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We present the distance matrix evolution for different types of networks:
exponential, scale-free and classical random ones. Statistical properties of
these matrices are discussed as well as topological features of the networks.
Numerical data on the degree and distance distributions are compared with
theoretical predictions.
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1. Introduction

The problem of evolving networks [1–5] belongs to a new area of statis-
tical physics with many interdisciplinary applications, from biology (sexual
contacts, food webs, ecological networks) [6] via sociophysics (the strength of
weak ties, terrorism, scientific collaborations, paper citations networks) [8],
econophysics (agents’ games and interactions, business contacts) [9], to com-
puter science (Internet infrastructure and World Wide Web) [10].

In all these cases a central role is played by graphs which allow to describe
networks mathematically. A graph is a set V of N vertices and a set E of
L edges among vertices. A simple graph is a graph without loops (i.e.
self-links) and without multiple edges. A forest is a graph without cycles
(i.e. paths which start and end at the same node). Connected forest is
called a tree [1]. The terminology depends on subject where graph theory
is applied: vertices become nodes, actors and agents in computer science,
socio- and econophysics, respectively. Edges are called links or interactions
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as well [2–4]. By evolving we mean adding subsequent nodes to an already
existing graph with M links to M preexisting nodes. For M = 1 a tree, and
for M = 2 a simple graph appears. Here evolution means growth.

Other evolution strategy is to modify an existing network without its
growth, i.e. without increasing number of elements of the set V. Formation
of a network may take place via the rewiring procedure [12]: starting with
a ring of N connected nodes, each of them having K nearest neighbors, we
destroy a randomly selected link i–m and create instead another link i–n.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Examples of networks for N = 200 and (a) scale-free: tree (M =1) and (b)

simple graph (M =2), (c) exponential: tree (M =1) and (d) simple graph (M =2),

(e) classical random graph: p=0.02, (f) p=0.05. (Figures using Pajek [16].)
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Another strategy is to start with N nodes and L edges between them.
A structure formed in this way is termed Erdős–Rényi graph [13]. Similar
approach was proposed by Gilbert [14] where number N of nodes is fixed
and a new link between each of N(N − 1)/2 pair is realized with given
probability p. For N → ∞ Gilbert and Erdős–Rényi models give the same
results and p = 2LN−1(N−1)−1. Graphs described above are called classical

random graphs (CRG) [14]. The graph “thermalization” is a generalization
of the rewiring strategy accompanied by Metropolis dynamics [15].

Let us denote Pa(m) the probability that a new node will be attached
to an existing node m. For the scale-free (preferential, Albert–Barabási)
networks [11], Pa(m) is proportional to the node degree k(m) (i.e. number
of edges which lead from/to m) [2–4]. For the exponential networks, Pa(m)
is uniform [2,3].

In Fig. 1 examples of scale-free, exponential and CRG networks are pre-
sented.

The aim of this work is a brief recapitulation of our recent numerical
results, obtained with a simple algorithm of network growth, and a com-
parison of these results with some analytical predictions. The algorithm
has been applied to the exponential networks, the scale-free networks and
the classical random graphs. The algorithm was verified by a comparison
of the results with exact iterative equations. In Sec. 2 our algorithm is
explained. In Sec. 3 we present the numerical results on the degree and
distance distributions and their correlations, which appear to be relevant
for some search algorithms. The distance distributions are compared with
theoretical formulas. Final conclusions (Sec. 4) close the text.

2. Matrix representation and growth

A network containing N nodes is fully characterized by its adjacency

matrix A, elements of which give number of edges between nodes i and j. In
case of simple graphs — where multiple edges are forbidden — this matrix
becomes binary: aN (i, j) = 1 if the nodes i, j are linked together, and
aN (i, j) = 0 elsewhere. Absence of loops gives all diagonal elements equal
to zero: aN (i, i) = 0.

In the distance matrix D, the matrix element dN (i, j) is the number of
links along the shortest path from node i to j.

The conversion D → A is trivial, as we need only to change all elements
larger than one to zero. For building the distance matrix D basing only
on the adjacency matrix A is more complicated and several numerical tech-
niques are available [17]. These methods usually base on the list approach
with the breadth-first search or depth-first search or subsequent usage of the
Dijkstra algorithm [18] for all nodes.
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Here, we present algorithms for different kind of networks which allow
for a construction of the distance matrices simultaneously with the network
growth, and not afterwards [19–22].

2.1. Numerical approach

For growing networks, the starting point is a matrix D for the tree of
two nodes linked together:

D2 =

(

0 1
1 0

)

.

Selecting a node m to which a new node will be attached is equivalent to
select a number m of column/row of the matrix D. Approaches presented
here base on the fact that the distance d(n, i) = d(i, n) to a new node n
from all other preexisting nodes i via node m is d(m, i) + 1 = d(i,m) + 1.

2.1.1. Growing trees

Let us start with the simplest case, i.e. when M = 1. In this case a tree
appears. Subsequent stages of distance matrix D evolution DN → DN+1

for N ≥ 2 are

∀ 1 ≤ i ≤ N : dN+1(N + 1, i) = dN+1(i,N + 1)

= dN (m, i) + 1 , (1a)

and for diagonal element

dN+1(N + 1,N + 1) = 0 , (1b)

since we do not allow for loops [19, 20]. One step of the distance matrix D

evolution for growing trees is presented in Fig. 2.
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Fig. 2. One step of the distance matrix D4 → D5 evolution for growing trees.
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2.1.2. Growing simple graphs

In simple graphs cyclic paths are possible and the distance matrix D is
to be rebuilt when adding a new node [20, 22]. Suppose that a (N + 1)th

node is added to existing nodes m and n 6= m. Then, we have

∀ 1 ≤ i, j ≤ N : dN+1(i, j)

= min
(

dN (i, j), dN (i,m)+2+dN (n, j), dN (i, n)+2+dN (m, j)
)

. (2a)

For new, (N + 1)th, column/row

∀ 1 ≤ i ≤ N : dN+1(N + 1, i) = dN+1(i,N + 1)

= min
(

dN (m, i), dN (n, i)
)

+ 1 , (2b)

and again for the diagonal element

dN+1(N + 1, N + 1) = 0 . (2c)

Example of the distance matrix D evolution for a simple graph is presented
in Fig. 3.
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Fig. 3. One step of the distance matrix D4 → D5 evolution for growing simple

graphs.

2.1.3. Classical random graphs

For CRG the starting point of simulations is an N × N matrix with all
non-diagonal elements equal to N . Note that N is larger than any possible
distance in connected graphs of N nodes. Now we go through all upper-
diagonal elements of D and set d(i, j < i) equal to one with the probability p,
basing on the CRG’s definition. Obviously, the matrix D is kept symmetric.
Each time, when a new edge is added, we have to rebuild the whole matrix
D due to link between nodes i and j

∀1 ≤ m,n ≤ N : d(m,n)

= min
(

d(m,n), d(m, i) + 1 + d(j, n), d(m, j) + 1 + d(i, n)
)

. (3)

After this procedure, the matrix DN contains elements equal to N only
if the graph is not connected [21].
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2.1.4. The Kertész list

Additional vector r of nodes’ labels may be useful. There, each node’s
label appears as an element of r as many times as it is degree of that node
(see Fig. 4). At each time when new (N + 1)th node is added with M links
to nodes labeled as m1, · · · ,mM , these M labels are added to the list, as
well as the new label (N +1), which is added M times. By using a randomly
chosen element of vector r as a label, to which new node will be attached,
we realize the Albert–Barabási rule [11] of preferential growth [23].

1 2

6

7

4 5

3

Fig. 4. The Kertész list for small graph presented above r = {1, 2, 2, 3, 3, 4, 4,

5, 3, 6, 3, 7}. The nodes with lower labels are older. When a new node is linked

to preexisting graph by M edges, 2M labels are added to the initially existing

set {1, 2}.

3. Results of the simulations

When the evolution process is accomplished, the matrix DN may provide
much information on the graph. Let us denote [· · · ], {· · · } and 〈· · · 〉 the
averages over Nrun different matrices, N nodes of network and N2 matrix
elements, respectively. For example, the average number of elements equal
to d, denoted as zd, in matrix D gives the average number of dth neighbors
for each node (d = 1 — nearest neighbors, d = 2 — next-nearest neighbors,
d = 3 — next-next-nearest neighbors, etc.). The ith node degree

ki =

N
∑

j=1

aN (i, j)

is the number of “1” in ith row/column of D (and z1 = {k}). Average
distance to node i from all other nodes

ξi ≡



N−1

N
∑

j=1

dN (i, j)



 .

The network diameter ℓ is the mean length of the shortest path between two
vertices

ℓ ≡

[

N−1

N
∑

i=1

ξi

]

= [{ξi}] = [〈dN (i, j)〉] .
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3.1. Distribution of node degrees

Three kind of networks presented here derive their names from the dis-
tribution of node degrees (see Fig. 5):
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Fig. 5. Nodes’ degree distribution Pk(k) for (a) scale-free, (b) exponential and

(c) classical random graphs CRG.
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• For the scale-free networks we reproducePk(k) ∝ k−γ with γ ≈ 2.72
(M =1) and γ ≈ 2.63 (M =2), while the theoretical value is 3 and it
is independent on M [2,11]. The numerical reduction of γ is known to
be caused by the finite-size effect.

• For the exponential trees the node degree distribution is verified to be
Pk(k) ∝ w−k [3], where w = 2 for M = 1 and w = 3/2 for M = 2.

• The degree distribution for CRG follows the Poisson distribution
Pk(k) = exp(−{k}) {k}k/k!, with {k} ≈ 20 and {k} ≈ 50 when
N = 103 for p = 0.02 and p = 0.05, respectively. Here, the average
node degree may be evaluated as {k} = p(N − 1) [13].

3.2. Distribution of node-to-node distances

Distribution of numbers d in distance matrix D gives node-to-node dis-
tance distribution (NNDD) Pd(d). As expected, NNDD for the simple graphs
are more condensed than NNDD for trees. Also NNDD for the scale-free
graphs (trees) are more condensed than NNDD for the exponential graphs
(trees) [20] (see Fig. 6(a)). As a rule, networks with more condensed NNDD
are themselves more compact. For large trees, NNDD may be approxi-
mated [24] as Pd(d) ∝ d exp(−Ad2) — see Fig. 6(b).

For exponential trees, where each node is chosen with the same probabil-
ity as a potential candidate to which the next attachment will take place, it is
possible to derive [19,20] exact iterative formula for the network diameter:

(N + 1)2ℓ(N + 1) = N(N + 2)ℓ(N) + 2N , (4a)

and for all higher moments n ≥ 2 of NNDD

(N + 1)2[〈dn
N+1(i, j)〉]

= N(N + 2)[〈dn
N (i, j)〉] + 2N

n−1
∑

k=1

(

n

k

)

[〈dk
N (i, j)〉] + 2N . (4b)

3.3. Search for a shortest path

Shortest distance between nodes, averaged over the network is termed
the network diameter. This diameter appears to be surprisingly short in
the growing networks: it increases with the number of nodes N as slowly
as log(N). This is known as the small world effect [12]. For example, for
over 800 million web pages in Internet (in 1999) you need, on average, only
nineteen clicks to reach any of them starting with randomly selected home
page of your browser [25]. Table I shows the parameters α and β in the
logarithmic law ℓ(N) = α ln N + β for various growing networks [19,20,22],
obtained numerically.
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The small world effect has its sociological counterpart, discovered by Mil-
gram [26] in 60’s. Several persons had to send letters to a dealer in Boston,
unknown to them, using their acquaintances. It was found that in the aver-
age, a chain of only six links was sufficient to get the target. The essential
point in the strategy is the search for the next person. A choice — almost
obvious — is to select a person most popular and famous (i.e. the node with
the highest degree among your nearest neighbors).

TABLE I

The mean distance ℓ(N) = α lnN + β for different evolving scale-free and expo-
nential networks.

scale-free exponential

M 1 2 1 2

α 1.00 0.48 2.00 0.71

β −0.08 0.83 −2.84 0.16

This strategy is termed as the most connected neighbor search (MCNS)
[28]. The dependence of the average distance ξ from the node on given
degree k to all other nodes for various networks is presented in Fig. 8(a) [21].
The slope of the curve ξ(k) brings an information how this search strategy
is effective for a given network. Thus, an effectiveness of MCNS for nodes
of given k can be evaluated by an index

η = −
∂ξ

∂ ln k
. (5)

The dependence η(k) is presented in Fig. 8(b).

The MCNS is more efficient for the exponential trees than for the scale-
free trees, and much more efficient for trees (M = 1) than for simple graphs
(M = 2). For the simple graphs this search strategy is almost as ineffi-
cient as for CRG. In the scale-free networks, local fluctuations of degree are
enhanced by subsequent linkings. Multiple centers of high degree can be
created and the growing concentrates on these centers. Then, MCNS can
be misleading, as it leads always to a local center; however, sometimes the
target is somewhere else. This enhancement is absent in the exponential
networks and that is why MCNS works better there. We note that this
argumentation works particularly well for trees [21].
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4. Summary

We have described the algorithm of construction the distance matrix D of
the exponential networks, the scale-free networks and the random networks.
The core idea of the algorithm is that it works simultaneously with the net-
work growth. The information coded in the distance matrix is equivalent to
the information of the network structure. The algorithm’s complexity is of
the order of N2 for trees, and of the order of N3 for other networks. A next
step could be to construct a method of comparison of different networks by
a comparison of their distance matrices, to check if the networks are topo-
logically equivalent. However, the order of rows and columns of the distance
matrix is set in accordance with the age of nodes, and this information is not
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preserved in the network topology. Then, to compare two distance matrices,
one should shuffle all possible permutations of nodes. Such an algorithm is
known to be non-polynomial [29], and therefore is not useful.

Topological properties of the networks are analyzed by discussing their
distance matrices. These matrices are found to be a convenient tool to
investigate the degree distributions, the distance distributions, the small
world effect and some search algorithms in the networks.

We believe that an understanding of topological properties of complex
network is the first step to understanding complex behavior occurring among
actors and agents occupying the networks nodes [30]. It may bring a useful
information for modelers of social and economic systems.
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