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INFORMATION THEORY POINT OF VIEW
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Stochastic networks represent very important subject of research be-
cause they have been found in almost all branches of modern science, in-
cluding also sociology and economy. We provide a information theory point
of view, mostly based on its nonextensive version, on their most character-
istic properties illustrating it with some examples.
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1. Introduction

Different kinds of stochastic networks show up in nature whenever one
is dealing with complex systems of any kind1. There are two basic types of
stochastic networks:

(a) Networks with constant number of nods, M , for which probability
that given node has k connections with other nodes (k links) is Pois-
sonian [3]

P (k) =
κk

0

k!
e−κ0 , κ0 = 〈k〉 . (1)

∗ Presented at the First Polish Symposium on Econo- and Sociophysics, Warsaw,
Poland, November 19–20, 2004.

1 We refer to [1] for list of relevant references to which we would like to add recent ap-
plication of networks to describe some features of multiparticle production processes
in high energy hadronic collisions [2].
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(b) Networks in which number of nodes is not stationary and distribution
of links P (k) is given by dynamics of the growth of network [4] and
varies between being exponential

P (k) =
1

m
exp

(

−
k

m

)

, (2)

(for the case when each new node connects with the already existing
ones with equal probability Π(ki) = 1/(m0 + t−1) independent on ki)
or being power-like,

P (k) =
2m2t

m0 + t
k−3, (3)

for the case of preferential attachment (the so called “rich-get-richer”
mechanism, here m < m0 is the number of new nodes added in each
time step) with, in this case, Π(ki) = ki/(2mt) choice.

Recently we have demonstrated that using information theory approach
in its nonextensive version (i.e., maximizing Tsallis entropy [5])

Hq =

[

1 −
∑

k

P q
q (k)

]

/

(q − 1) ,

under conditions that

〈k〉q =
∑

k

kP q
q (k)

/

∑

k

P q
q (k) = κ0

and
∑

k Pq(k) = 1 one obtains that [1]

Pq(k) =
1

κ0

[

1 − (1 − q)
k

κ0

]
q

1−q

, (4)

which is very universal because for q → 1 it recovers Eq. (2) whereas for
k ≫ κ0/(q − 1) it leads to the power-like distribution Pq(k) ∝ kq/(1−q).
For properly chosen parameters κ0 and q it is, therefore, able to describe
data in the whole region of variable k. As an example, in [1] distribution of
WWW network after [6] with the mean number of connections 〈k〉 = 5.46 has
been described by Pq(k) with parameters κ0 = 1.91 and q = 1.65 obtaining
for large values of k power-like distribution ∝ k−γ with γ = q/(q−1) = 2.54
as observed in [6]. Notice that condition of finiteness of the first moment
of Pq(k), equal to 〈k〉 = κ0/(2 − q), results in the limitation that q < 2,
whereas similar condition imposed on the variance of Pq(k), given by
Var(k) = κ2

0/[(3−2q)(2− q)2], limits q further to q < 3/2 (it is worth to
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stress that for q = 3/2, at which variance Var(k) diverges, one gets expo-
nent γ = 3, as in Eq. (3)).

Since then, detailed analysis of preferential attachment growth and its
connection with nonextensive statistical mechanics has been performed in [7]
whereas in [8] it was demonstrated that introducing notion of fluctuations
to a random graph one obtains, as one of the results, the scale-free power-
like networks (in very much similar way as fluctuations of parameter 1/m
in distribution (2) given entirely by parameter q lead directly to distribu-
tion Pq(k) [9]). In what follows we shall provide two additional particular
examples of using methods described in [1, 9] to analysis of some stochastic
network features.

2. Transport on network

Investigations of transport in the Internet [10, 11] show that the distri-
bution of travel times can be described by power distribution of the form
P (t) ∝ t−(α+1). Such form implies specific dynamic of transport on the
network in which many correlated packets travel at the same time. Detailed
description of such dynamical picture is particularly complicated because
of the lack of some global navigation prescription, by the fact that packets
can be send parallel fashion and, finally, by dependence on the structure of
network and on the algorithm of selecting the transportation path used.

To describe this complicated character of transport let us introduce
transport rate distribution function f(τ) and write distribution of the trans-
portation times as

P (t) =

∞
∫

0

dτf(τ) exp

(

−
t

τ

)

. (5)

Function f(τ) can be obtained by considering stochastic process given by
the following Langevin equation

dτ

dt
+ [1 + ξ(t)] τ = τ0, (6)

where ξ(t) is white Gaussian noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + ∆t)〉 =
2Dδ(∆t), parameter τ0 is the characteristic transport time on network and
D denotes variation of transport times. Considering now the corresponding
Fokker–Planck equation one gest (cf. [9]) that2

2 It should be noticed that distribution just obtained is the most expected one
from the point of view of the maximization of Shannon information entropy,
H = −

P

k
P (k) ln P (k) under constraints that

R

f(τ )dτ = 1, 〈τ 〉 = τ0 and (because
distribution we are looking for is defined only for τ > 0) that 〈ln(τ )〉 = ln(τ0/D) [12].
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f(τ) =
µν

Γ (ν)τν−1
exp

(

−
µ

τ

)

, (7)

where µ = ντ0 and ν = 1/D, i.e., it is given by gamma distribution in the
variable 1/τ . As was shown in [9] such function f(τ) results in the power-like
distribution of P (t)

P (t) =
2 − q′

τ0

[

1 − (1 − q′)
t

τ0

]
1

1−q′

, where q′ = 1 + D . (8)

In [11] it has been shown that exactly such form is observed experimen-
tally. It means, therefore, that approach based on Tsallis statistics describes
stationary states on Internet.

Power-like asymptotic form of P (t) ∝ t−(α+1) implies existence of long-
range correlations in the network communication with formation of large
active aggregates of transportation streams [13]. Denoting aggregates by
the number of active streams existing in time t, Kt, these long-range corre-
lations are given by auto-covariance R(t) = Cov(Kt,Kt+s) (typically, for the
Internet transport, the written above power-like form of P (t) leads directly
to similar power-like form of R(t) ∝ t−(α−1) with α ∈ (1, 2))

R(t) =

∞
∫

t

dy[1 − F (y)] , (9)

where F (t) denotes distribuant of P (t) [14]. It turns out that using formalism
of random matrices (where matrix elements Wij have random probability
distributions) and identifying the number of decay channels with the size K
of the aggregate, one can immediately obtain that [15] exponent α above is
given by the mean size of the aggregate 〈K〉

α =
2 − q′

q′ − 1
=

1

D
− 1 =

1

2
〈K〉 − 1 . (10)

Notice that with increasing size of the aggregate, 〈K〉, fluctuations in f(τ)
diminish, 〈(τ−1 −〈τ−1〉)2〉 = 2〈τ−1〉2/〈K〉, and in the limit of large 〈K〉 the
power-like behavior in (8) becomes exponential one (as now q′ → 1).

3. Epidemic dynamics in network

Let us now concentrate on the dynamic of spreading viruses using simple
model of the SIS type (susceptible-infects-susceptible). In this model each
node can be either “healthy” (H) or “infected” (I) and infection spread up
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due to connections between nodes. On every time step node H is infected
with probability ν if it is linked with at least one link with node I. At the
same time node I is cured with probability δ (i.e., the mean time of infection
is equal D = 1/δ). Denoting the effective rate of diffusive spreading up the
virus by λ = ν/δ it can be shown [16] that probability density of nodes I is
given by

ρ = 0 , for λ < λc ,

ρ ∝ (λ − λ0)
β , for λ > λc , (11)

i.e., virus whose spreading rate λ exceeds the threshold value λc survives
whereas it quickly vanishes when his spreading rate is below the epidemic
threshold [17, 18]. This threshold depends on the variation of the number
of connections in the network, λc = 〈k〉/〈k2〉. In regular networks (where
P (k) = δ(k − k0)) and in stochastic networks (where P (k) is Poissonian)
〈k2〉 is always finite and, therefore, λc is always greater than zero. Situation
changes drastically for scale-free networks for which P (k) ∝ k−γ , with γ ≤ 3.
In this case for γ → 3 one has λc → 0 and there is no threshold for the

epidemic3.
Let us analyze this in more detail. Denoting by xi the part of nodes

of type i (i.e., with i connections) which are able to be infected and by yi

the part of already infected nodes, one can write the following evolution
equation (where νij = ijν/〈k〉)

∂xi

∂t
= −xi

∑

j

νijyj ,
∂yi

∂t
= xi

∑

j

νijyj − yiδ . (12)

Solving (12) one can show [19] that the part of nodes which are always

infected (it is called the final epidemic size) is given by

I = 〈1 − exp(−kα)〉 , where α = ρ0
〈k − k exp(−kα)〉

〈k2〉
. (13)

Here ρ0 = νD〈k〉 is the mean number of the secondary infections caused by
introducing one infected node in the network (under assumption that each
node has exactly 〈k〉 connections).

For regular network with P (k) given by Poisson distribution (Eq. (1))
the size of epidemy is

I = 1 − exp
[

−〈k〉
(

1 − e−α
)]

, (14)

3 For example, for P (k) given by Eq. (4) λc = (3− 2q)/(2κ0), which for q → 3/2 tends
to zero.
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where α is given by the following transcendental equation:

α =
ρ0

〈k〉

{

1 − exp
[

−α − 〈k〉
(

1 − e−α
)]}

. (15)

Assuming small α and keeping in (15) only linear terms in α one obtains
that

α ≃
2
[

1 + 〈k〉
(

1 − 1
ρ0

)]

(1 + 〈k〉)2 + 〈k〉
, (16)

from which one can estimate the epidemic threshold (which is for I = 0, i.e.,
also for α = 0) as being given by

1

ρ0
= 1 +

1

〈k〉
. (17)

For the scale free network with P (k) given by Eq. (3), for small values
of ρ0 we get the following size of epidemy:

I ∼ 2e0.423 exp

(

−
2

ρ0

)

. (18)

In the general case described by Pq(k) as given by Eq. (4) one has, in the
approximation, that κ0α > 1, and that

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1/ 0

10
-2

10
-1

1

I(
0)

Fig. 1. Examples of behavior of the final epidemic size I(ρ0) as function of inverse of
the mean number of secondary infections caused by introduction to network single
infected virus, ρ0, for network with mean number of connections equal 〈k〉 = 4.
Full line corresponds to Poissonian distribution of links (regular networks), dashed
line is for power-like distributions of links (scale-free networks). Notice that in the
latter case there are situations in which there is no threshold to epidemic.
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I = 1 −
1

α

〈k〉

q(2 − q)
, (19)

where α is given by the equation

α =
ρ0

〈k〉

[

1 −
1

α2q(2 − q)

]

. (20)

As is clearly demonstrated in Fig. 1 only in the former case there is epidemic
threshold, in the latter one no such effect appears.

4. Conclusions

Stochastic networks represent very complex phenomena of different ori-
gin. As such they have been also investigated by using statistical mechanic
approach [21]. Here we have shown that they can be also described (at least
in what concerns some of their most commonly demonstrated properties)
by using information theory approach based on Tsallis statistics. Such ap-
proach allows to describe by means of single formula probabilities of number
of connections in a given network, Pq(k), in essentially all kinds of networks,
from purely exponential ones (with q = 1) to a scale-free power-like ones
with exponent γ = q/(q − 1). In this approach it is clear that γ = 3, found
in many systems with complex topologies, corresponds to q = 3/2, a value
for which variance of Pq(k) diverges.

We have presented two examples of investigations of networks by means
of Tsallis power-like formula (4), transport on networks and development
of epidemic on networks. Both have numerous (and still growing) practical
applications to which others are added (like, for example, description of the
earthquakes statistics [22]). As an example we provide here two results, one
concerning description of known distributions of sexual partners, in Fig. 2,
and one illustrating distribution of populations of different agglomerations,
in Fig. 3. Both can be very well described by means of only two parameters,
κ0 and q. The latter parameter describes, according to [1, 7, 8], summarily
the influence of dynamic of the network (resulting in intrinsic fluctuations,
correlations, fractal structure and the like). Let us close with remark that
different behavior of different epidemics (existence of threshold or not) is
naturally explained by the different character of networks of contacts caus-
ing infection: those corresponding to regular networks (like, for example, flue
epidemic mostly following earth communication network) show some thresh-
old whereas those corresponding with scale-free networks (like, for example,
AIDS epidemic) have no thresholds.
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Fig. 2. Cumulative probability distribution of the number of sexual partners as
given by [20] compared with Eq. (4) for men (full line and symbols; here q = 1.55

and κ0 = 0.68 resulting in 〈k〉 = 15) and women (dashed line, open symbols; here
q = 1.3 and κ0 = 0.48 resulting in 〈k〉 = 7.
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Fig. 3. Examples of unnormalized cumulative probability distributions of cities in
Poland with population greater than some given value k on this value, (a), and the
same for agglomerations in the whole world, (b). Data (points) were taken directly
from [23], whereas curves represent fits to Tsallis formula: N(> k) = C Pq(q) (with
the following sets of parameters: C = 1032, κ0 = 7280 and q = 1.75 for (a) and
C = 2362, κ0 = 310000 and q = 1.65 for (b)). For other similar results see [24].
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