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RANDOM LÉVY MATRICES: II∗
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We discuss the spectral density for standard and free random Lévy
matrices in the large N limit. The eigenvalue spectrum is unbounded with
power law tails in both cases.
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1. Introduction

The theory of random matrices belonging to the Gaussian universality
class is well established. For example symmetric matrices whose independent
elements are independent identically distributed (iid) random numbers with
the normal distribution, or any random numbers with finite moments, belong
to this class. In the large N limit the spectral properties of such matrices
are identical to those of free Gaussian random matrices [1]. For symmetric
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matrices from the Lévy universality class the situation is different. Symmet-
ric random matrices whose elements are iid Lévy numbers, have a different
large N -limit than that of free random Lévy matrices [2]. We shall refer to
the first class of matrices as standard random Lévy matrices to distinguish
them from free Lévy matrices. The underlying measure in free random ma-
trix theory is in general non-local, and only known explicitly for Cauchy and
Lévy–Smirnov distributions. For a number of Lévy indices, the free eigen-
value distribution can be worked out explicitly exhibiting power law tails for
large eigenvalues [2].

In a pioneering work on random matrix theory using iid Lévy generated
entries of symmetric matrix, Cizeau and Bouchaud [3] have suggested that
the distribution of eigenvalues of standard Lévy matrices follows a Lévy-like
distribution whereby the range and the asymmetry of the distribution are
determined self-consistently by pertinent integral equations at large N . We
review and correct their arguments. In a separate section we will sketch the
idea on how to derive the spectral density for free random Lévy matrices
within the free random variable approach [2].

2. Random Lévy matrices

The absence of moments for Lévy distributions make the standard replica
construction for matrices with random entries sampled from Lévy distribu-
tions mute. Instead, we follow Cizeau and Bouchaud [3] and define the
N × N symmetric resolvent

GN
ij (z) = (z − H)−1

ij , (1)

with entries i, j = 1, ..., N . Its (N + 1)× (N + 1) counterpart carry an extra
row and column with entries i, j = 0. The extra diagonal entry obeys the
recursive relation

S0(z) = z −
1

GN+1
00 (z)

= H00 +

N
∑

i,j

H0iH0jG
N
ij (z) . (2)

Stability at large N demands that the matrix entries Hij’s are O(1/N1/µ)
and, therefore, H00 maybe omitted. When Hij are sampled from an iid Lévy
distribution,

P (H) ≈
µ Rµ

H1+µ
(3)

the composition law for Lévy matrices implies that the diagonal contribution
in (2) dominates over the off-diagonal one in large N . Thus, the self-energy
satisfies
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S0(z) = z −
1

GN+1
00 (z)

≈

N
∑

i

H2
0iG

N
ii (z) . (4)

which is exact in large N . Since the H0i are sampled again from iid Lévy
matrices, the sum of their squares in (4) is Lévy-like, i.e.

PS(S) ∝ L
C(z),β(z)
µ/2 (S) . (5)

The parameters C(z) and β(z) are readily found from the composition rules
for Lévy random variables1

C(z) =
1

N

N
∑

i

|Gii|
µ/2 ,

β(z) =

N
∑

i
sgn(Gii)|Gii|

µ/2

N
∑

i
|Gii|µ/2

. (6)

While each of the entries G00 and Gii are different, in large N it is plausible
that their distribution is Lévy-like. Since the self-energy is self-averaging we
may use (5) and the measure

PS(S) dS = PS

(

z −
1

G00

)

dG00

G2
00

. (7)

to rewrite (6) in integral form

C(z) =

∞
∫

−∞

dG|G|µ/2−2L
C(z),β(z)
µ/2

(

z −
1

G

)

,

β(z) =

∞
∫

−∞
dG|G|µ−2sgn(G)L

C(z),β(z)
µ/2

(

z − 1
G

)

∞
∫

−∞
dG|G|µ−2L

C(z),β(z)
µ/2

(

z − 1
G

)

. (8)

We may simplify (8) further by changing variables 1/G = C2/µx′ and
z = C2/µz′ and using the characteristic transform

L1,β
µ/2(x) =

+∞
∫

−∞

dk

2π
exp

(

ikx − |k|µ/2(1 + iβτsgn(k))
)

. (9)

1 The equation for the asymmetry β(z) differs from the one quoted in [3].
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The result is

C2(z′) =
4

πµ
Γ

(

1 −
µ

2

)

sin
(πµ

4

)

∞
∫

0

dp cos
(

p2/µz′ − β(z′) τ p
)

e−p ,

β(z′) = τ−1

∞
∫

0

dp sin(p2/µz′ − β(z′) τ p) e−p

∞
∫

0

dp cos
(

p2/µz′ − β(z′) τ p
)

e−p

. (10)

with τ = tan(πµ/4). These equations can be solved self-consistently by first
determining β(z′), then C(z′) and finally z from z′ by the change of variable
z = C2/µ(z′)z′.

The distribution of entries Gii yields the resolvent

G(z) = PV

∞
∫

−∞

dx

z − x
L

C(z),β(z)
µ/2 (x) (11)

and, therefore, the eigenvalue distribution in integral form

ρ(λ) =
1

π2
PV

∞
∫

−∞

dz

z − λ
G(z) . (12)

The distribution of eigenvalues ρ(λ) following from (12) is different from
the one derived in [3]. The last equation can be combined with Eqs. (10)
and (11) to numerically determine the eigenvalue distribution ρ(λ). We
found a perfect agreement of the distributions computed in this way with
those obtained by numerical diagonalization of many randomly generated
standard Lévy matrices. The comparison will be presented elsewhere.

3. Free random Lévy matrices

Following the original work by Voiculescu and coworkers [1], we have
recently shown that the trace of the resolvent (1) for free random Lévy
matrices obeys the transcendental equation

bGµ(z) − (z − a)G(z) + 1 = 0 , (13)

with b = C ei(µ/2−1)(1+β)π for 1 < µ < 2 and b = C ei(π+(µ/2)(1+β)π) for
0 < µ < 1. The marginal case µ = 1 is given by a different transcendental
equation

(z − a + iγ (1 + β)) G(z) +
2βγ

π
G(z) ln γ G(z) − 1 = 0 . (14)
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The known solutions follow from µ = 1/2, 1, 2. In particular, µ = 2 yields
the Gaussian resolvent

GG(z) =
1

2

(

z −
√

z2 − 4
)

, (15)

while the marginal case µ = 1 and β = 0 yields the Cauchy resolvent

GC(z) =
1

z − (a − iγ)
. (16)

The discontinuity

ρ(λ) = −
1

π
Im G(λ + i0) (17)

is the standard density of states for free random Lévy matrices. Free ran-
domness corresponds to coherent phase approximation (CPA) in large N
which is a resummation of planar diagrams and a class of crossing graphs
(non-planar).

4. Conclusion

We have reviewed and corrected the original arguments presented by
Cizeau and Bouchaud for the density of states of symmetric and randomly
generated Lévy matrix entries. A full numerical analysis of these results will
be presented elsewhere. We have also reviewed the density of eigenvalues
generated using free random variable calculus. Both ensuing spectra exhibit
an unbounded support of eigenvalues in contrast to Gaussian random matrix
theory. These results are of interest to a number of scale free systems ranging
from networks to finances [4].
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