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The goal of this contribution is to compare 9 cases of FIR (Finite Im-
pulse Response) type filters, by using approximation theory based norms
for the following output parameters: delay and correlation between input
and output, and “smoothness” of the output derivative. It was found that
the most commonly used rectangular shape of impulse response is in gen-
eral not an optimum solution. Indications concerning the optimum shape
of impulse response subject to the assumed criteria are shortly presented
and the triangular shape of impulse response is recommended.

PACS numbers: 89.65.Gh, 02.30.Mv, 02.60.Ed, 89.90.+n

1. Introduction

One of the most common operations performed on market data is
a smoothing, low-pass filtering, which enables us to obtain less noisy data.
On the other hand, low-pass filtering results in delaying and distorting out-
put data. Both, high noise-content in original data, delay and distortion in
output data, have a negative impact on predictions of further market move-
ments. Therefore, it is important to choose the appropriate filter impulse
response to obtain a reasonable tradeoff between the delay and distortion
on one hand, and the smoothness of output data on the other hand.

2. Fundamentals of linear filtering

Linear filtering is one of the most common operations performed on
signals in various areas of science and technology. Basically, for the linear
filter the superposition principle or its frequency domain equivalent i.e.,
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frequency preservation principle is to be met. The relation between input
and output signal of a linear filter is given by convolution, e.g., [1],

y = h ∗ x , (1)

where x and y stand for filter input and output signal, respectively, h is the
filter impulse response, and asterisk denotes convolution.

Filter impulse response in discrete time domain can be either Finite
Impulse Response (FIR) or Infinite Impulse Response (IIR), e.g., [2]. In
practical applications, the unique representation of filter impulse response
in frequency domain, called the transfer function or transmittance is often
used. In terms of frequency domain terminology filters are divided into two
basic categories, that is low-pass filter and high-pass filter. By using the
superposition principle a number of sub-categories such as band-pass filter,
band-stop filter and other can be composed. The aim of our contribution
is to analyze the application of the FIR type low-pass filter in application
to smoothing market data. For the sake of comparison of various cases of
impulse response the approximation theory based criteria have been used.
In Fig. 1 an example of market data filtering (Dow Jones Industrial Average
daily quotations for 2004) by using triangular shape impulse response of
length 15 is shown.
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Fig. 1. Dow Jones daily quotations for 2004 (in color on line).
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3. Definitions and norms

Denote here as h the filter impulse response and filter input signal x,
being a fragment of market quotations. Now, with reference to (1) let y be
the convolution of h and x where

h = (h1, h2, . . . , hk) , (2)

is the filter impulse response of the length k, and k is an odd number

x = (x1, x2, . . . , xq) (3)

is the filter input signal of the length q (q=2 ∗ k − 1).
Now, we define the replica r as the steady-state part of the convolution y,

as follows
r = (yk, yk+1, . . . , y2k−1) . (4)

A very specific and commonly used smoothing filter is a rectangular
shape integrator of odd length k, whose impulse response is given as
h = (1/k, . . . , 1/k), [2]. For this case, the mean value of delay equals
(k−1)/2. As a matter of fact for other impulse responses of the same length
the delay would vary around this value. Therefore, the delay of (k − 1)/2 is
considered here as the predetermined, reference delay.

Consequently, it is assumed here, that the replica r, defined by (4) cor-
responds to the fragment s of input signal x, defined, as follows

s = (x(k+1)/2, . . . , x(3k−1)/2) . (5)

Signal s, from now on, will be referred to as the original.
Now, consider the pair of the original s and replica r. Define their

varying part as follows
sv = s − mean (s) , (6)

and
rv = r − mean (r) . (7)

Consequently, define the five following criteria:

(a) Delay (del) of replica r with respect to original s defined as

del =
(tc1 − tc2)

2
, (8)

where tc1 and tc2 denote the coordinates for which cross-correlation
functions cor(sv, rv) and cor(rv, sv) take the maximum value, re-
spectively.
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(b) Maximum of cross-covariance (crv) of normalized in L2 replica r and

original s defined as

crv = max (cor(sv, rv)) . (9)

(c) Product (pro) of normalized in L2 original s and replica r

pro = sv ⊙ rv , (10)

where ⊙ denotes calculation of product.

(d) Standard deviation of the derivative (sd) of replica r defined as

sd = std [dif (r)] , (11)

where std denotes standard deviation and dif is the first order differ-
ence, that is numerical derivative.

(e) Maximum Chebyshev norm of the derivative (mx) of replica r defined as

mx = max (abs [dif (r)]) . (12)

Criteria (d) and (e) represent the measure of the “smoothness” of filter
output signal.

4. Computations

For computations one minute quotations for the futures contracts on
WIG 20 index of Warsaw Stock Exchange, were used. The database covers
quotations from October 30, 2001 thru June 16, 2003, that is ca. 145 000
samples. Data has been divided into segments of q = 2 ∗ k + 1, with the
computational step equal q. This way for a given filter length k, a sequence of
originals s, and corresponding replicas r, both of length k, were determined.
Computations were performed for odd numbers of k (9 ≤ k ≤ 299) for the
whole database, and the results were averaged. The following shapes of
impulses response were considered

1. rectangular (boxcar), called RECT

2. triangular TRIANG

3. Hanning window HAN

4. Hamming window HAM

5. Blackman window BLACK

6. Chebyshev window with side-lobes ripple level −26dB CHEB26

7. Chebyshev window with side-lobes ripple level −40dB CHEB40

8. Chebyshev window with side-lobes ripple level −60dB CHEB60

9. Chebyshev window with side-lobes ripple level −100dB CHEB100.
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The above impulse responses are by the definition even functions. In
practical applications, in order to decrease the value of delay asymmetric
shapes of impulse response are often considered. The rationale for that
assumptions is to assign higher weights to more recent data. To cover the
asymmetric case the right-hand halves of the specified symmetric shapes of
impulse response were also taken into account.

5. Results

In Table I and II the results of computations for symmetric and asym-
metric shape of impulse response are summarized, respectively. Denote, as
follows

rdel — relative delay (del), that is defined by (8) divided by the re-
spective,

del — for RECT, (in [%]),

crv — maximum of cross-covariance defined by (9), (in [%]),

pro — product defined by (10), (in [%]),

rsd — relative standard deviation (sd), that is defined in (11) divided
by the respective (sd) for RECT, (in [%]),

rmx — relative maximum Chebyshev norm (mx), that is defined in
(12) divided by the respective (mx) for RECT, (in [%]).

TABLE I

The results of computations for the symmetric shape of impulse response.

Shape (rdel) [%] (crv) [%] (pro) [%] (rsd) [%] (rmx) [%]

RECT 0.00 67.95 55.59 100 100

TRIANG −0.50 76.44 74.73 120.73 102.48

HAN −0.36 78.09 76.89 144.29 114.43

HAM −0.46 76.79 75.20 130.01 106.92

BLACK −0.23 80.95 80.39 165.70 128.20

CHEB26 −0.01 71.90 67.00 116.87 124.07

CHEB40 −0.38 75.19 72.89 119.12 104.50

CHEB60 −0.27 78.77 77.78 143.86 114.94

CHEB100 −0.04 82.73 82.40 178.14 136.96
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Notably, RECT impulse response, despite being an even (symmetric) func-
tion has been considered as the reference also for asymmetric impulse re-
sponses, due to its common usage.

TABLE II

The results of computations for the asymmetric shape of impulse response.

Shape (rdel) [%] (crv) [%] (pro) [%] (rsd) [%] (rmx) [%]

TRIANG −3.69 66.16 50.84 134.85 129.29

HAN −3.63 65.47 48.22 151.48 138.03

HAM −3.43 66.05 50.06 139.31 129.79

BLACK −3.34 63.86 40.95 172.59 154.44

CHEB26 −2.71 67.56 54.52 138.85 155.03

CHEB40 −3.53 66.72 53.35 130.03 125.43

CHEB60 −3.41 65.05 46.17 153.72 140.54

CHEB100 −3.16 62.79 35.55 188.79 167.26

6. Conclusions

The following conclusions can be drawn from Table I and II:
1. Delay. Minimum value of delay is introduced by TRIANG, both for
symmetric and asymmetric case.

2. “Smoothness” . The highest degree of smoothing for the symmetric
case, measured by means of standard deviation (sd), and Chebyshev max-
imum norm (mx), is attained in the case of RECT. However, for the case
of maximum Chebyshev norm the following impulse responses: TRIANG,
CHEB40 and HAM show only a very slightly inferior performance. In the
asymmetric case CHEB40 and TRIANG give the best result.

3. Cross-covariance and product. For the symmetric case the highest
value of (crv) and (pro) has been attained for CHEB100. In the asymmetric
case CHEB26, CHEB40, and TRIANG are the best and similar in perfor-
mance.

4. Cross-covariance and “smoothness”, jointly. The filter for which
the ratio (crv)/(sd) or (crv)/(mx) attains the maximum value is sought.

The best (crv)/(sd) show RECT, TRIANG and CHEB40 — for the sym-
metric case, and TRIANG and CHEB40 — for the asymmetric case.

5. Product and “smoothness”, jointly. The filter for which the ratio
(pro)/(sd) or (pro)/(mx) attains the maximum value is sought.
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For both, (pro)/(sd) and (pro)/(mx) the best performance is attained, as
follows: for TRIANG and CHEB40 — for the symmetric case, and CHEB40
and TRIANG — for the asymmetric case.

It is clear that the most commonly used filter RECT (boxcar) is in general
not the best choice. For the case of impulse response symmetry a better
choice is TRIANG or CHEB40 filter, or CHEB100 filter — the latter for
the maximum of (crv) and (pro). For the asymmetric case where the main
criterion is delay, the best choice is TRIANG.

In practical applications of market data filtering the delay is considered
to be the most important figure of merit. From that viewpoint the optimum
filter is the asymmetric TRIANG. The symmetric TRIANG also yields su-
perior performance to the most of other filters. Therefore, the result of
our analysis indicate that closest to the optimum solution is the TRIANG
impulse response, both for the symmetric and asymmetric case.
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