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We apply the Multifractal Detrended Fluctuation Analysis and the
Wavelet Transform Modulus Maxima to investigate multifractal proper-
ties of stock price fluctuations. By applying both methods to the same
data sets coming from the German and the American stock markets and
based on our earlier knowledge of how these methods detect multifractal-
ity while employed to well-known mathematical models, we compare the
results given by both methods and infer which one can be preferable in the
case of the financial data. We argue that the Multifractal Detrended Fluc-
tuation Analysis acts better for a global detection of multifractal behavior,
while the Wavelet Transform Modulus Maxima method is the optimal tool
for the local characterization of the scaling properties of signals.

PACS numbers: 89.75.–k, 89.75.Da, 89.75.Fb, 89.65.Gh

1. Introduction

After introduction of the concept of multifractality [1, 2] and of the
methods of its mathematical characterization e.g. in terms of the scaling
exponents spectrum τ(q) and the singularity spectrum f(α) [2], much ef-
fort has been devoted to the investigation of multifractal properties of real
data coming from diverse sources. Earth and atmospheric science [3–6],
human physiology [7–9], molecular biology [10–12] and finance [13–18] are
only few among many such examples. In particular, the multifractal behav-
ior of the financial data from stock, currency and commodity markets was
detected quite early after discovering its close similarity to the behavior of
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fluid turbulence [19]. The subsequent introduction of a mathematical model
based on the binomial multiplicative cascade (Multifractal Model of Asset
Returns [13, 32–34]) comprising the multifractality as its inherent property,
allowed one to explain the observed properties of the financial data also from
a theoretical point of view. This approach was largely successful also due to
the fact that it easily accounts for the observed stylized facts [20–23] of the
data like non-Gaussian tails of p.d.f. and long-range temporal correlations
in volatility, the issues which were beyond the reach of other models like the
fractional Brownian motion and the GARCH processes.

However, despite a multitude of the real-data analyses, a proper de-
tection of the multifractality in the experimental data still presents much
difficulty and is not always reliable [24]. In principle, there are two methods
of dealing with this subject: the Multifractal Detrending Fluctuation Anal-
ysis (MF-DFA) [25] and the Wavelet Transform Modulus Maxima method
(WTMM) [26,27]. MF-DFA is a generalization of the Detrended Fluctuation
Analysis [10] and is based on identification of scaling of the qth order mo-
ments of the data segments of varying length. On the other hand, WTMM
allows one to detect scaling by means of the maxima lines of the continuous
wavelet transform on different scales. Both methods remove trends present
in nonstationary signals and analyze the fluctuations. Both methods have
their advantages as the recent study [25] has shown, but our motivation
behind the present work is the apparent lack of a systematic comparative
study of these two competitive methods in the context of the financial data.

2. Formalism

2.1. Multifractal Detrended Fluctuation Analysis

MF-DFA has recently gained much popularity owing to its simple imple-
mentation and significant ability to describe a multifractal structure of data.
From a technical point of view it is a Rényi-like generalization of the older
DFA approach [10] commonly used to detect long-range temporal correla-
tions and to assess Hurst exponent for nonstationary data. In the standard
DFA procedure we consider the so-called signal profile Y (j) which is derived
from a time series x(i), i = 1, . . . ,N by the following expression

Y (j) =

j
∑

i=1

(x(i) − 〈x〉), j = 1, . . . ,N , (1)

where N is the time series length. Y (j) has to be divided into Mn segments
of length n (n < N) starting from both the beginning and the end of the
time series and, thus, one obtains 2Mn segments. A local trend of each
segment ν has to be subtracted from the signal by approximating it by
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an lth order polynomial P
(l)
ν . The variances for all the segments ν and all

segment lengths n are then evaluated

F 2(ν, n) =
1

n

n
∑

j=1

{

Y [(ν − 1)n+ j] − P (l)
ν (j)

}2
. (2)

F 2(ν, n) has to be averaged over ν’s and, in the final step being the multi-
fractal generalization of DFA, the qth order fluctuation function is calculated
for all possible segment lengths n:

Fq(n) =

{

1

2Mn

2Mn
∑

ν=1

[F 2(ν, n)]q/2
}1/q

, q ∈ R . (3)

It can be shown that for a signal with clear fractal properties, the function
Fq(n) scales within a range of n’s according to a power-law

Fq(n) ∼ nh(q) , (4)

where h(q) denotes the generalized Hurst exponent. For a monofractal sig-
nal, h(q) is independent of q and thus equals H = h(2), while for a multi-
fractal signal h(q) form a monotonously decreasing function of q. There is a
unique relation between the generalized Hurst exponents and the singularity
spectrum f(α)

α = h(q) + qh′(q) and f(α) = q[α− h(q)] + 1 . (5)

α is called Hölder exponent and characterizes the strength of a singularity;
f(α) is the Hausdorff dimension of the fractal subset with the exponent α. In
general, a multifractal can consist of two or more convoluted monofractals or
an infinite set of monofractals with the continuously varying α. How rich the
multifractal is can be expressed by the spectrum width ∆α := αmax −αmin;
the larger ∆α, the richer multifractal dynamics of the signal.

2.2. Wavelet Transform Modulus Maxima

The WTMM method [26–28] inherits the advantages of the wavelet trans-
form analysis [29] and was developed to deal with strongly nonstationary
data. It has an important ability to reveal hierarchical structure of singu-
larities and therefore proves useful in analyzing self-similar structures like
fractals. The wavelet transform, allowing one to decompose a signal in the
time-scale plane, is a convolution of the signal x(i) and a wavelet ψ:

Tψ(n, s′) =
1

s′

N
∑

i=1

ψ

(

i− n

s′

)

x(i) , (6)
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where s′-scale ψ is shifted by n. The wavelet transformed signal can be
represented graphically by a color-coded map of the coefficients Tψ(n, s′);
an example is presented in figure 1.

Fig. 1. Exemplary result of wavelet analysis: tick by tick data for Deutsche Telekom

(DTE, top), map of coefficients of the wavelet transform (middle), and its maxima

lines (bottom).

Out of a rich variety of available wavelets, we choose the third derivative

of a Gaussian ψ(3)(x) = d3

dx3 (e−x
2/2), which is insensitive to trends up to

a quadratic one. What is important in this context, in the presence of a
singularity of the strength α at a point n0, the coefficients Tψ show the power

law behavior Tψ(n0, s
′) ∼ s′ α(n0). Due to the data structure, however, this

relation can be unstable; therefore it is recommended to identify the local
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maxima of Tψ and use their moduli

Z(q, s′) =
∑

l∈L(s′)

|Tψ(nl(s
′), s′)|q ; (7)

here L(s′) denotes the set of all maxima for the scale s′ and nl(s
′) is the

position of a particular maximum. An additional supremum condition is
indispensable in order to preserve the necessary monotonicity of Z(q, s′)

Z(q, s′) =
∑

l∈L(s′)

(

sup
s′′≤s′

|Tψ(nl(s
′′), s′′)|

)q

. (8)

If the signal under study is fractal we require the existence of scaling
Z(q, s′) ∼ s′ τ(q). For a multifractal signal τ(q) is nonlinear. It is straight-
forward to relate this quantity to the singularity spectrum [2]

α = τ ′(q) and f(α) = qα− τ(q) (9)

and to the generalized Hurst exponents τ(q) = qh(q) − 1.

3. Data analysis

We applied both MF-DFA and WTMM to experimental signals coming
from the two large stock markets: Deutsche Börse in Frankfurt, Germany
and New York Stock Exchange. Our data [30] was the high-frequency tick-
by-tick recordings of stock prices spanning the time interval 1 Dec 1997–31
Dec 1999. The analyzed sets of stocks comprised the 30 highly-capitalized
Dow Jones Industrials (DJI) and the 30 companies included in the Ger-
man DAX index. In econophysics, one typically studies the logarithmic
price returns sampled with a constant frequency over certain time inter-
val. Instead, here we analyze the transaction-to-transaction price incre-
ments ps(ti) = ln(Ps(ti+1)) − ln(Ps(ti)), where ti denotes the transaction
moments (i = 1, . . . , N). A reason for such a choice is that as our ear-
lier studies proved [17, 18], the temporal evolution of a stock price can be
represented by a two-dimensional fractal, i.e. a fractal process of the price
fluctuation spread over a fractal support of the inter-transaction time inter-
vals ∆Ts(ti) := ti+1 − ti. In this situation, an analysis based only on the
price returns omits an important part of the fractal structure of the data.
Figure 2 illustrates this conclusion by presenting the rich multifractal spec-
tra (∆α≫ 0) of both the price increments ps(ti) and the time intervals ∆Ts.
All the spectra were evaluated using the MF-DFA procedure.

Although the spectra in figure 2 are multifractal, the ones for ps differ
much from the ones for ∆Ts. Maxima of the spectra for the price incre-
ments are placed near α = 0.5 (H ≃ 0.5) while the spectra for the time
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Fig. 2. Singularity spectra f(α) for price increments (solid) and for inter-

transaction time intervals (dashed) for three typical German stocks: Adidas

Solomon (ADS, top), BMW (middle), and Siemens (SIE, bottom).

intervals are placed at α = 0.8. This result expresses the linearly uncorre-
lated dynamics of ps and the persistent behavior of the time series of ∆Ts
(see [17] for a more detailed discussion). However, despite the fact that MF-
DFA clearly identifies the multifractality in the above example, our another
study based on WTMM ( [31], it will be published elsewhere) indicates that
each of the methods of detecting the multifractality gives us slightly different
results. We applied both methods to the same data sets obtained accord-
ing to a few well-known theoretical models like Brownian motion, truncated
Lévy flights, and binomial cascade. The results from that analysis suggest
that the WTMM method can act better in the presence of strong tempo-
ral correlations while it gives significantly-biased results if the signals are
characterized by broad p.d.f.’s. and weak correlations [31]. Since both the
correlations and the broad p.d.f.’s can be sources of the observed multifrac-
tal behavior, the reliability of outcomes strongly depends on the properties
of the analyzed signals.

In order to illustrate the MF-DFA and the WTMM performance if ap-
plied to our financial time series, we calculated the τ(q) multifractal spectra
for all the 30 German and for all the 30 American stocks and averaged them
separately within each of the two markets. Then we derived the singularity
spectra f(α) from such mean τ(q) functions. We also constructed benchmark
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spectra from the randomly-shuffled time series which were characterized by
lack of any temporal correlations and by the same p.d.f.’s as the original
signals. Figure 3 displays what we obtained along this way for both the
DAX (top panel) and the DJI stocks (bottom panel) and for the actual data
(left) and the benchmarks (right). The spectra in each panel are located
near the same α = 0.5 or slightly above this value, but we cannot see any
systematic difference in the maxima location between MF-DFA (full circles)
and WTMM (empty squares). This result agrees with the earlier outcomes
that the consecutive price increments are linearly uncorrelated.

The main difference between the results of MF-DFA and WTMM con-
sists in distinct widths ∆α, with the width for WTMM being much larger
than the one for MF-DFA. Indeed, for DAX we obtain: ∆α = 0.26 (WTMM)
and ∆α = 0.16 (MF-DFA), and for the DJIs we have: ∆α = 0.25 (WTMM)
and ∆α = 0.13 (MF-DFA). If interpreted straightforwardly, these results
suggest that the wavelet-based method detects more sophisticated dynam-
ics than the detrended fluctuation method. These results should be inves-
tigated with more care, though. As our experience teaches us, if the sig-
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Fig. 3. Mean singularity spectra for all 30 stocks from the German (top) and from

the American stock market (bottom); both the actual and the randomized signals

are shown (left and right, respectively). MF-DFA (full circles) and WTMM (empty

squares) are presented in each panel. Error bars on the right denote standard

deviation of α and f(α) calculated from 30 stocks.
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nal under study is monofractal or its multifractality is poor (e.g. fractional
Brownian motion, truncated Lévy processes), the WTMM approach fails to
detect its properties correctly and instead in that case one obtains spurious
multifractal spectra of a significant width [31]. The same refers to the situ-
ation in which the probability density of a signal has fat non-Gaussian tails:
WTMM overestimates ∆α in this case, either. Now it is not surprising that
the wavelet-based tool gives wider spectra for the randomized data (right
panels). On the other hand, if the computer-generated model data is per-
sistent, both methods produce spectra that are too wide when compared to
the theoretical ones, but the bias is less evident for MF-DFA, thus preferring
this method of analysis. By comparing the relative widths of the spectra
for the randomized and the actual signals, we found that the relative widths
are independent of the method. Taking all these pieces of information into
consideration, we conclude that MF-DFA offers results which are less biased
and therefore more reliable than the ones offered by WTMM.

The above discussion was related to the global properties of the signals.
However, if one would like to investigate the local scaling structure of the
signals and to look at the Hölder exponents in the neighborhood of each data
point, it is possible only by means of the wavelet transform, because in DFA
we loose the information (in favor of the result stability) while averaging
the moments in Eq. (3). Numerically, one can calculate the approximation

of the Hölder exponent called the effective Hölder exponent ĥ(n0, s
′). First,

the mean Hölder exponent h̄ has to be computed

ln[M(s′)] = h̄ ln(s′) + C , (10)

where M(s′) =
√

Z(s′, q)/Z(s′, 0) and s′ is scale (for q = 2 we obtain the
local version of the Hurst exponent). The effective Hölder exponent can be
derived according to the following relation

ĥ(n0, s
′) =

ln(T (n0, s
′)) − (h̄ ln(s′max) + C)

ln(s′) − ln(s′max)
, (11)

where s′max denotes the scale corresponding to the time series length. An
example of such analysis for a randomly selected stock (McDonald’s, MCD)

can be viewed in figure 4, where the effective Hölder exponent ĥ is shown as a
function of time expressed in data points (lower panel). The values fluctuate
around 0.5, which is in a perfect agreement with the results from the global
analysis (Fig. 3). However, we observe an apparent trend in the course of

ĥ(t), suggesting the existence of long intervals with the strong singularities

ĥ < 0.5 and the intervals with slightly weaker ones ĥ > 0.5. Interestingly,
such intervals can be associated with the specific behavior of the price (upper
panel of figure 4). It is tempting therefore to relate the local changes of the



Investigating Multifractality of Stock Market Fluctuations . . . 2455

effective Hölder exponent with the changes of the direction in which the
price goes. This issue requires, however, a more detailed investigation and
we shall not discuss it here.
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Fig. 4. McDonald’s (MCD) stock price (top) and the effective Hölder exponents

(bottom) as functions of time. Every 50th data point is shown.

4. Concluding remarks

The focus of this work was to compare the performance of the MF-DFA
and the WTMM methods in the task of identification of the multifractal
character of experimental data originating from the financial market. The
financial data is known to be highly nonstationary and this makes the mul-
tifractal analysis difficult. Our results show that both methods are capable
of detecting multifractality in time series of the stock price increments but
their outcomes differ from each other if applied to the same data sets. Due to
the lack of any knowledge of the exact processes underlying the financial dy-
namics, it is impossible to judge which of the methods is better basing only
on the experimental results. Only by employing our previous experience on
the subject, in which we applied MF-DFA and WTMM to investigate data
from the theoretical models for which the exact results were known [31], we
were able to interpret the results given by each of the methods. Our final
conclusion is that in an attempt to a global characterization of the fractal
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properties of the signals, the wavelet-based method overestimates the widths
of the f(α) spectra more than the MF-DFA one does. Thus we recommend
using the detrended fluctuation method being more reliable, while the results
from its wavelet-based counterpart should be interpreted more carefully. In
contrast, WTMM is an optimal tool for a more locally-oriented analyses,
which concentrate on local values of the effective Hölder exponents in close
vicinity of some data point. This methods is also superior to other methods
of the local analysis of the Hurst exponents like the DFA and the Detrended
Moving Average method needing much longer signals than WTMM does.

REFERENCES

[1] H.G.E. Hentschel, I. Procaccia, Physica D 8, 435 (1983).

[2] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman,
Phys. Rev. A33, 1141 (1983).

[3] Y. Ashkenazy, D.R. Baker, H. Gildor, S. Havlin, Geophys. Res. Lett. 30, 2146
(2003).

[4] E. Koscielny-Bunde, A. Bunde, S. Havlin, H.E. Roman, Y. Goldreich, H.-
J. Schnellnhuber, Phys. Rev. Lett. 81, 729 (1999).

[5] N. Kitova, K. Ivanova, M. Ausloos, T.P. Ackerman, M.A. Mikhalev,
Int. J. Mod. Phys. C13, 217 (2002).

[6] J.W. Kantelhardt, D. Rybski, S.A. Zschiegner, P. Braun, E. Koscielny-Bunde,
V. Livina, S. Havlin, A. Bunde, physics/0305079.

[7] P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum,
Z.R. Struzik, H.E. Stanley, Nature 399, 461 (1999).

[8] S. Blesic, S. Milosevic, D. Stratimirovic, M. Ljubisavljevic, Physica A 268,
275 (1999).

[9] J.M. Hausdorff, Y. Ashkenazy, C.-K. Peng, P.Ch. Ivanov, H.E. Stanley,
A.L. Goldberger, Physica A 302, 138 (2001).

[10] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Gold-
berger, Phys. Rev. E49, 1685 (1994).

[11] S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-
K. Peng, M. Simons, H.E. Stanley, Phys. Rev. E51, 5084 (1995).

[12] A. Arneodo, Y. d’Aubenton-Carafa, E. Bacry, P.V. Graves, J.F. Muzy,
C. Thermes, Physica D 96, 291 (1996).

[13] A. Fisher, L. Calvet, B. Mandelbrot, Multifractality of Deutschemark / US
Dollar Exchange Rates, Cowles Foundation Discussion Paper 1166 (1997).

[14] M. Pasquini, M. Serva, Economics Letters 65, 275 (1999).

[15] A. Bershadskii, Physica A 317, 591 (2003).

[16] K. Matia, Y. Ashkenazy, H.E. Stanley, Europhys. Lett. 61, 422 (2003).

[17] P. Oświęcimka, J. Kwapień, S. Drożdż, Physica A 347, 626 (2005).



Investigating Multifractality of Stock Market Fluctuations . . . 2457

[18] J. Kwapień, P. Oświęcimka, S. Drożdż, Physica A 350, 466 (2005).

[19] S. Ghasghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381,
767 (1996).

[20] V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, H.E. Stanley,
Phys. Rev. E60, 6519 (1999).

[21] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley,
Phys. Rev. E60, 5305 (1999).

[22] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003).

[23] S. Drożdż, J. Kwapień, F. Gruemmer, F. Ruf, J. Speth, Acta Phys. Pol. B 34,
4293 (2003).

[24] J.-P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B13, 595 (2000).

[25] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin,
H.E. Stanley, Physica A 316, 87 (2002).

[26] J.F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991).

[27] A. Arneodo, E. Bacry, J.F. Muzy, Physica A 213, 232 (1995).

[28] Z.R. Struzik, A. Siebes, Wavelet Transform in Similarity Paradigm I, CWI
report, INS-R9802 (1998); Z.R. Struzik, A. Siebes, Wavelet Transform in Sim-
ilarity Paradigm II, CWI report, INS-R9815 (1998).

[29] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Math-
ematics, SIAM, 1992.

[30] http://www.taq.com (data from NYSE) and H. Goeppl, Karlsruher Kap-
italmarktdatenbank (KKMDB), Institut für Entscheidungstheorie u. Un-
ternehmensforschung, Universität Karlsruhe (TH) (data from Deutsche
Börse).

[31] P. Oświęcimka, J. Kwapień, S. Drożdż, cond-mat/0504608.

[32] T. Lux, The Multi-Fractal Model of Asset Returns: Its Estimation via GMM
and Its Use for Volatility Forecasting, Univ. of Kiel, Working Paper (2003).

[33] T. Lux, Detecting Multi-Fractal Properties in Asset Returns: The Failure of
the ‘Scaling Estimator’, Univ. of Kiel, Working Paper (2003).

[34] Z. Eisler, J. Kertész, Physica A 343, 603 (2004).


