic integer Brownian
time series of length L = 3 × 104 with discrete time interval ∆t = 1, i.e.:

x(L∆t) = x0 +

L
∑

k=1

∆xk , (12)

where ∆xk (k = 1, . . . , L) are centered and normalized random variables
taken from normal distribution and generated by random number generator.

The obtained results for αDMA and αDFA exponents for such series were
distributed randomly and no systematic difference between α’s measured
with two techniques for the same series was found. Two cases with oppo-
site relation αDMA versus αDFA are shown in Fig. 2(a), (b). In one case
αDFA > αDMA and αDFA − αDMA = 0.02, in the other one αDFA < αDMA

and αDMA − αDFA = 0.04.
This forced us to treat the problem statistically, i.e. we decided to find

statistical distributions of Hurst exponents measured within two methods for
artificial series of various length. It seemed to us interesting to compare two
statistics together and to work out correlations between scaling exponents
measured within DMA and DFA techniques for the same sample of time
series.

We took for this purpose samples of arithmetic Brownian time series of
length L in the range 102 −105. Each sample contained N ∼ 65000 series of
fixed length. We covered uniformly the whole range of L in log-scale keeping
L ∼ L0q

n. The approximate log step q ∼ 3/2 has been used to create variety
of lengths.

For any sample of fixed length series the averaged scaling range 〈τ〉 or
〈λ〉 has been calculated for defined number of candidates (∼ 30) with its
standard deviation στ (σλ). The scaling range was taken as the range of τ
or λ variables strictly obeying scaling laws of Eqs. (7), (11) and assumed to
terminate respectively at 〈τ〉−στ for DFA and 〈λ〉−σλ for DMA. Only series
with fitting parameter R2 > 0.98 were taken into account for α exponent
extraction.
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Fig. 2. Example of DFA and DMA α exponent fit for artificial Brownian time series

of length L = 30000, where αDFA > αDMA — (a), αDFA < αDMA — (b).
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Fig. 3. Probability density of scaling α exponents obtained with the use of DFA

(circles) and DMA (squares) techniques for the sample of 65000 time series of

length L = 1000. The normal distribution fit with its parameters is also shown

and marked as a solid line.
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For any sample of time series a statistical distribution of αDFA and αDMA

has been built. Examples of such distributions for short, medium and long
time series are shown in Figs. 3, 4, 5.
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Fig. 4. Probability density as in Fig. 3, but for a sample of series with length

L = 10000.
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Fig. 5. The same as in Fig. 4, but for the sample of series with length L = 30000.

Additional lines represent L = 1000 normal fit drawn for comparison in the same

scale.

The first observation is that for any length L both distributions fit very
well normal distributions, but with different parameters. In particular, the
standard deviation σDFA of αDFA scaling parameters is always smaller than
the corresponding standard deviation σDMA of αDMA exponents. Moreover,
both standard deviations decrease when L grows. This may be explained
in terms of different sensitivity of DFA and DMA techniques to the pres-
ence of random autocorrelations in time series. Such autocorrelations are
naturally randomly distributed in any sample of generated time series and
hence a distribution of α exponent is normal. The probability of random
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autocorrelations is bigger for short time series, where all statistical fluctua-
tions manifest in a more vivid way. When L increases, their influence on the
presumed global autocorrelation in series can be neglected. Therefore, both
standard deviations σDFA and σDMA drop with increasing L. However, we
always observe σDFA < σDMA, what indicates that DMA technique is more
sensitive to such “autocorrelation noise” than DFA one.

One may look at this problem also from another side — like in Fig. 6.
Here we have drawn several plots of DFA and DMA analysis, i.e. ln F versus

ln τ or ln λ plots for several corresponding artificial Brownian series of length
L = 1000. It is seen that deviations from the strict power law behavior, if
occur, are more drastic for DMA than for DFA case and the dispersion of
produced slopes is also larger for DMA than for DFA, despite the fact that
DMA plots are more smooth in comparison with DFA ones.

The next observation concerns the mean values. We have got 〈αDFA〉N <
〈αDMA〉N for all L, where 〈.〉N is taken over a sample of N time series. A clear
shift of the central DMA values to the right with respect to DFA ones (see
Figs. 3–5) does not suggest however that any systematic relation between
αDMA and αDFA exists. Indeed, evaluating the correlation factor

corr (αDFA, αDMA) =
〈αDFAαDMA〉N − 〈αDFA〉N 〈αDMA〉N

σDFAσDMA
(13)

we found it increasing with L, nevertheless it never indicates full or almost
full correlation. It is maximal for large L, where corr (αDFA, αDMA) ∼ 0.8
for L ∼ 104–105.
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-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 1 2 3 4 5 6 7
ln τ τ τ τ  (ln λλλλ)

ln
 F

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5
0 1 2 3 4 5 6 7

DMA

DFA
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several randomly chosen Brownian integer time series of length L = 1000.
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This can be graphically illustrated in Figs. 7, 8, where a correlation
plot αDFA versus αDMA is shown for Hurst exponent values obtained for
L = 10000 and L = 30000 series. We notice that DMA gives higher values
than DFA method in most series. This result is independent on the length of
time series. In fact the percentage excess (n+) of cases where αDMA > αDFA

over the cases where αDMA < αDFA (n−), i.e.:

δ± =
n+ − n−

n+ + n−

(14)

changes from ∼ 20%–25% for series with L < 10000 up to ∼ 50% for longer
series.
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Fig. 7. Correlation plot αDFA versus αDMA for the sample of 65000 Brownian time

series of length L = 10000.
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Fig. 8. Correlation plot αDFA versus αDMA for the sample of 65000 Brownian time

series of length L = 30000.

It implies that the mean of difference δDFA−DMA, where

δDFA−DMA = 〈αDFA − αDMA〉N (15)
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is not a good measure of ‘distance’ between two investigated methods. It is
more convenient therefore to define this distance in a standard way, i.e.:

∆DFA−DMA =
√

〈(αDFA − αDMA)2〉N . (16)

We worked out the sufficient number of time series samples of various
length to find a relationship ∆DFA−DMA(L). The line of the best fit for
collected data is drawn in Fig. 9. This plot indicates that the average dis-
placement between αDFA and αDMA exponents for a given time series ranges
from 15% for series with L ≤ 103, down to 2% for long series (L ∼ 105). The
latter value is much smaller than one reported in [5]. The fastest drop in
DFA–DMA distance is observed for medium length series, i.e. when L ∼
103 − 104. For such series ∆DFA−DMA makes on the average ∼ 10% of αDFA

value.
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Fig. 9. A mean difference ∆DFA−DMA between αDFA and αDMA exponents calcu-

lated for the same series as a function of the series length L.

This difference might be of interest if more detailed study of α exponent
is required for more detailed predictions to be made(e.g. heart diseases,
finances, etc.). The plot in Fig. 9 also suggests that ∆DFA−DMA → 0 when
L → ∞. The latter cases have not been explored by us.

3. Conclusions

We report from the analysis of artificial Brownian integer time series and
from the collected data that, on the average, DMA method overestimates
Hurst exponent values in comparison with DFA technique. This result con-
tradicts to some previous hypothesis in literature. The DMA method seems
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to be also more sensitive to the presence of random fluctuations in autocor-
relations in time series than DFA analysis does. In many practical situations
it is an disadvantage leading to the false signal of not existing, global, noise
free autocorrelations in time series.

The mean distance between two methods, i.e. the mean difference be-
tween αDFA and αDMA exponents calculated for the time series of given
length L is a smooth decreasing function of L. For shorter series (L ≤ 6000)
this distance reaches ∼ 15% what might be important in precise determina-
tion of α exponent for such series.

There are some open questions. It is not exactly clear where the scaling
law exactly starts or terminates, so one needs a more strict requirements how
the scaling range should be determined for DFA and DMA techniques and
how uncertainties in the choice of scaling range are related to uncertainties
in the scaling exponent α. This work is now in progress [14].
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