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By using the correlation matrix approach, we decompose the evolution
of a set of the 100 largest American companies into the components (port-
folios) defined by the eigenvectors of the correlation matrix. Among the
results, we show that a number of the non-random components exceeds the
previous estimates based on much shorter time series of daily returns. This
indicates that for short signals the bulk of random eigenvalues defined by
Random Matrix Theory can comprise also a significant amount of infor-
mation. We also show that the components corresponding to a few largest
eigenvalues and describing the most collective part of the market evolu-
tion reveal strong nonlinear correlation structure in contrast to the other
components. All the components are multifractal. Moreover, by using a
modified definition of the correlation matrix, we are able to decompose
the daily pattern of the German DAX30 index into components which can
characterize the recurrent events occurring at precise moments of a trading
day.

PACS numbers: 89.75.–k, 89.75.Da, 89.75.Fb, 89.65.Gh

1. Introduction

Temporal evolution of asset prices in a stock market, although extremely
noisy [1], reveals significant cross-asset correlations, leading to formation of
a hierarchy of stable asset clusters emerging out of noise [2,3]. This of course
effectively reduces the number of degrees of freedom carrying information.
Based on the correlation structure of the market, different theories like the
Markowitz optimal portfolio theory [4] and Arbitrage Pricing Theory [5] were
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developed providing the necessary mathematical basis either for the portfolio
selection or for uncovering the cluster structure of the market. Those theories
apply the correlation matrix formalism and allow an investor to decompose
the market into a number of independent asset subsets, each corresponding
to a particular correlation matrix eigenvalue; the associated eigenvectors
define the potential investing portfolios. Despite the fact that in accordance
with the conventional portfolio theories the portfolios associated with all
the eigenvalues may be used and their information content is equivalent,
the most modern approach based on Random Matrix Theory (RMT) [6]
levers this assumption and groups the eigenvalues into the ones carrying
genuine information about the market and the noisy ones sharing only the
universal properties of the Wishart random matrix ensemble (thus unrelated
to the market). Consequently, the portfolios corresponding to the “noisy”
eigenvalues cannot be considered as the valid ones.

Time evolution of a portfolio can be expressed in terms of the evolution
of its returns at a specific time scale. This allows one to investigate the
factors of the market dynamics by decomposing the market into the com-
ponents (eigensignals) that can reveal different properties. However, as the
financial markets are characterized not only by the cross-asset correlations
but also the temporal autocorrelations (memory), the construction of the
correlation matrix from signals corresponding to different assets is not the
only possibility. One can also study the market dynamics by constructing
the correlation matrix from a set of mutually equivalent signals related to
the same asset or to the same market index, but corresponding to differ-
ent intervals of time (for example, different trading days [7]). This kind of
analysis focuses entirely on the temporal correlations at a specific time scale
and, by calculating the eigenvalue–eigenvector structure of the matrix and
then the relevant eigensignals, it allows one to search for the existence of re-
peatable structures or other events which occur approximately periodically
in time. Such temporally oriented approach is interesting due to the fact
that there is some controversy in how to account for the so-called financial
stylized facts (the fat-tailed p.d.f.’s of the stock price fluctuations at different
time scales, the long-lasting memory in volatility, etc. [8]) that have their
origin in the temporal structure of the market. The principal objective of
the present work is to analyze the statistical characteristics of the market
eigensignals. In the next two sections we describe the basic formalism of
the correlation matrix approach and present results of our data analysis, in
which we concentrate on the identification of the non-random components
of the market by applying both variants of the correlation matrix described
above.
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2. Methodology

Let us consider a set of N time series (indexed by s) of normalized
logarithmic returns {gs(i)}i=1,...,T at a fixed time scale ∆t, which represent
different assets or different intervals of time e.g. different trading days (in
the latter case T denotes the number of the returns in a trading day). From
these time series we form an N × T data matrix M and then we calculate
the correlation matrix C = (1/T )MM

T . By diagonalizing C, we obtain
the set of eigenvalues λj and the corresponding eigenvectors vj

Cvj = λjvj , j = 1, . . . ,N . (1)

In the case of the correlation matrix constructed from different assets, each
eigenvector vj can be considered a representation of an N -asset portfolio Pj

with the weights equal to the eigenvector components ν
(k)
j . The ith portfolio

return can be expressed by

zj(i) =

N
∑

k=1

ν
(k)
j gk(i), i = 1, . . . , T . (2)

For a non-degenerate correlation matrix, Pi and Pj are independent for each
pair of their indices. The portfolios can be associated with the time series
of their returns Zj ≡ {zj(i)}i=1,...,T that we shall call eigensignals. In the
case of the correlation matrix derived from time series representing different
time intervals, the analogously-defined eigensignals can be interpreted as the
components associated with repeatable structures in the price or the index
fluctuations.

3. Results

Our study was entirely based on high-frequency data from the Ameri-
can (NYSE and NASDAQ) and the German (Deutsche Börse) stock market.
For the study of the cross-asset correlations we used time series of the stock
returns of N = 100 highly-capitalized American companies (capitalization
> 1010$) spanning a time interval between 1 Dec 1997 and 31 Dec 1999.
We carried out our analysis at a time scale of ∆t = 5 min (T = 40638); at
this time scale the correlations between the highly-capitalized stocks are al-
ready significant. As our previous study showed [9], the correlation structure
among the stocks of the largest companies is well-developed at time scales
shorter than 1 day. Figure 1 shows the functional dependence λ1(∆t) for the
100 stocks under study; λ1 describes the most collective component reach-
ing for ∆t = 5 min over 60% of its saturation level. The second part of our
analysis, involving the temporal correlation matrix, was performed on the
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DAX30 index recorded during the trading hours 8:45–17:00 with ∆t = 15s
frequency and covering the interval 1 Dec 1997–17 Sep 1999 (N = 451 trad-
ing days of length T = 1980 returns); the opening 15 min (8:30–8:45) were
omitted because of an undefined index value.
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Fig. 1. λ1(∆t) for a set of 100 stocks representing the companies of highest capi-

talization; ∆t = 390 min corresponds to daily time scale.

3.1. Cross-asset correlations

The first issue we shall discuss is the eigenvalue–eigenvector structure of
C, because it can be straightforwardly compared with the universal predic-
tions of RMT. Theory defines the lower and upper bounds for the spectra
of the sample correlation matrices (Wishart matrices), calculated from the
random signals with a Gaussian distribution of their values [10]

λmax
min = 1 +

1

Q
± 2√

Q
, (3)

where Q = T/N > 1. In our case Q = 406 and thus the RMT spectrum is
very narrow as the shaded region in figure 2 exhibits.

The largest eigenvalue λ1 in figure 2(a), commonly identified with the
market factor is significantly repelled from the rest of the spectrum and
describes the average behavior of the whole market (its magnitude λ1 ≃ 18
can be compared with a “rigid” market with λ1 = 100). The majority of
λj ’s escapes, however, the RMT region in both directions. A much better
agreement with the theoretical predictions for the random correlations can
be reached after removing the market factor from the data by means of the
least square fitting of Z1 to each of the signals {gs}: gs(i) = αs + βsz1(i) +
ǫs(i), where α, β are free parameters. A new correlation matrix C

′ can be
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Fig. 2. (a) Eigenvalue spectrum of the correlation matrix C (vertical lines), cal-

culated for the 100 highly capitalized American companies; the shaded vertical

region comprises the eigenvalues of a random Wishart matrix with the same Q.

(b) Eigenvalue spectrum after effective rank reduction of C, i.e. after subtracting

the contribution of the most collective component Z1.

then evaluated from the time series of residuals ǫs(i) [1,3]. Figure 2(b) shows
the so-decollectified eigenspectrum with N − 1 non-zero eigenvalues. Now
almost half of the total number of λj’s fall within the interval (λmin, λmax).
If one compares this fraction of RMT-like eigenvalues with the results of
other studies (e.g. [1] where this fraction was 94%), one realizes that in
our case much more non-random correlations exist. This is due to the fact
that we construct C from long time series, which for a fixed N leads to a
high value of Q and a narrow RMT spectrum, while in the other analyses
much shorter signals (and thus a smaller Q and a wider interval (λmin, λmax))
were used. Short signals enhance noise and make the identification of the
weak non-random correlations impossible [9]. This observation suggests that
the market evolution comprises more informative components than it might
seem from the studies based on short signals recorded e.g. at the daily time
scale that is typically used in such analyses.

Another quantity which can serve as a tool allowing us to differentiate
between the random and the non-random eigenstates is the distribution of

the eigenvector components ν
(k)
j and the related inverse participation ratio

(IPR). For a random matrix, the eigenvector components are distributed
according to the Gaussian distribution, while in the opposite case various
deviations from this distribution occur, for instance a localization (a few
large components dominate the p.d.f.) or a collective delocalization (the
components fluctuate around the average non-zero value). In the left panel
of figure 3 p.d.f.’s of the eigenvector components associated with λ1 and λ2

show signatures of delocalization. Almost all the stocks participate in v1

which indeed represents the market factor. This is better visualized in the
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Fig. 3. (Left) Histograms of eigenvector components ν
(k)
j for different eigenvectors

vj . A Gaussian is fitted to the empirical histograms in bottom panels. Vertical

scale is different in each panel. (Right) Inverse participation ratio for the correlation

matrix eigenvectors. Dashed line denotes noise level for a random case.

right panel of figure 3 in terms of IPR defined by

Ij =
N

∑

k=1

(

ν
(k)
j

)4
(4)

that estimates the inverse number of the components contributing signifi-
cantly to the eigenvector vj . The market factor comprises over 90 stocks
while the eigenvectors vj>80 are strongly localized; this remains in agreement
with the outcomes of earlier works [1, 3].

Let us now pass to a description of the statistical properties of the
eigensignals (2). In practical applications, variance of the eigensignal Zj

serves as a measure of the risk associated with the portfolio Pj; it can also
be shown that σ2(Zj) ∼ λj . The portfolios corresponding to the largest
eigenvalues are much more risky than those corresponding to the ones of a
moderate size and such a difference can manifest itself in the zj(i) p.d.f. In
fact, as figure 4 documents, the cumulative distribution of |z1(i)| is much
wider than its counterparts for the other eigensignals. Despite this, the tails
of all the distributions show scaling that is close to the inverse cubic power
law, similarly to c.d.f. of the stock returns [11–13]. Curiously, the extreme
part of the tail for Z1 looses its scaling. This behavior can be explained in
a spirit of the Central Limit Theorem: the large delocalization of v1 causes
Z1 to be a sum of almost 100 stocks while the other eigensignals on average
consist of only 1/3 of this number (this is not a rule, though, because in a
more strongly correlated German market the situation is different). Other
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calculations for the eigensignals Zj show [9] that the autocorrelation func-
tion c(Zj , Zj ; τ) drops down quickly and reaches noise level immediately
after one data point; this serves as a verification of the market efficiency.
There is no difference between different eigensignals. However, the nonlin-
ear correlations are Zj-dependent [9]. For example, the volatility memory
(a slow decay of c(|Zj |, |Zj |; τ) [14]) is by an order of magnitude stronger
for Z1 than for the other signals; also the leverage effect (c(Zj , |Zj |; τ) < 0
for τ > 0) [15] is present only in Z1, Z2 and Z3. Generally, the eigensignals
corresponding to the collective eigenvalues, and to λ1 in particular, show
considerably stronger nonlinear correlations.
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Fig. 4. Cumulative distribution functions for the eigensignals Z1 (circles), Z2

(squares), Z3 (triangles), and the average c.d.f. for the other 97 eigensignals (solid

line, no symbols). Dashed line denotes the inverse cubic power law.

It has been shown [16,18] that the evolution of the stock prices is strongly
multifractal on different time scales ranging from the high-frequency to the
daily one. This multifractality comes either from the broad probability dis-
tributions or from the existence of nonlinear correlations in data [17,18]. It
can be expected that the eigensignals made up of the sums of stock returns
are also of multifractal nature, but in general their multifractality expressed
in terms of e.g. the singularity spectra f(α) can differ among Zj ’s as a
result of their different content. We applied the Multifractal Detrended
Fluctuation Analysis (MF-DFA) [19] to all the eigensignals and calculated
the f(α) spectra for each Zj . In this procedure one removes trends from
the integrated data and calculates the functional dependence of the aver-
age qth-order fluctuation function Fq(n) (related to the qth moment of the
signal) on the length of a signal window n. If the signal under study has
a fractal structure, the fluctuation function shows the power-law behavior
Fq(n) ∼ nh(q), where h(q) denotes a family of the generalized Hurst expo-
nents. For an actual multifractal signal h(q) forms a decreasing function
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of q. The singularity spectrum can then be obtained easily by using the
following formula: f(α) = q[α− h(q)] + 1, where α = h(q) + qh′(q) is called
the Hölder exponent.
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Fig. 5. (Left) Singularity spectra f(α) for eigensignals Zj. Spectrum for the mar-

ket factor Z1 (thick solid) and a few other collective eigensignals Z2 − Z10 (thick

dashed) are distinguished. (Right) The corresponding Hurst exponents h(2); note

the transition between h(q) > 0.5 for j ≤ 8 and h(q) < 0.5 for j > 8.

Surprisingly, all the spectra in the left panel of figure 5 show clear mul-
tifractality (broad curves) and their widths are comparable; even the most
collective Z1 does not deviate much from the rest of the eigensignals. Such
multifractal structure of all the eigensignals indicates that despite the fact
that from a point of view of the information content some Zj’s can be con-
sidered as random and meaningless (the corresponding λj’s fall within the
RMT bounds and the eigenvector components are Gaussian-distributed),
they still carry correlations and nonstationarity inherited from the stock re-
turns. This can be regarded as an important observation also for practical
reasons, because the eigensignals are associated with the specific portfolios.
However, that these correlations leading to the multifractality are highly
nonlinear testifies the apparent conflict between indications of the two pan-
els of figure 5. In the right panel, where the Hurst exponents for q = 2 are
presented, we observe a transition from a persistent behavior of Zj for j ≤ 8
to a slightly antipersistent one for j > 8. Thus, according to this measure,
a majority of the eigensignals apparently do not reveal any significant linear
autocorrelations.

3.2. Temporal correlations

The correlation matrix derived from the time series representing different
trading days has different properties than its counterpart for a set of stocks.
The main difference is that the time series are much shorter and that the
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ratio T/N is small (Q = 4.39). As a result, the spectrum of the eigenvalues
for a Wishart matrix is relatively wide (figure 6). In spite of this fact, the
largest eigenvalue λ1=3.45 carries some amount of collectivity, which in the
present case can be interpreted as a signature of the existence of repeatable
events in the market evolution which occur at precisely the same moments
of different trading days. The rest of the eigenvalues except a few ones form
a bulk which perfectly agrees with RMT. This perfect agreement might
suggest that nothing more interesting is present in the data, but keeping in
mind the results of Section 3.1 it is more secure to conclude that at least no
other easily-detectable strong correlations exist. The magnitude of λ1 is not
impressive, however, if compared with the matrix rank of 451. This means
that even the events which are responsible for this eigenvalue are rather
subtle.

0 1 2 3 4 5
λ

i

Fig. 6. Empirical eigenvalue spectrum of the correlation matrix C (vertical lines),

calculated for DAX30 divided into N = 451 trading days, and compared with

eigenvalue range for a random Wishart matrix with the same Q = 4.39 (shaded).

Deviating eigenvalues represent repeatable events occurring at specific moments of

a trading day.

Figure 7 shows p.d.f.’s for the components of different eigenvectors. In
agreement with the above, this figure does not indicate any delocalization,
but a visible degree of localization in v1 instead. Indeed, an inspection of

the components of this eigenvector show large ν
(k)
j for certain trading days,

while the rest assumes small values (not shown). It is very interesting that
the largest components in v1 occur almost periodically for a long period
of time: the events related to this eigenvector could happen with about
monthly interval [7]. The nature of the events underlying the eigenvector
v1 can be better understood if we look at figure 8 displaying the time series
representing Z1 and Z2. Apart from the varying variance of the Z1 and Z2

fluctuations and from their non-Gaussian character (see [7]), a particularly
extreme jump can be seen at 14:30 in Z1 and there is a period of volatile
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Fig. 7. Distributions of eigenvector components ν
(k)
j for j=1, j=2, and an average

distribution for j=3,. . . ,451 (histograms) together with a Gaussian (solid line).
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Fig. 8. DAX30 intraday eigensignals corresponding to two largest eigenvalues. The

first 15 min of trading time were omitted because of an undefined value of index.

trading in early moments (before 9:15) in Z2. The former can be associated
with the market-related news releases in America (8:30 local time) which
usually have an impact on some European markets [7]. The eigensignals
corresponding to the smaller random eigenvalues do not show such large
jumps and p.d.f.’s of their fluctuations does not deviate from Gaussian.

The multifractal and Hurst analysis would be unreliable in this case
because our time series are too short.
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4. Conclusions

In our study we decomposed the evolution of the set of stocks for 100
highly capitalized American companies into the eigensignals defined by the
eigenvectors of the correlation matrix. Along the same scheme we also de-
composed the daily pattern of the German DAX30 index into the com-
ponents which can characterize the recurrent events occurring periodically
during a trading day. Our results firmly show that

(a) for the high-frequency data and long time series, the number of the
components carrying genuine information about the cross-asset cor-
relations exceeds the previous estimates based on much shorter time
series of daily returns; this suggests that the fact that an eigenvalue is
located in the RMT range should be interpreted with care;

(b) also for the set of 100 stocks, the eigensignals corresponding to a few
largest eigenvalues and describing the most collective components of
the market reveal different and more pronounced nonlinear correlation
structure than the other eigensignals;

(c) despite the different correlation strength and the different statistical
properties of the collective and the other eigensignals, in the case of
the 100 stocks all Zj show rich multifractal behavior; the eigensignals
for a few largest eigenvalues show also a trace of persistence;

(d) inherited from the stock price fluctuations, the tails of p.d.f. for the
eigensignals scale closely to the inverse cubic law with a slightly worse
scaling only for Z1;

(e) the correlations between different trading days do not show strong pe-
riodic recurrence since only one eigenvalue departs considerably from
the RMT spectrum; however, there are volatile periods of a trading
day in which one can identify the repeatable events which might carry
a portion of the market memory independently of the volatility clus-
tering phenomenon.
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