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The aim of this paper is to determine the Value at Risk (VaR) of the
portfolio consisting of several long positions in risky assets. We consider
the case when the tail parts of distributions of logarithmic returns of these
assets follow the power law of the same degree and the lower tail of associ-
ated copula C follows the power law of degree 1. We provide the asymptotic
formula for Value at Risk and determine the optimal portfolio. We show
that the part of the capital invested in the i-th asset should be equal to the
conditional probability that the drop of the value of the i-th asset will be
smaller than the others under the condition that the value of the all assets
will be smaller than c times their initial value (c ≪ 1).

PACS numbers: 89.65.Gh

1. Introduction

1.1. Motivation

Decision making in finance is decision making under uncertainity. The
outcome of present decisions depends on quantities (like future stock prices
or exchange rates), which are yet unknown. The usual approach is to repre-
sent such quantities by random variables. As a consequence, the outcome of
the decision (e.g. the future value of the investment) is a random variable
too. The possible random variability adds the risk dimension to the prob-
lem. A natural question is how to measure risk. In this paper we deal with
Value at Risk, nowdays one of the most popular risk measures.

Furthermore, in order to determine accurately the risk exposure one has
to deal with the complexity of the problem. Usually the outcome is a func-
tion of several random quantities, so it is nescessary to describe properly
their interdependences. In this paper we base on copulas, which are scale-
less dependency measures of random variables.
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1.2. Copulas

We recall that a function

C : 〈0, 1〉d −→ 〈0, 1〉 ,

is called a copula (see [20] §2.10) if for every u = (u1, . . . , ud) and v =
(v1, . . . , vd) (ui, vi ∈ 〈0, 1〉)

(∃i ui = 0) ⇒ C(u) = 0 ,

(∃j ∀i 6= j ui = 1) ⇒ C(u) = uj ,

(∀i ui ≤ vi) ⇒ VC(u, v) ≥ 0 ,

where VC(u, v) is the C-volume of the rectangle with lower vertex u and
upper vertex v–I(u, v).

VC(u, v) = ∆1
v1−u1

. . . ∆d
vd−ud

C(u1, . . . , ud) ,

where

∆k
hC(t1, . . . , td) = C(t1, . . . tk−1, tk + h, tk+1, . . . td)

−C(t1, . . . tk−1, tk, tk+1, . . . td) .

Let Xi, i = 1, . . . , d be random variables defined on the same probability
space (Ω,M, P). The joint cumulative distribution FX can be described
using an appropriate copula CX (see [20] Th. 2.10.11):

FX (x) = CX (FX1
(x1), . . . , FXd

(xd)) ,

where FXi
are cumulative distributions of Xi. Note that strictly increasing

transformations of random variables Xi do not affect the copula. Indeed, if

X ′
i = fi(Xi), i = 1, . . . , d ,

where fi are strictly increasing (and so invertible), then

FX ′(x) = FX (f−1
1 (x1), . . . , f

−1
d (xd))

= CX (FX1
(f−1

1 (x)), . . . , FXd
(f−1

d (xd)))

= CX (FX ′

1
(x1), . . . , FX ′

d
(xd)) .

Therefore, if one is interested in tail dependence of random variables rather
than in their individual distribution, then the proper choice is to study the
copula. The more so, since the copula is uniquely determined at every point
u such, that the equations FXi

(xi) = ui have solutions.
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From the probabilistic point of view every copula C is a joint cumulative
distribution function of some probability measure µC on the unit rectangle
with uniform margins. But, in certain cases the copula CX is a joint cumu-
lative distribution of some random variables defined on the same probability
space as Xi. Indeed let Pi, i = 1, . . . , d be random variables defined by

Pi = FXi
(Xi) .

Proposition 1.1. If the cumulative distributions FXi
are continuous then:

1. Pi have uniform distributions on 〈0, 1〉;

2. The copula CX is uniquely determined;

3. The d-dimensional cumulative distributionFP coincides with the copula CX

FP(p) = CX (p) .

Proof. The first two points are obvious. The third one can be proved in the
same way as the third point of proposition 1 in [16].

1.3. Main results

Last years “Value at Risk” (VaR) became one of the most popular mea-
sures of risk in the “practical” mathematical finance (see for example Refs.
[5,6,14,17,19,21,22] ). Roughly speaking the idea is to determine the biggest
amount one can lose on certain confidence level 1 − α.

We shall deal with the following simple case. An investor has in his
portfolio d risky assets which are highly dependent.

Let Si,0 and Si,1 be prices at the beginning and at the end of the period.
Let ωi be the part of the capital invested in the i-th asset. So the final value
of the investment equals

W1 = W0

∑

ωi
Si,1

Si,0
.

If the distribution functions are continuous then, for the confidence level
1 − α, VaR is determined by the condition

P (W0 − W1 ≤ VaR1−α) = 1 − α ,

i.e. the probability that the loss will be greater than VaR1−α, is smaller
than 1 − α.

In the beginnings the reserchers dealt with the case α = 0.05. They
assumed that the joint distribution of the returns is normal. Therefore,
to calculate VaR, it was enough to estimate the means, variances and co-
variances ( [22]). Later, the Basle Committee on Banking Supervision forced
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a switch to α = 0.01 ( [1,2]). The models based on the Gaussian law became
inadequate. It was nescessary to take into consideration the power-like tails
of the distributions of returns and to describe the dependence of returns of
different assets by means of copulas (see [4, 8, 9]). We shall follow this line
of research.

Let si be the logarithmic returns

si = ln

(

Si,1

Si,0

)

.

We assume that there exists such positive constant x̄, that:

• si have the continuous cumulative distributions with power-like lower
tails with the same index γ > 2 (this range covers the empirical expo-
nents — see [18] §9.3, [4] §2.3.1 or [7, 11–13]). For x < −x̄

Fi(x) = P (si ≤ x) = ai(−x)−γ .

• The lower tail part of the copula of si’s is equal to a positive homo-
geneous function of degree 1 (compare [8, 15, 16]). For q = (q1, . . . qd),
such that 0 ≤ qi ≤ aix̄

−γ C(q) = L(q), where

L : 〈0,+∞)d −→ 〈0,+∞) , L(tq) = tL(q) , for 0 ≤ t .

• The measure µL associated to L is absolutely continuous with respect
to the Lebesque measure and it has a density which is continuous on
the complement of the origin.

Under these assumptions we show in Section 5:

Theorem 1.1. For α close enough to 0

VaR1−α = W0 − W0

d
∏

i=1

ωgi

i exp

(

−

(

L(a)

α

)1/γ
)

(

1 + O
(

α1/γ
))

,

where gi are equal to elasticities of L

gi =
ai

L(a)

∂L

∂ai
(a) .
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The leading part of the above formula will be called the asymptotic VaR

AVaR1−α = W0

(

1 −

d
∏

i=1

ωgi

i exp

(

−

(

L(a)

α

)1/γ
))

.

In the next section we show that in order to minimize the asymptotic VaR
one should take ωi equal gi. Furthermore gi’s can be expressed in terms of
the conditional probability:

gi = P (sj ≤ si|sj ≤ −z) , j = 1, . . . , d , for z > x̄ .

2. Auxiliary results

Since the density of µL is continuous outside the origin, L is differentiable
outside the origin. Moreover, since L is homogeneous of degree 1 its first
derivatives are homogeneous of degree 0, i.e. for t > 0 and q 6= 0

∂L

∂qi
(tq) =

∂L

∂qi
(q) .

Next, let ∆i(a) be the pyramid with a rectangular base

∆i(a) =

{

q : 0 ≤
qj

aj
≤

qi

ai
≤ 1

}

.

Lemma 2.1. For q 6= 0

µL(∆i(q)) = qi
∂L

∂qi
(q) .

Proof. We show the formula for i = d, for all the others the proof is similar.

µL(∆d(q)) =

qd
∫

0

sdqd−1/qd
∫

0

. . .

sdq1/qd
∫

0

∂nL

∂qd
. . . ∂q1

(s) ds1 . . . dsd

=

qd
∫

0

∂L

∂qd

(

sdq1

qd
, . . . ,

sdqd−1

qd
, sd

)

dsd

=

qd
∫

0

∂L

∂qd
(q1, . . . , qd−1, qd) dsd

= qd
∂L

∂qd
(q) .
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Lemma 2.2. For z > x̄ and 0 < i ≤ d

P (sj ≤ si|sj ≤ −z, j = 1, . . . d) =
ai

L(a)

∂L

∂ai
(a).

Proof.

P (sj ≤ si|sj ≤ −z, j = 1, . . . d) =
P (sj ≤ si ≤ −z, j = 1, . . . d)

P (sj ≤ −z, j = 1, . . . d)

=
µL(F−1

j (qj) ≤ F−1
i (q1) ≤ −z)

L(F1(−z), . . . , Fd(−z))

=
µL(∆i(z

−γa))

L(z−γa)
=

µL(∆i(a))

L(a)
=

ai

L(a)

∂L

∂ai
(a) .

3. The probability of an excess of a loss over a security level

Let c = e−z, where z > x̄, be a fixed security level, then

P

(

W1

W0
≤ e−z

)

= P

(

d
∑

i=1

ωie
si ≤ e−z

)

= µC(Vz) ,

where

Vz =

{

q :

d
∑

i=1

ωi exp
(

F−1
i (qi)

)

≤ e−z

}

=

{

q :
d
∑

i=1

exp
(

z + F−1
i (qi) + ln(ωi)

)

≤ 1

}

.

Note that all summands are smaller than 1. So we get the following estima-
tion for coefficient qi of a point q from Vz:

qi ≤ Fi(−z − ln(ωi)) = ai(z + ln(ωi))
−γ .

Therefore,

Vz ⊂ I

(

0,

(

ai

(z + ln(ωi))γ

))

⊂

d
⋃

i=1

∆i((z + ln(ωi))
−γa) .

On the other hand the sum of positive weights ωi is 1. Therefore, if for
i = 1, 2 . . . , d

qi ≤ Fi(−z) = aiz
−γ ,
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then q belongs to Vz i.e. we obtain that

I(0, z−γa) ⊂ Vz .

Moreover, the vertex z−γa belongs to the border of Vz. Indeed

d
∑

i=1

ωi exp
(

F−1(z−γai)
)

=

d
∑

i=1

ωie
−z = e−z.

In such a way we get the following estimates:

Proposition 3.1. For z > x̄

z−γL(a) ≤ µC(Vz) ≤

d
∑

i=1

(z + ln(ωi))
−γai

∂L

∂qi
(a) .

Proof. Since I(0, z−γa) ⊂ Vz,

µC(Vz) ≥ µC(I(0, z−γa)) = C(z−γa) = L(z−γa) = z−γL(a).

On the other hand Vz ⊂ ∪d
i=1∆i((z + ln(ωi))

−γa), hence

µC(Vz) ≤

d
∑

i=1

µC(∆i((z + ln(ωi))
−γa))

=

d
∑

i=1

µL(∆i((z + ln(ωi))
−γa))

=

d
∑

i=1

(z + ln(ωi))
−γai

∂L

∂qi
(a) .

4. Value at risk

We start with the asymptotical improvement for the formula for µC(Vz).

Proposition 4.1. For z > x̄ + max (| ln(ωi)|)

µC(Vz) = z−γL(a)
(

1 −
γ

z

d
∑

i=1

ln(ωi)gi(a) + O
(

z−2
)

)

,

where

gi =
ai

L(a)

∂L

∂ai
(a) .
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Proof. First we show that

µL(∆1((z + ln(ω1))
−γa) \ Vz) = O(z−γ−2).

We put q′ = (q2, . . . qd) and a′ = (a2, . . . , ad). Since L is homogeneous, the
same is true for the associated measure µL

µL(∆1((z + ln(ω1))
−γa) \ Vz) = z−γµL

(

∆1

(

(

1 +
ln(ω1)

z

)−γ

a

)

\ zγVz

)

.

We have

∆1

(

(

1 +
ln(ω1)

z

)−γ

a

)

\ zγVz

= ∆1

(

(

1 +
ln(ω1)

z

)−γ

a

)

\ I

(

0,

(

(

1 +
ln(ω1)

z

)−γ

a1, a
′

))

∪

(

I

(

0,

(

1 +
ln(ω1)

z

)−γ

a1, a
′

)

\ zγVz

)

.

The density gL is bounded outside the rectangle I(0, a), hence it is enough
to show that the Euclidean volumes of both components are small.

The first one,

∆1

(

(

1 +
ln(ω1)

z

)−γ

a

)

\ I

(

0,

(

(

1 +
ln(ω1)

z

)−γ

a1, a
′

))

,

is a pyramid of height (1 + ln(ω1)/z)−γ − 1 and a base

I

(

0,

(

1 +
ln(ω1)

z

)−γ

a′

)

\ I(0, a′) .

Therefore, its volume is of order z−2.

The estimation of the volume of the second one is more complicated.

Vol

(

I

(

0,

(

(

1 +
ln(ω1)

z

)−γ

a1, a
′

))

\ zγVz

)

= Vol

{

(q) :
d
∑

i=1

ω1 exp

(

z

(

1 −

(

qi

ai

)−1/γ
))

≥ 1 ,

q1

a1
≤

(

1 +
ln (ω1)

z

)−γ

, 0 ≤
q2

a2
≤ 1, . . . , 0 ≤

qd

ad
≤ 1

}
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= a1a2 · . . . · ad · Vol

{

(q) :
d
∑

i=1

ω1 exp
(

z
(

1 − q
−1/γ
i

))

≥ 1 ,

q1 ≤

(

1 +
ln(ω1)

z

)−γ

, 0 ≤ q2 ≤ 1, . . . , 0 ≤ qd ≤ 1

}

=
∏

ai

1
∫

0

. . .

1
∫

0

(

(

1 +
ln(ω1)

z

)−γ

−

(

1+
ln(ω1)

z
−

1

z
ln

(

1−

d
∑

i=2

ωi exp
(

z
(

1−q
−1/γ
i

))

))−γ )

dq2 . . . dqd .

The power function x−γ is convex, hence we get

Vol ≤
∏

ai

1
∫

0

. . .

1
∫

0

(−γ)

(

1 +
ln(ω1)

z

)−γ−1

×
1

z
ln

(

1 −

d
∑

i=2

ωi exp
(

z
(

1 − q
−1/γ
i

))

)

dq2 . . . dqd

=
∏

ai
γ

z

(

1 +
ln(ω1)

z

)−γ−1

×

1
∫

0

. . .

1
∫

0

− ln

(

1 −

d
∑

i=2

ωi exp
(

z
(

1 − q
−1/γ
i

))

)

dq2 . . . dqd .

The function − ln(x) is convex too, hence

1
∫

0

. . .

1
∫

0

− ln

(

1 −
d
∑

i=2

ωi exp
(

z
(

1 − q
−1/γ
i

))

)

dq2 . . . dqd

≤

1
∫

0

. . .

1
∫

0

d
∑

i=2

−ωi ln
(

1 − exp
(

z
(

1 − q
−1/γ
i

)))

dq2 . . . dqd

=

d
∑

i=2

ωi

1
∫

0

− ln
(

1 − exp
(

z
(

1 − q
−1/γ
i

)))

dqi .
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Now it is enough to show that the integral

J(z) =

1
∫

0

− ln
(

1 − exp
(

z
(

1 − x−1/γ
)))

dx

is of order z−1. We change the variable. Let

y = −z
(

1 − q
−1/γ
i

)

.

We obtain

J(z) =
γ

z

∞
∫

0

− ln(1 − e−y)
(

1 +
y

z

)−γ−1
dy ≤

γ

z

∞
∫

0

− ln(1 − e−y)dy .

Having integrate the last integral by parts we get an integral listed in [10]
§534 example 11 which equals ζ(2) (Riemann zeta function).

In the same way we get the estimates for the other pyramids. We obtain

µC(Vz) =

d
∑

i=1

(z + ln(ωi))
−γai

∂L

∂qi
(a) + O(z−γ−2)

= z−γ
d
∑

i=1

(

1 − γ
ln(ωi)

z

)

ai
∂L

∂qi
(a) + O(z−γ−2) .

But L is homogeneous of degree 1, hence

L(a) =
d
∑

i=1

ai
∂L

∂ai
(a) .

Therefore,

µC(Vz) = z−γL(a)

(

1 −
γ

z

d
∑

i=1

ln(ωi)gi(a) + O
(

z−2
)

)

,

where

gi =
ai

L(a)

∂L

∂ai
(a) .

Proof of theorem 1.1. Let

α = P

(

W1

W0
≤ e−z

)

= µC(Vz) .



Value at Risk in the Presence of the Power Laws 2585

We estimate the dependence of z on α

α = z−γL(a)

(

1 −
γ

z

d
∑

i=1

ln(ωi)gi + O
(

z−2
)

)

.

Therefore,

z(α) =

(

L(a)

α

)1/γ

−
d
∑

i=1

gi ln(ωi) + O(α1/γ) .

This finishes the proof

VaR1−α = W0 − W0e
−z(α) .

5. The asymptotically optimal portfolio

Corollary 5.1. There is a unique “asymptotically” optimal portfolio ω =
(ω1, . . . , ωd)

ωi =
ai

L(a)

∂L

∂ai
(a) .

Proof. The portfolio ω which minimizes the asymptotic VaR is maximizing
the function

G(ω) =

d
∏

i=1

ωgi

i , gi =
ai

L(a)

∂L

∂ai
(a) .

Since ω fulfills the constraint

ω1 + . . . + ωd = 1 ,

there is a unique maximum at a point (ω1, . . . , ωd)

ωi =
gi
∑

gj
.

Note that L is homogeneous of degree 1, hence

d
∑

j=1

gj = 1 and ωi = gi .

Furthermore, due to Lemma 2.2 we know that

gi = P (sj ≤ si|sj ≤ −z, j = 1, . . . d), for z > x̄,

therefore:

Corollary 5.2. The part of the capital invested in the i-th asset should be

equal to the conditional probability that the drop of the value of the i-th asset

will be smaller than of the others under the condition that the value of the

all assets will be smaller than c times their initial value, where c < exp(−x̄).
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6. Conclusions

In this paper we deal with the portfolios consisting of several long posi-
tions in risky assets. Our aim was to check the impact of the diversification
of the portfolio on its joint risk. We provide the approximate formula for
Value at Risk and determine the optimal portfolio for the case when the
tail parts of distributions of logarithmic returns of assets follow the power
law of the same degree and the lower tail of associated copula C follows the
power law of degree 1 (which we can observe in many empirical examples).
Furthermore, we show that the composition of the optimal portfolio can be
expressed in terms of the conditional probabilities which are much easier to
estimate.
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