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Hierarchical models of scale free networks are introduced where num-
bers of nodes in clusters of a given hierarchy are stochastic variables. Our
models show periodic oscillations of degree distribution P (k) in the log–
log scale. Periods and amplitudes of such oscillations depend on network
parameters. Numerical simulations are in a good agreement to analytical
calculations.
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1. Introduction

Recently there is a large interest in scale-free networks that seem to be
good approximations for such systems as the Internet, World Wide Web,
social or biological networks; for a review see [1–4]. A simple model that
exhibits the power law for degree distributions P (k) observed in real complex
networks is the Barabási–Albert model of preferential attachment [1]. The
model, however, suffers from very low values of the clustering coefficient C
[5] for large networks as compared to observations of real systems [1–4].
To overcome this discrepancy a model of hierarchical networks has been
introduced by Ravasz and Barabási (RB) where the clustering coefficient
is much larger [6]. The RB network consists of hierarchically connected
clusters, where numbers of nodes in every cluster of a given hierarchy, are the
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same. The degree distribution P (k) in this approach also exhibits power-law.
However, it is only a general trend. In fact, the degree distribution consists
of delta-peaks for only a few degree values, instead of continuous distribution
observed in real networks. In this paper, we introduce a class of more general
models, where number of nodes in every cluster is a stochastic variable, what
seems to be more justified for real network models. As a result the peaks of
P (k) are blurred, creating a network with wide range of possible k values,
but the log-periodic behavior of P (k) is still clearly visible.

Let us remind that log-periodic oscillations are characteristic features of
systems where a discrete self-similarity is present [7] and the effect can occur
even without a preexisting hierarchy [7] in such various systems as earth-
quakes [8, 9] or financial markets where log-periodic oscillations were ob-
served as possible precursors for financial crashes [10–12]. Such oscillations
were also found for mean residence times at chaotic crisis, where a collision
of a fractal attractor with a fractal or a non-fractal basin of another attrac-
tor, takes place [13, 14] and for the stochastic resonance in chaotic systems
near a crisis point [15].

2. The model

Our model possesses two parameters, a distribution PM(m), where
m = 1, 2, 3, . . . and a number p ∈ (0, 1]. We start out from a single cluster
(a cluster of hierarchy 0) of m + 1 fully connected nodes (Fig.1), where m
is a random number from a distribution PM(m). One node in the cluster is
its central node. The central node of the cluster is a center of hierarchy 0.
Next, we call our cluster the central one and create a random number m
of similar clusters. Each is created in the same way as the central clus-
ter, but we pick a random number m for each one independently, therefore,
they may include different numbers of nodes. Next, we connect a part p of
all nodes in non-central clusters to the central node in the central cluster.
This node becomes the central node for the whole cluster of hierarchy 1 we
have obtained so far. Similarly the central node of our cluster is a center
of hierarchy 1. We repeat the process, until we get a network of a desired
hierarchy. This model is referred to as P1 model. The model is general-
ization of the stochastic model proposed by Barabási and Ravasz [6]. If we
take PM(m) = δ(m,m0), where m0 is constant, our model simplifies to BR
model, with number of nodes and degree distribution determined strictly by
p and m0 values.

A variation of the model has been also studied. In each hierarchy d we
connect not a fraction p of nodes but a fraction pd. This model is referred
to as the PD model.
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Fig. 1. The first three steps of network creation in the P1 model.

3. Degree distribution of P1 and PD models

As previously noted, for PM(m) = δ(m,m0) we get a degree distribution
identical to that of BR model. It consists of separate peaks, corresponding
to degrees of central nodes of the following hierarchies. Central nodes of
given hierarchy have a fixed degree, dependent only on the network param-
eter p. At the logarithmic scale the distance between neighboring peaks is
approximately constant and equals log(m0+1). The peaks follow laws of dis-

crete scaling [7]. The heights of peaks with degrees ki decrease as k−γ
i , and

distances between consecutive peaks fulfill the relation ki+1/ki = λ. The
probability P (k) between peaks equals zero what means that only nodes
with peculiar degrees are possible. But what happens when the number m
is not a fixed value ?
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Numerical simulations show that each peak blurs, depending on the
PM(m) distribution. If the blur is small, the distribution consists of sep-
arate peaks, but they are not delta-shaped. If the blur is large enough, the
peaks overlap and a continuous degree distribution is obtained. Fig. 2 shows
the degree distributions for both cases in P1 model. Both display a discrete
scaling, and have the same scaling exponent (up to statistical fluctuations),
independent of network parameters.

Similar behavior has been observed in the PD model, although scaling
exponent is parameters dependent.
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Fig. 2. Degree distribution for two networks with different PM(m). Filled circles are
for m = 3 or 4 with equal probability, gray circles are for uniform m distribution
between 1 and 5. The straight lines show scaling of peak heights and correspond to
γ = 0.967 for the first case (continuous line) and γ = 0.973 for the second (dotted
line).

4. Mean m value approach

Numerical simulations have shown that when m is not a constant but
a random number from a given distribution, peaks blur, eventually over-
lapping and creating a continuous distribution. However, regardless of the
actual shape, the distribution still consists of peaks. Each peak has an aver-
age degree k and a mass n representing number of nodes that belong to this
peak. All nodes in a peak are centers of the same hierarchy. Using a mean

value of m, the distance between peaks and their relative heights can be
easily found. From these two values we get directly the discrete scaling ratio
λ and the scaling exponent γ. In the following calculations we neglect the
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degree increase of nodes due to their connections to the central cluster, as
this effect increases the node degree at most by d, what is insignificant for
higher hierarchy centers.

4.1. P1 model

Let us denote an average degree of peak of hierarchy d by kd, an average
number of nodes in a cluster of hierarchy d by Nd, and an average number
of centers of hierarchy d in a network of hierarchy h by nh

d . The network size

Nd increases exponentially with hierarchy d as Nd = 〈m + 1〉d+1. Centers of
hierarchy 0 have a degree k0 equal to 〈m〉 and it increases by p 〈m〉 Nd−1 in
each next hierarchy d. We obtain

kd = 〈m〉 + p 〈m + 1〉
(
〈m + 1〉d − 1

)
. (1)

If 〈m + 1〉 > 1 and d ≫ 1, the above expression can be simplified to

kd ≈ p 〈m + 1〉d+1 . (2)

If the condition is not satisfied, distances between peaks are not constant at
logarithmic scale and the network is not scale-free.

Since the discrete scaling ratio λ simply equals kd+1/kd thus we get
λ ≈ 〈m + 1〉.

The scaling exponent γ can be found using the cumulative degree distri-
bution. Starting from

P (k) =
∆Pcum

∆k
=

∆Pcum

∆d

∆d

∆k
, (3)

where d are consecutive hierarchies, and using calculations presented in Ap-
pendix A we get P (k) ∼ k−2 so the scaling exponent γ equals 2, regardless
of p and PM(m). Note that this scaling is valid for peak masses nh

d only.

4.2. PD model

The case of PD model is very similar to the P1 model. However, since
instead of a fraction p we connect a fraction pd of nodes from non-central
clusters, the degree kd is

kd = 〈m〉
1 − (p 〈m + 1〉)d+1

1 − p 〈m + 1〉
. (4)

When we assume that p 〈m + 1〉 > 1 we can omit one in the numerator
and get the discrete scaling ratio λ = kd+1/kd ≈ p 〈m + 1〉. Similarly to the
P1 model, if it is not true, the network is not scale-free.



2504 K. Suchecki, J.A. Hołyst

To find the scaling exponent, again we use cumulative degree distribution
and Eq. (3). For the PD model we get γ = 1 + (ln 〈m + 1〉)/(ln p 〈m + 1〉).
Note that since p ∈ (0, 1] and p 〈m + 1〉 > 1 for scale-free networks, the
scaling exponent is always greater than 2.

4.3. Numerical data

Numerical simulations have been performed for networks of hierarchy 6,
with p = 0.5 and various uniform distributions of m, to find out whether
analytic predictions are correct.

Tables I and II contain obtained data. Fig. 3 shows the comparison
between prediction and results.

As it can be seen the numerical data are in a good agreement with our
analytic predictions. The largest deviation is for low 〈m〉 and for low p,
where our approximations were poor.

TABLE I
Distribution of m numbers, analytic and numerical scaling exponents γ and the
logarithm of discrete scaling ratio λ for the model P1. Data obtained from averaging
over 30 networks.

m 〈m + 1〉 γanalyt γnumer log λanalyt log λnumer

1 to 2 2.5 2 1.981 0.398 0.397

1 to 3 3 2 1.978 0.477 0.461

1 to 4 3.5 2 1.931 0.544 0.556

1 to 5 4 2 1.973 0.602 0.606

TABLE II
Distribution of m numbers, analytic and numerical scaling exponents γ and the

logarithm of discrete scaling ratio λ for the model PD. Data obtained from aver-
aging over 2000 networks. In the first row, the exact λ value was impossible to
obtain, due to a very weak periodic behavior.

m 〈m + 1〉 γanalyt γnumer log λanalyt log λnumer

1 to 2 2.5 5.106 3.858 0.097 ∼0.16

1 to 3 3 3.710 3.067 0.176 0.208

1 to 4 3.5 3.239 3.038 0.243 0.271

1 to 5 4 3.000 2.846 0.301 0.32
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Fig. 3. The discrete scaling ratio λ and the scaling exponent γ. Symbols are the
values obtained from numeric simulations, lines are analytic predictions. Diamonds
and dotted line are for λ in P1 model. Squares and dashed line are for λ in PD
model. Circles and solid line are for γ in PD model. In all cases, networks are of
hierarchy 6, with parameter p = 0.5.

5. Exact degree distribution

Up to now, all calculations have been performed using only the average
m value, treating the degree distribution as series of peaks. We have been
concentrating on relations between peak’s masses and distances, while ig-
noring their shape. Here we find a shape of the degree distribution for the
P1 model.

Let PM(m) be a distribution of m, where m is a number of non-central

clusters in each hierarchy. Let P̃d(N) be a distribution of the network sizes
N for hierarchy d. Pd(k) is a degree distribution for a network of hierarchy d,
P c

d (k) is a degree distribution for the central node of hierarchy d.

The number of nodes in the network can be found as follows. Network
of hierarchy d = 0 has m + 1 nodes what means P̃0(N) = PM(N − 1). The
size of each next hierarchy d+1 is a sum of m+1 independent values, which
are the sizes of networks of hierarchy d

P̃d+1(N)=
∑

m

PM(m)
∑

n1,n2,...,nm

P̃d(n1)P̃d(n2) . . . P̃d(N−nm− . . .−n1) . (5)

This recursive formula describes the probability distribution for the net-
work size N .
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A network of hierarchy d = 0 has the degree distribution P0(k) = PM(k).
This distribution describes both regular nodes and a center of hierarchy 0,
which have the same degree values. In each next hierarchy d + 1 the degree
distribution for all nodes of hierarchy d or less is the same, since we omit the
degree increase due to connections to the central node of higher hierarchy.
Now, we multiply the distribution by (m + 1) and add the degree distribu-
tion P c

d+1(k) for the central node of the network. This way we obtain an
unnormalized degree distribution for the whole network of hierarchy d + 1

Pd+1(k) =
∑

m

[
(m + 1)PM(m)Pd(k) + P c

d+1(k)
]

. (6)

The center is roughly connected to fraction p of all nodes in the network,
what means it possesses the degree p N . This yields the distribution of its

degree equal to P c
1 (k) = P̃1(k/p). As the result we obtain

Pd+1(k) =
∑

m

[
(m + 1)PM(m)Pd(k) + P̃d+1

(
k

p

)]
. (7)

This recursive formula describes the unnormalized degree distributions
for networks of consecutive hierarchies d, with the exception of d = 1. Since
P0(k) describes not only centers of hierarchy 0 but both regular nodes and
centers, we must account for that. We do so by multiplying P0(k) in the
formula by the average basic cluster size 〈m + 1〉.

P1(k) =
∑

m

[
〈m + 1〉 (m + 1)PM(m)P0(k) + P̃1

(
k

p

)]
. (8)

In the above calculations, as in the calculations using average m, we
omitted the degree increase due to connections to the central node of higher
hierarchy. This is insignificant for higher hierarchy centers, as the increase is
at most d, while the center degree increases exponentially with d. We have

used the formula P c
d (k) = P̃d(k/p) in the above calculations. In reality, the

degree distributions are discrete, with natural k values. Depending on how
we round the number of connections to the central node, we should interpret
the above formula accordingly.

We rounded the number of connections p N down, what gives the follow-
ing formula for interpreting the probability with fractional argument

P c
d (k) =

∑

l≥k/p,l<(k+1)/p

P̃d(l) . (9)

It means that the probability of getting the center of degree k equal to the
sum of probabilities for N that lead to this k. Along with
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P̃0(N) = PM(N − 1) (10)

and

P0(k) = PM(k) . (11)

Eqs. (5) and (7)–(9) allow one to find numerically an exact but unnormalized
degree distribution for the P1 model.

Comparing these formulas with numerical data one can see that our
calculations are correct for higher degrees, where approximations we used
are accurate (Figs. 4, 5).
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Fig. 4. The degree distribution for the network with uniform m distribution from
1 to 5, and the hierarchy d = 5. The graph shows analytic (crosses) and numeric
data (circles).
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Fig. 5. The degree distribution for the network with uniform m distribution (3 or 4),
and the hierarchy d = 4. The graph shows analytic (crosses) and numeric data
(circles).
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Using the degree distributions obtained with our formulas (Eq. (5),
Eqs. (7)–(11)), a relation between the distribution of m and a peak shape
has been found. We have studied various uniform distributions of m and
have found linear relation between the standard deviation of the distribu-
tion P (ln m) and the standard deviation of peaks in the P (ln k) distribu-
tion (Fig. 6).
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Fig. 6. The relation between the peak width wk (a standard deviation of peaks in
P (ln k)) and the distribution width wm (a standard deviations of P (ln m)). The
slope of the line is α = 0.722.

The peak deviations in the distribution P (k) are calculated at the loga-
rithmic scale of k

σ =

∑
(ln k − 〈ln k〉)2 P (ln k)∑

P (ln k)
. (12)

Similar formula has been used to calculate the deviation of P (m). Peak
deviations have been calculated for the peak of the highest hierarchy. In the
case of overlapping peaks the minimums of P (k) have been considered the
borders of the peak. The approximation is quite accurate, as P (k) decays
fast when we go away from the peak average k value.

6. Discussion

The question occurs, whether our model corresponds to real network
systems. It is obvious that many real networks posess a hierarchical struc-
ture but, of course, a detailed mechanism responsible for its emergence is
unknown. According to our knowledge, log-periodic oscillations around the
power law in degree distributions were never directly reported in the studies
of real networks or corresponding models. One can suspect, however, that
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in many cases such oscillations were visible and could be overlooked if the
binning or data averaging had been performed. Small amplitude oscillations
can be also easily confused with random fluctuations. The situation resem-
bles oscillations around the scaling law in chaotic crises, where the periodic
part is also often omitted as fluctuations [13, 14].

A clear example of log-periodic oscillations for real networks can be seen
in the study of liability connections between Austrian banks [16]. As the
authors stress [16] a significant part of the studied banking sector posesses
a strong hierarchical structure, what can be easily detected looking at a cor-
responding connection graph. Two periods of oscillations can be identified
at out-degree distribution describing the number of liabilities to other Aus-
trian banks (regardless of liability size) [16]. The period of the oscillations is
approximately λ = ki+1/ki ≈ 3. According to our theory, they are a result
of the network’s hierarchical structure.

We have found also far less visible oscillations in the studies of com-
puter directory trees [17] and World Trade Web [18], where the hierarchical
structure can be identified at a corresponding connection graph [17] or in
dependence of a clustering coefficient on a node degree [18]. Sizes of such
oscillations are, however, at a fluctuations level. The other possible example
can be found in the paper [19], which presents a non-monotenous behavior of
degree distribution of P (k) for a shareholding network in Japan. Here, a sin-
gle wave around the power law can be observed, where λ = ki+1/ki ≈ 10.

7. Conclusions

In conclusion, we have shown that hierarchical networks models display
log-periodic oscillations in the degree distribution when the number of clus-
ters forming the self-similar hierarchy is a stochastic variable. The period
and the amplitude of these oscillations reflect the hierarchical structure of
the network. We also point out examples of real networks that display such
features. It follows that observations of log-periodic oscillations in degree
distributions of real networks can give hints towards the existence of hidden
hierarchical structures in such systems.

This work has been partially supported by a special Grant Dynamics of

Complex Systems of the Warsaw University of Technology and by the EU
Grant Measuring and Modelling Complex Networks Across Domains (MM-
COMNET).
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Appendix A

Mean m value calculations

This Appendix contains exact calculations regarding the discrete scaling
ratio λ and the scaling exponent γ for the mean m approach. The number
kd is an average degree of peak of hierarchy d, Nd is an average number
of nodes in network of hierarchy d, nh

d is an average number of centers of
hierarchy d in a network of hierarchy h. The number 〈m + 1〉 is a mean
number of clusters in each hierarchy.

The Eq. (2) can be obtained as

kd = kd−1 + 〈m〉 Nd−1 · p = 〈m〉 + p 〈m〉

i=1∑

d

〈m + 1〉i

= 〈m〉 + p 〈m + 1〉
(
〈m + 1〉d − 1

)
. (A.1)

The scaling exponent γ for model P1 has been obtained using the cumu-
lative degree distribution

P (k) =
∆Pcum

∆k
=

∆Pcum

∆d

∆d

∆k
. (A.2)

First we find an expression for nh
d . There is only one center of hierarchy

d = h in the network of such a hierarchy. Each time the network hierarchy
h increases, the number of centers of hierarchy d increases 〈m + 1〉 times.
The exception is the first step, where one node becomes center of the higher
hierarchy. Because of that nh

d increases only by the factor of 〈m〉 for that

step. We obtain nh
d = 〈m〉 〈m + 1〉h−d−1 except for nh

h = 1.
Now we calculate expressions in Eq. (A.2). Each next peak is smaller

∆Pcum/∆d = nh
d ∼ 〈m + 1〉−d while its average degree kd increases ∆k/∆d

∼ 〈m + 1〉d. In such a way we obtain

P (k) ∼ 〈m + 1〉−d 〈m + 1〉−d = 〈m + 1〉−2d . (A.3)

From Eq. (A.1) we get d ≈ log〈m+1〉(k/p)− 1 = (ln k−ln p)/(ln 〈m+1〉)−1.

By putting so calculated d into Eq. (A.3) we get

P (k) ∼ 〈m + 1〉−2d = exp (−2d ln 〈m + 1〉)

= exp

(
−2

ln k − ln p

ln 〈m + 1〉
ln 〈m + 1〉 + 2 ln 〈m + 1〉

)

∼ exp (−2 ln k) = k−2 . (A.4)
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For the PD model the Eq. (4) can be obtained in the following way

kd = kd−1 + 〈m〉 Nd−1 pd = 〈m〉

d∑

i=0

pi 〈m + 1〉i

= 〈m〉
1 − (p 〈m + 1〉)d+1

1 − p 〈m + 1〉
. (A.5)

The scaling exponent has been calculated in a similar way to the case
of model P1. The slope ∆Pcum/∆d is the same as in the previous case but

∆k/∆d ∼ (p 〈m + 1〉)d thus P (k) ∼ p−d 〈m + 1〉−2d.
Expressing d by k we get d = logp〈m+1〉((p 〈m + 1〉 − 1) k/〈m〉) − 1 and

putting that into Eq. (A.2) we get P (k) ∼ k−(1+(ln〈m+1〉/ln p〈m+1〉)) which
yields exponent γ = 1 + (ln 〈m + 1〉/ln p 〈m + 1〉) for PD model.
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