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By using regular time-steps we define discrete-time random walks and
flights on subordinate (directed) Continuous-Time Hierarchical (or Weier-
strass-Mandelbrot) Walks and Flights, respectively. The obtained results
can be considered as a kind of warning that indicates some persistent, non-
linear, long-term autocorrelations (artifacts) accompanying the recording of
empirical high-frequency financial (and probably other types of) time-series
by regular time-steps, indeed.

PACS numbers: 05.45.Tp, 02.50.–r, 05.40.–a

1. Motivation

We consider a possible reason for non-linear, long-term autocorrelations
present in empirical and our synthetic high-frequency (HF) financial time-
series. The autocorrelations present in empirical time-series, which were
assumed by physicists as a stylized fact, were studied by them since more
than one decade [1–4]. In distinction the synthetic time-series were obtained
by us from the recently developed one-dimensional Continuous-Time Hier-
archical Walks (CTHW) [5,6] and analogous Continuous-Time Hierarchical
Flights (CTHF) [5]. It seems that the power-law autocorrelations discovered
by discretization of the time-series obtained within the CTHW and analo-
gous log-normal ones found for the CTHF, have a persistent character, i.e.
they seem to be unavoidable artifacts for the HF time series yet not only of
financial type.
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2. The model

In this section we consider the above mentioned two types of the hierar-
chical (Weierstrass–Mandelbrot) models which cover two types of represen-
tations of empirical high-frequency financial time-series and hence two types
of the corresponding non-linear autocorrelations (power-law and log-normal
ones which we call indeed the ‘long-term autocorrelations’ observed in the
same time-windows).

2.1. Self-affine CTRW formalism and main result

The present, generalized version of the CTRW model is the combined
one defined by the non-separable hierarchical (or Weierstrass–Mandelbrot)
walk which can be occasionally (randomly) intermitted by momentary lo-
calizations (WWRIL); the localizations themselves are also described by the
Weierstrass–Mandelbrot (or hierarchical) process. It should be noted that
the steps of the walk as well as the momentary localizations are uncorre-
lated. For example, the typical part of synthetic trajectory of the walker,
which can be obtained within the WWRIL by simulation, is briefly shown
in Fig. 1; note that the horizontal intervals represent localizations while tan-
gent one the walks. This approach makes it possible to study by (hierarchi-
cal) stochastic (Monte Carlo) simulations the whole spatial-temporal region,

Fig. 1. Synthetic (lower) and subordinated (upper) trajectories in continuous and
discretized time (where discretization step is denoted by ∆t). As it is seen, the sub-
ordinated trajectory (which is identical with the synthetic one until the beginning
of vector ~A4) can expand only in the positive X-direction.
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while analytically it is possible to study only the initial, pre-asymptotic and
asymptotic ones but not very important intermediate region. We found that
the following two-stage procedure of extracting the non-linear long-term au-
tocorrelations between single steps of the walker from the WWRIL (which
originally, as synthetic trajectory in continuous-time, does not exhibit this
type of correlations) is necessary: (i) discretization of time, (ii) transfor-
mation from the synthetic to the subordinated (one-sided or dual) walk; in
particular, this second stage requires explanation.

Application of the time discretization procedure with time-step (horizon)
∆t automatically introduces discretization of the space variable by assuming
∆X(tn) = X(tn +∆t)−X(tn), n = 0, 1, 2, . . . , as the corresponding spatial
single-steps (here X(tn) and X(tn + ∆t)) are the positions of the walker on
the synthetic continuous-time random walk trajectory at successive discrete
time instants n = 0, 1, 2, . . . . This is how the discretized synthetic trajectory
was defined (cf. Fig. 1) while the subordinated trajectory (also shown there)
can develop only in the positive X-direction as it was done by transition from

Fig. 2. Plot of a single realization of a basic synthetic, subordinate (directed)
continuous-time trajectory (defined by the sequence of vectors ~A1, ~A2,
~A3, ~A4, ~A5, . . .) and synthetic, discretized one (defined by a sequence of ade-
quately chosen, characteristic vectors ~Q1, . . . , ~Q2, ~Q3, . . . , ~Q4, ~Q5, . . .). The ver-
tical axis denoted as Sub(X) (i.e. subordinate X) is defined as: Sub(X(n ∆t)) =
∑n−1

j=0
| ∆X(j ∆t) |.
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∆X(tn) (connected with the discrete synthetic trajectory) to its absolute
value | ∆X(tn) |. As it is seen, this one-sided random walk obeys the
feature of non-negative of their increments; in the case of Lévy processes
this would relate to Lévy subordinates considered in [9, 10].

Fig. 3. Autocorrelation of the centered absolute variations of the stock price (or
the walker centered absolute variations of the single step displacement defined by
| ∆X(t) | − 〈| ∆X(t) |〉, where time t = n ∆t, n = 0, 1, 2, . . . , and ∆X(t) =

X(t + ∆t)−X(t)), given by K(t) = 〈| ∆X(0) ·∆X(t) |〉 − 〈| ∆X(0) |〉 · 〈| ∆X(t) |〉

for the synthetic high-frequency time-series. This quantity was obtained by our
time-discretization procedure within the Weierstrass–Mandelbrot walks randomly
intermitted by localizations (WWRIL) for: (I) Gaussian, and (II) non-Gaussian
regimes of the stock price. The slopes of both curves (defined by exponent d

for almost three decades) differ but slightly (viz. for case I: d ≈ 0.42, and for
case II: d ≈ 0.45). The dynamic exponents, η1 and η2, define the evolutions of
the second and fourth moments of the stock prices (displacements) X(t) (and they
depend on the partial dynamic exponents α′, α, β). The temporal partial dynamic
exponents α′ and α describe the localization and time-dependence of the walking
state, respectively. The spatial exponent β defines space penetration within the
walking state.

The basic continuous-time series obtained from these stochastic simula-
tions is shown in Figs. 1 and 2 by a sequence of vectors ~A1, ~A2, ~A3, ~A4,
~A5, . . . , connecting the turning points of a single realization of a subordinate
random walk trajectory expanding in positive X-direction as we study only
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the absolute values of the stock price variation | ∆X |. This simulation is
supported by the waiting-time distribution which is the main quantity of our
two-state (walking-localization) model. The states of the model are again
characterized by their own waiting-time distributions (which give indeed the
main distribution in the form of a weighted sum). Each single-state waiting-
time distribution is a hierarchical, geometrically weighted superposition of
partial waiting-time distributions, describing the regular spatial-temporal
processes (connected with single hierarchy generations) which are already
easy to simulate [6, 11].

The synthetic (derivative), discrete time-series was obtained by dis-
cretization of the original (basic) continuous-time series at a fixed time hori-

zon ∆t (shown in Fig. 2 by the sequence of characteristic vectors ~Q1, . . . , ~Q2,
~Q3, . . . , ~Q4, ~Q5, . . .).

As it is seen, the turning points of the basic continuous-time series are, in
general, incommensurate with the analogous points supplied by the discrete
time series. The autocorrelation function K(t) (defined in the caption to
Fig. 3) has been studied versus time just for this discrete time-series.

As it is shown in Fig. 3, the autocorrelation K(t) exhibits a power-law
relaxation over more than three decades both for the Gaussian and non-
Gaussian processes.

3. Further results and concluding remarks

Hitherto, we studied the representation of financial tick data by the
continuous-time Weierstrass–Mandelbrot walk trajectory while in this sec-
tion we consider the same set of data points represented by the continuous-
time Weierstrass–Mandelbrot flight trajectory. In the latter case, the dis-
placement of the walker or the price variation is shown by the vertical vector
(instantaneous jumps) and not by the tangent one (the walk having a finite

velocity such as, for example, that shown by vectors ~Aj , j = 1, 2, . . . , in
Figs. 1 and 2).

In Fig. 4 synthetic tick data (full circles) together with synthetic and sub-
ordinated continuous-time discretized trajectories are shown. As it is seen,
vector ~Qn+1 depends on vector ~Qn i.e., the domino effect is also possible for
this type of representation of this tick data.

In Figs. 5 and 6 the autocorrelation function K(t) exhibits log-normal
autocorrelations after high-frequency time discretization (at time-horizon
∆t = 1 min). It should be noted that these correlations can be mistaken
locally for a power-law [7, 8]. Again these correlations have long-time, per-
sistent character
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Fig. 4. Synthetic tick data (full circles) shown together with synthetic and subor-
dinated continuous-time and discretized trajectories.

Fig. 5. The log-normal dependence of the autocorrelation function K(t) (defined
in the caption of Fig. 3) vs. time within four weeks time-window for the Gaussian
price variations.
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Fig. 6. The log-normal dependence of the autocorrelation function K(t) (defined in
the caption of Fig. 3) vs. time within four weeks time-window for the non-Gaussian
price variations.

It should be emphasized that we studied a kind of random walk on a
random walk and random walk on a random flight [12, 13] and obtained
results which require further studies to better understand them, even in the
context of arbitrary time-series.
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