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We compare some methods recently used in the literature to detect the
existence of a certain degree of common behavior of stock returns belonging
to the same economic sector. Specifically, we discuss methods based on ran-
dom matrix theory and hierarchical clustering techniques. We apply these
methods to a portfolio of stocks traded at the London Stock Exchange. The
investigated time series are recorded both at a daily time horizon and at
a b-minute time horizon. The correlation coefficient matrix is very differ-
ent at different time horizons confirming that more structured correlation
coeflicient matrices are observed for long time horizons. All the consid-
ered methods are able to detect economic information and the presence of
clusters characterized by the economic sector of stocks. However, different
methods present a different degree of sensitivity with respect to different
sectors. Our comparative analysis suggests that the application of just a
single method could not be able to extract all the economic information
present in the correlation coefficient matrix of a stock portfolio.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.65.Gh

1. Introduction

Multivariate time series are detected and recorded both in experiments
and in the monitoring of a wide number of physical, biological and economic
systems. A first instrument in the investigation of a multivariate time se-
ries is the correlation matrix. The study of the properties of the correlation
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matrix has a direct relevance in the investigation of mesoscopic physical
systems [1], high energy physics [2], information theory and communica-
tion [3-5|, investigation of microarray data in biological systems [6-8| and
econophysics [9-15].

Multivariate stock return time series are characterized by a correlation
matrix which is carrying information about the economic sectors of the con-
sidered stocks [11,16-25].

Recent empirical and theoretical analysis have shown that this informa-
tion can be detected by using a variety of methods. In this paper we review
some of these methods based on Random Matrix Theory (RMT) [18], corre-
lation based clustering [11], and topological properties of correlation based
graphs [25]. The common and different aspects of these methods are dis-
cussed by considering the results of an analysis investigating the set of n = 92
stocks belonging to “SET 1”7 of the London Stock Exchange (LSE). The time
period of the time series is the entire 2002 year and the analysis is performed
at two different time horizons. Specifically, we investigate the 5-minute time
horizon and the daily time horizon to show the differences detected in the
structure of the correlation matrix of high frequency and daily returns.

The paper is organized as follows: in Section 2 we discuss the methods
used to extract economic information from a correlation matrix of a stock
portfolio by using concepts and tools of RMT and hierarchical clustering.
The investigated correlation based clustering procedures are the single link-
age and average linkage. We also consider a graph obtained by imposing
the topological constraint of planarity during its construction along a well
defined algorithmic procedure. This graph has been named by authors as
the Planar Maximally Filtered Graph (PMFG). In Section 3 we present the
empirical results obtained for daily returns of the 92 stocks belonging to
“SET 17 of the LSE recorded in 2002. Section 4 presents the empirical re-
sults obtained for 5-minute returns of the same set of data. In Section 5 we
draw our conclusions.

2. Methods

In this section we review several methods used to select part of the
content of the correlation coefficient matrix which is robust with respect to
statistical uncertainty and carrying economic information.

The correlation coefficient between the time evolution of two stock return
time series is defined as

pis — (rirj) — (ri)(rj)
V) = r)2)((r2) = (r)?)

where n is the number of stocks, 7 and j label the stocks, r; is the logarithmic
return defined by r; = In P;(t) — In P;(t — At), P;(t) is the value of the
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stock price ¢ at the trading time ¢ and At is the time horizon at which one
computes the returns. In this work the correlation coefficient is computed
between synchronous return time series. The correlation coefficient matrix
is an 7 x n matrix whose elements are the correlation coefficients p;;.

We start our review of methods by discussing the application of concepts
of RMT which have been used to select the eigenvalues and eigenvectors
of the correlation matrix less affected by statistical uncertainty. Then we
consider two different correlation based clustering procedures. Correlation
based clustering procedures are used to obtain a reduced number of simi-
larity measures representative of the whole original correlation matrix. The
filtering procedure associated with a reduction of the considered similarity
measures is typically going from n(n —1)/2 distinct elements to a number of
similarity measures of the order of n. The first clustering procedure we con-
sider here is the single linkage clustering method that has been repeatedly
used to detect a hierarchical organization of stocks and the associated Mini-
mum Spanning Tree (MST) and PMFG. The PMFG is a recently introduced
graph extending the number of similarity measures associated to the graph
with respect to the ones present in the MST. This extension of considered
links is done by conserving the same hierarchical tree of the MST [25]. The
second clustering procedure is the average linkage which provides a different
taxonomy and the last one is the PMFG.

2.1. Random Matriz Theory

Random Matrix Theory [26] was originally developed in nuclear physics
and then applied to many different fields. In the context of asset portfolio
management RMT is useful because it allows to compute the effect of statis-
tical uncertainty in the estimation of the correlation matrix. Suppose that
the n assets are described by n time series of T time records and that the
returns are independent Gaussian random variables with zero mean and vari-
ance o2. The correlation matrix of this set of variables in the limit 7" — oo
is simply the identity matrix. When T is finite the correlation matrix will in
general be different from the identity matrix. RMT allows to prove that in
the limit 7', n — oo, with a fixed ratio Q@ = T'/n > 1, the eigenvalue spectral
density of the covariance matrix is given by

Q

= 202\

p()\) \/()\max - )\)()\ - )\min) ) (2)

where A8X = 52(1 + 1/Q 4 2,/1/Q). The spectral density is different

min
from zero in the interval |Amin, Amax|. In the case of a correlation matrix
it is 02 = 1. The spectrum described by Eq. (2) is different from 6(\ — 1)
which is expected by an identity correlation matrix. In other words RMT
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quantifies the role of the finiteness of the length of the time series on the
spectral properties of the correlation matrix.

RMT has been applied to the investigation of correlation matrices of fi-
nancial asset returns [9,10] and it has been shown that the spectrum of a
typical portfolio can be divided in three classes of eigenvalues. The largest
eigenvalue is totally incompatible with Eq. (2) and describes the common
behavior of the stocks composing the portfolio. This fact leads to another
working hypothesis that the part of correlation matrix which is orthogonal
to the eigenvector corresponding to the first eigenvalue is random. This
amounts to quantify the variance of the part not explained by the highest
eigenvalue as 02> = 1 — A\;/n and to use this value in Eq. (2) to compute
S\min and S\max. Under this assumption, previous studies have shown that a
fraction of the order of few percent of the eigenvalues are also incompatible
with the RMT because they fall outside the interval |Apin, Amax| computed
with the value of ¢ taking into account the behavior of the first eigenvalue.
These eigenvalues probably describe economic information stored in the cor-
relation matrix. The remaining large part of the eigenvalues is between Ay
and Apax and thus one cannot say whether any information is contained in
the corresponding eigenspace.

The fact that by using RMT it is possible, under certain assumptions, to
identify the part of the correlation matrix containing economic information
suggested some authors to use RMT for showing that some selected eigen-
vectors, i.e. eigenvectors associated to eigenvalues not explained by RMT,
describe economic sectors. Specifically the suggested method [18] is the fol-
lowing. One computes the correlation matrix and finds the spectrum ranking
the eigenvalues such that Ay > Agy1. The eigenvector corresponding to Ag
is denoted u®. The set of investigated stocks is partitioned in S sectors
s = 1,2,...,8 according to their economic activity (for example by using
classification codes such as the one of the Standard Industrial Classification
code or Forbes). One then defines a S xn projection matrix P with elements
Ps; = 1/ng if stock i belongs to sector s and P;; = 0 otherwise. Here ng
is the number of stocks belonging to sector s. For each eigenvector u* one
computes

Xk = zn: Pyi[uf)?. (3)
=1

This number gives a measure of the role of a given sector s in explaining the
composition of eigenvector w¥. Thus when a given eigenvector has a large
value of X* for only one (or few) sector s, one can conclude that the eigen-
vector describes that economic sector. Note that this method requires the
a priori knowledge of the sector for each stock in order to be implemented.
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2.2. Hierarchical clustering methods

Another approach used to detect the information associated to the cor-
relation matrix is given by the correlation based hierarchical clustering anal-
ysis. Consider a set of n objects and suppose that a similarity measure, e.g.
the correlation coefficient, between pairs of elements is defined. Similarity
measures can be written in a n X n similarity matrix. The hierarchical clus-
tering methods allow to hierarchically organize the elements in clusters. The
result of the procedure is a rooted tree or dendrogram giving a quantitative
description of the clusters thus obtained. It is worth noting that hierarchical
clustering methods can as well be applied to distance matrices.

A large number of hierarchical clustering procedures can be found in
the literature. For a review about the classical techniques see for instance
Ref. [27]. In this paper we focus out attention on the Single Linkage Clus-
ter Analysis (SLCA), which was introduced in finance in Ref. [11] and the
Average Linkage Cluster Analysis (ALCA).

2.2.1. Single linkage correlation based clustering

The Single Linkage Cluster Analysis is a filtering procedure based on the
estimation of the subdominant ultrametric distance [28| associated with a
metric distance obtained from the correlation coefficient matrix of a set of
n stocks. This procedure, already used in other fields, allows to extract a
MST and a hierarchical tree from a correlation coefficient matrix by means
of a well defined algorithm known as nearest neighbor single linkage clus-
tering algorithm [29]. This methodology allows to reveal both topological
(through the MST) and taxonomic (through the hierarchical tree) aspects
of the correlation present among stocks.

The MST is obtained by selecting a relevant part of the information
which is present in the correlation coefficient matrix of the time series of stock
returns. In the present study this is done () by determining the synchronous
correlation coefficient of the difference of logarithm of stock price computed
at a selected time horizon, (ii) by calculating a metric distance between all
the pair of stocks and (7i7) by selecting the subdominant ultrametric distance
associated to the considered metric distance. The subdominant ultrametric
is the ultrametric structure closest to the original metric structure [28].

A metric distance between pair of stocks can be rigorously determined [30]
by defining

dij = 1/2(1 = pij). (4)

With this choice d;; fulfills the three axioms of a metric — (i) d;; = 0 if and
only if i = j ; (4) d;j = dj; and (éii) dij < d;, + di;. The distance matrix D

is then used to determine the MST connecting the n stocks.
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The MST is a graph without loops connecting all the n nodes with the
shortest n — 1 links amongst all the links between the nodes. The selection
of these n — 1 links is done according to some widespread algorithm [31] and
can be summarized as follows:

1. Construct an ordered list of pair of stocks Lg.q, by ranking all the
possible pairs according to their distance d;;. The first pair of Lgq
has the shortest distance.

2. The first pair of Ly.q gives the first two elements of the MST and the
link between them.

3. The construction of the MST continues by analyzing the list Lqq. At
each successive stage, a pair of elements is selected from Ly.q and the
corresponding link is added to the MST only if no loops are generated
in the graph after the link insertion.

Different elements of the list are therefore iteratively included in the MST
starting from the first two elements of Lo.q. As a result, one obtains a graph
with n vertices and n — 1 links. For a didactic description of the method
used to obtain the MST one can consult Ref. [32]

In Ref. [33] the procedure briefly sketched above has been shown to
provide a MST which is associated to the same hierarchical tree of the SLCA.
In this procedure, at each step, when two elements or one element and a
cluster or two clusters p and ¢ merge in a wider single cluster ¢, the distance
dy between the new cluster ¢ and any cluster r is recursively determined as
follows:

dyy = min{dyy, dyr} (5)

thus indicating that the distance between any element of cluster ¢ and any
element of cluster r is the shortest distance between any two entities in
clusters t and r. By applying iteratively this procedure n—1 of the n(n—1)/2
distinct elements of the original correlation coefficient matrix are selected.
The distance matrix obtained by applying the SLCA is an ultrametric
matrix comprising n — 1 distinct selected elements. The ultrametric distance
dfj between element i belonging to cluster ¢ and element j belonging to clus-
ter r is therefore defined as the distance between clusters ¢ and r. Ultramet-
ric distances dj5 are distances satisfying the inequality d; < max{dfk, d,fj}
stronger than the customary triangular inequality d;; < d; + dj; [28]. The
SLCA has associated an ultrametric correlation matrix which is the sub-
dominant ultrametric matrix of the original correlation coefficient matrix.
It can be obtained starting from the ultrametric distances dfj and making

use of Eq. (4).
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The MST allows to obtain, in a direct and essentially unique way, the
subdominant ultrametric distance matrix D< and the hierarchical organiza-
tion of the elements of the investigated data set. In Ref. [34] it is proved that
the ultrametric correlation matrix obtained by the SLCA is always positive
definite when all the elements of the obtained ultrametric correlation matrix
are non negative. This condition is rather common in financial data.

The effectiveness of the SLCA in pointing out the hierarchical structure
of the investigated portfolio has been shown by several studies [11,17,19-
21,23,24,35, 36].

2.2.2. Average linkage correlation based clustering

The Average Linkage Cluster Analysis is a hierarchical clustering pro-
cedure [27] that can be described by considering either a similarity or a
distance measure. Here we consider the distance matrix D. The following
procedure performs the ALCA giving as an output a rooted tree and an
ultrametric matrix D= of elements d;;:

1. Set T as the matrix of elements such that T' = D.

2. Select the minimum distance tp; in the distance matrix T'. Note that
after the first step of construction h and k can be simple elements (i.e.
clusters of one element each) or clusters (sets of elements).

3. Merge cluster h and cluster k into a single cluster, say h. The merging
operation identifies a node in the rooted tree connecting clusters i and
k at the distance t;;. Furthermore to obtain the ultrametric matrix it
is sufficient that Vi € h and Vj € k one sets dj; = d5; = tp.

4. Redefine the matrix T':

Nptp; + Ny ti o .
C_ thohg T TR TR £
thy N, TN, if j#handj # k

tij = tij otherwise,

where N and Nj are the number of elements belonging respectively
to the cluster h and to the cluster k. Note that if the dimension of T
is m x m then the dimension of the redefined T is (m — 1) x (m — 1)
because of the merging of clusters h and k into the cluster h.

5. If the dimension of T is bigger than one then go to step 2 else Stop.
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By replacing point 4 of the above algorithm with the following item

4. Redefine the matrix T

thj = min [thj7tkj] if ] 75 handj 75 k
Lij = tij otherwise,

one obtains an algorithm performing the SLCA which is therefore equivalent
to the one described in the previous section. The algorithm can be easily
adapted for working with similarities instead of distances. It is just enough
to exchange the distance matrix D with a similarity matrix (for instance the
correlation matrix) and replace the search for the minimum distance in the
matrix T in point 2 of the above algorithm with the search for the maximal
similarity.

It is worth noting that the ALCA can produce different hierarchical
trees depending on the use of a similarity matrix or a distance matrix. More
precisely, different dendrograms can result for the ALCA due to the non
linearity of the transformation of Eq. (4). This problem does not arise in
the SLCA because Eq. (4) is a monotonic transformation and therefore it
does not affect the search for the minimum (or maximum for the similarity).

2.3. The Planar Mazimally Filtered Graph

The Planar Maximally Filtered Graph has been introduced in a recent
paper [25]. The basic idea is to obtain a graph that retains the same hi-
erarchical properties of the MST, i.e. the same hierarchical tree of SLCA,
but allowing a greater number of links and more complex topological struc-
tures than the MST, such as loops and cliques. Such a graph is obtained
by relaxing the topological constraint of the MST construction protocol of
Section 2.2.1 according to which no loops are allowed in a tree. Specifically,
in the PMFG a link can be included in the graph if and only if the graph
with the new link included is still planar. A graph is planar if and only if it
can be drawn on a plane (infinite in principle) without edge crossings [37].

The first difference between MST and PMFG is about the number of
links, which is n — 1 in the MST and 3(n — 2) in the PMFG. Furthermore
loops and cliques are allowed in the PMFG. A clique of r elements, r-cliques,
is a subgraph of r elements where each element is linked to each other.
Because of the Kuratowski’s theorem [37] only 3-cliques and 4-cliques are
allowed in the PMFG. The study of 3-cliques and 4-cliques is relevant for
understanding the strength of clusters in the system [25] as we will see below
in the empirical applications.
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Concerning the hierarchical structure associated to the PMFG it has
been shown in Ref. [25] that at any step of construction of the MST and
PMFG, if two elements are connected via at least one path in one of the
considered graphs, then they also are connected in the other one. This
statement implies that (i) the MST is always contained in the PMFG and
(i) the hierarchical tree associated to both the MST and PMFG is the one
obtained from the SLCA.

In summary the PMFG is a graph retaining more information about the
system than the MST, the information being stored in the included new
links and in the new topological structures allowed i.e. loops and cliques.

3. Empirical results: daily data

In the present section we apply the selected methods to a set of stocks
traded at the LSE. These stocks are highly capitalized stocks and they belong
to 11 different economic sectors.

3.1. The data set

We investigate the statistical properties of price returns for n = 92
highly traded stocks belonging to the SET1 segment of the LSE market
www . londonstockexchange.com. In particular, we consider electronic trans-
actions occurred in year 2002. The empirical data are taken from the “Re-
build Order Book” database, maintained by the LSE.

For each of the 92 stocks considered, the trading activity has been defined
in terms of the total number of transactions (electronic and manual) occurred
in 2002. Most of the transactions, a mean value of 75% for the 92 stocks,
are of the electronic type.

For each stock and for each trading day we consider the time series of
stock price recorded transaction by transaction. Since transactions for differ-
ent stocks do not happen simultaneously, we divide each trading day (lasting
8 30') into intervals of 5-minute each. For each trading day, we define 103
intraday stock price proxies P;(tx), with k = 1,---,103. The proxy is de-
fined as the transaction price detected nearest to the end of the interval
(this is one possible way to deal with high-frequency financial data [38]). By
using these proxies, we perform the price returns r; = In P;(¢) —In P;(t — At)
at time horizons of At = 5 minute and At equal to one trading day. In the
case of a daily time horizon the returns are computed as the difference of
the logarithms of the closure prices of each successive trading day. In the
case of At = 5 minute, the returns are always computed as the difference of
the logarithms of prices which belong to the same trading day.
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To each of the 92 selected stocks an economic sector of activity can
be associated according to the classification scheme used in the web-site
www.euroland.com. The relevant economic sectors are reported in Table I,
together with the number of stocks belonging to each of them (third col-
umn).

TABLE 1

Economic sectors of activity for 92 highly traded stocks belonging to the SET1
segment of the LSE. The classification is done according to the methodology used
in the web—site www.euroland.com. The second column contains the economic
sector and the third column contains the number of stocks belonging to the sector.

SECTOR NUMBER
1 | Technology 4
2 | Financial 20
3 | Energy 3
4 | Consumer non-Cyclical 12
5 | Consumer Cyclical 10
6 | Healthcare 6
7 | Basic Materials b)
8 | Services 19
9 | Utilities 6
10 | Capital Goods 5
11 | Transportation 2

3.2. Random Matriz Theory

For a time horizon of one trading day the largest eigenvalue is A\; = 36.0
clearly incompatible with RMT and suggesting a driving factor common
to all the stocks. This is usually interpreted to be the “market mode” as
described in widespread market models, such as the Capital Asset Pricing
Model. The analysis of the components of the corresponding eigenvector
confirms this interpretation. In fact the mean component of the first eigen-
vector is 0.102 and the standard deviation is 0.022 showing that all the
stocks contribute in a similar way to the eigenvector u'.

In our data @ = T/n = 2.71 and the threshold value Apy.x without
taking into account the first eigenvalue is Apax = 2.58. This implies that
RMT considers as signal only the first two eigenvalues A; and As = 4.58. On
the other hand if we remove the contribution of the first eigenvalue with the
procedure discussed in section 2.1 we get Apna.x = 1.57, indicating that the
first 6 eigenvalues could contain economic information. This result shows
the importance of taking into account the role of the first eigenvalue.
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Figure 1 shows X* of Eq. (3) of the first 9 eigenvalues. Panel (a) shows
that all the sectors contribute roughly in a similar way to the first eigenvec-
tor. On the other hand eigenvectors 2, 3, and 6 are characterized by one
prominent sector. Specifically, the second eigenvector shows a large contri-
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Fig. 1. Contribution X* of Eq. (3) for the first (a), second (b), third (c), sixth
(f), seventh (g), eighth (h) and ninth (i) eigenvectors of the correlation matrix of
daily returns of 92 LSE stocks. Panel (d) shows X* for the linear combination
(u* +u®)/v/2 and panel (e) for the linear combination (u* — u®)/v/2. The order
of sectors is the same as in Table I.

bution from the sector Consumer non-Cyclical (s = 4), the third eigenvector
has a significant contribution from the Financial sector (s = 2), and the sixth
eigenvector shows a prominent peak for the stocks of the sector Healthcare
(s = 6). The fourth (A\y = 1.79) and fifth (A5 = 1.72) eigenvalues are very
close and a plot of X¥ for the corresponding eigenvectors shows two peaks
corresponding to the sectors Capital Goods and Technology. By following
a line of reasoning presented in Ref. [18]| a possible explanation is that the
noise due to the measurement favors the mixing of these two groups. In sup-
port of this hypothesis in panel (d) we show X f for the linear combination
(u* + u%)/v/2 and in panel (e) for the linear combination (u* — u%)/v/2.
Panel (d) has a large peak for the sector Capital Goods (s = 10) and in
panel (e) the peak is associated to the Technology sector (s = 1). Finally
the seventh, eighth and ninth eigenvector do not show significant peaks,
indicating that probably these are eigenvectors of eigenvalues strongly af-
fected by statistical uncertainty (“noise dressed”). It is interesting to note
that the RMT after subtracting the contribution of the largest eigenvector
as described above predicts that the first 6 eigenvalues are deviating, .e.
are outside the noise region. This is the same number one obtains from the
analysis of eigenvector component.



2664 C. CORONNELLO ET AL.

3.8. Single Linkage Correlation Based Clustering

The results obtained by using the SLCA for the daily returns are sum-
marized in Fig. 2 and Fig. 3 that show the hierarchical tree and the MST,
respectively.

The hierarchical tree shows that there exists a significant level of corre-
lation in the market, and in some case clustering can be observed. In par-
ticular, the first two stocks on the left of Fig. 2, Shell (SHEL) and British
Petroleum (BP), belonging to the Energy sector, are linked together at an
ultrametric distance d< = 0.47 corresponding to a correlation coefficient as
high as p = 0.89. However, the third stock belonging to the Energy economic
sector (stock 13), which is British Gas (BG), is not linked to the other two
but it is linked to stocks belonging to the Financial sector. We focus here
our attention on the two sectors with the largest number of stocks, which
are the Financial sector (s = 2) and the Services sector (s = 8). Panel (a) of
Fig. 2 gives an example in which some of the stocks belonging to the same
economic sector, e.g. Financial, are clustered together. In fact, a cluster in-
cluding 10 stocks from position 3 to position 12 can be observed. Panel (b)
of Fig. 2 gives an example of the opposite case in which stocks belonging to
the same economic sector, e.g. Services, are poorly clustered. In fact, only
two small clusters of two stocks are formed.
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Fig. 2. Hierarchical tree obtained by using the SLCA starting from the daily price
returns of 92 highly traded stocks belonging to the SET1 segment of the LSE.
Only electronic transactions occurred in year 2002 are considered. In panel (a) the
Financial economic sector is highlighted. In panel (b) the Services economic sector
is highlighted.

The MST confirms the above results. In Fig. 3 the stocks belonging to
the Financial economic sector (black circles) and the Services (gray circles)
are indicated. An inspection of Fig. 3 shows that the stocks of the Financial
sector cluster around Royal Bank of Scotland (RBS) whereas stocks of the
Services sector are present in different branches of the MST. The MST also
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gives an additional information about the topology of the network. In fact,
it is evident from the figure that there are two stocks that behave as hub.
One of them is RBS, which gathers 14 stocks, 10 of which belong to the
Financial sector. The other hub is SHEL which gathers 10 stocks, among
which we find BG and BP.

MT

Pajek

Fig.3. MST obtained starting from the daily price returns of 92 highly traded
stocks belonging to the SET1 segment of the LSE. Only electronic transactions
occurred in year 2002 are considered. The Financial economic sector (black) and
the Services (gray) economic sector are highlighted. It is evident the existence of
two stocks that behave as hubs. One of them is RBS, which gathers 14 stocks, 10
of which belong to the Financial sector. The other hub is SHEL which gathers 10
stocks.

3.4. Average linkage correlation based clustering

In this subsection we analyze the dendrogram of Fig. 4 obtained by apply-
ing the ALCA to the correlation based distance matrix of the daily returns.
Once again, to provide representative examples we focus our attention to
the two sectors with the largest number of stocks. As in Fig. 2 in panel
(a) of Fig. 4 the black lines are identifying stocks of the Financial sector.
It can be seen from the figure that most of the stocks (specifically, 16 out
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of 20) belonging to the Financial sector cluster together at a low level dis-
tance (d ~ 0.85). Exceptions (referring to black lines outside the cluster in
panel (a) from the left to the right) are Northern Rock (NRK), Royal & Sun
Alliance (RSA), Canary Wharf Group (WYFN) and Man Group (EMG).
Interestingly, RSA, WYFN and EMG are distant from the observed cluster
also when considering the SLCA, as shown in panel (a) of Fig. 2 at position
37, 69 and 89, respectively. In panel (b) of Fig. 4 the black lines are iden-
tifying the 19 stocks belonging to the Services sector. In this case just an
intra-sector cluster of 3 stocks is detected, specifically the one composed by
Vodafone Group (VOD), mmQOy (OOM) and British Telecom (BT-A), the
corresponding stock numbers in panel (b) being respectively 44, 45 and 46.
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Fig. 4. Dendrogram associated to the ALCA performed on daily returns of a portfo-
lio of 92 stocks traded in the LSE in 2002. Panel (a): The black lines are identifying
stocks belonging to the Financial sector. Panel (b): The black lines are identifying
stocks belonging to the Services sector.

A comparison of the results obtained by using the SLCA and the ALCA
shows a substantial agreement between the output of these two methods.
However, a refined comparison shows that the ALCA provides a more struc-
tured hierarchical tree. In Fig. 5 and Fig. 6 we show a graphical representa-
tion of the original correlation matrix done in terms of a contour plot. In the
contour plot the gray scale represents the values of distances among stocks.
In the figure we use as stock order the one obtained by SLCA and ALCA
respectively. In both cases we also show the associated ultrametric matri-
ces. A direct comparison of the ultrametric matrices confirms that ALCA is
more structured than SLCA. Conversely, the SLCA selects elements of the
matrix with correlation values greater than the ones selected by ALCA and
then less affected by statistical uncertainty.
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Fig. 5. Contour plots of the original correlation matrix (panel (a)) and of the one
associated to the ultrametric distance (panel (b)) obtained by using the SLCA for
the daily price returns of 92 highly traded stocks belonging to the SET1 segment
of the LSE. Only electronic transactions occurred in year 2002 are considered.
Here the stocks are identified by a numerical label ranging from 1 to 92 and are
ordered according to the hierarchical tree of Fig. 2. The figure gives a pictorial
representation of the amount of information which is filtered out by using the

SLCA.
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Fig. 6. Contour plots of the original correlation matrix (panel (a)) and of the one
associated to the ultrametric distance (panel (b)) obtained by using the ALCA for
the daily price returns of 92 highly traded stocks belonging to the SET1 segment
of the LSE. Only electronic transactions occurred in year 2002 are considered.
Here the stocks are identified by a numerical label ranging from 1 to 92 and are
ordered according to the hierarchical tree of Fig. 4. The figure gives a pictorial
representation of the amount of information which is filtered out by using the

ALCA.



2668 C. CORONNELLO ET AL.

3.5. The Planar Maximally Filtered Graph

In this section we analyze the topological properties of the PMFG of
Fig. 7 obtained from the distance matrix of daily returns of the stock port-
folio. In the figure we again point out the behavior of stocks belonging to the
Financial and Services sectors. From the figure we can observe that the Fi-
nancial sector (black circles) is strongly intra-connected (black thicker edges)
whereas for the sector of Services (gray circles) we find just a few intra-sector
connections (gray thicker edges). These results agree with the ones observed
with the SLCA and the ALCA. The advantage of the study of the PMFG
is that, through it, we can perform a quantitative analysis of this behavior.
The existence in the graph of completely connected subgraphs, specifically
3-cliques and 4-cliques allows one to investigate the clustering level of sec-
tors through a measure of the intra-cluster connection strength [25]. This
measure is obtained by considering a specific sector composed by ng ele-
ments and indicating with ¢4 and c3 the number of 4-cliques and 3-cliques
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Fig. 7. PMFG obtained from daily returns of a set of 92 stocks traded in the LSE in
2002. Black circles are identifying stocks belonging to the Financial sector. Gray
circles are identifying stocks belonging to the Services sector. Other stocks are
indicated by empty circles. Black thicker lines are connecting stocks belonging to
the Financial sector. Gray thicker lines are connecting stocks belonging to the
Services sector.
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exclusively composed by elements of the sector. The connection strength g,
of the sector s is therefore defined as

4 _ Cq4
qs_’l’Ls—3’
3 C3
— NG 6
G = 3, g (6)

where we distinguish between the connection strength evaluated according to
4-cliques ¢% and 3-cliques ¢2. The quantities ns —3 and 3n, — 8 are normaliz-
ing factors. For large and strongly connected sectors both the measures give
almost the same result [25]. When small sectors are considered the quantity
q2 is more significant than ¢*. Consider for instance a sector of 4 stocks. In
this case ¢+ can assume the value 0 or 1, whereas ¢3 can assume one the 5
values 0, 0.25, 0.5, 0.75 and 1, giving a measure of the clustering strength
less affected by the quantization error. Note that in the case of ngy = 4 if qg’
assumes one of the values 0, 0.25, 0.5 and 0.75 then ¢? is always zero. In
Table II the connection strength is evaluated for all the sectors present in
the portfolio. The Financial sector has q% = (.88 and qg’ = (0.92. This last

TABLE II

Intra-sector connection strength (daily returns).
SECTOR ns i =cyf[ns —3] ¢ =c3/[3ns— 8
Technology 4 0/1=0 1/4=0.25
Financial 20 15/1720.88 48/52 =~ 0.92
Energy 3 — 1/1=1
Consumer non-Cyclical | 12 2/920.22 8/28 2 0.29
Consumer Cyclical 10 1/720.14 5/2220.23
Healthcare 6 0/3=0 1/10 =0.1
Basic Materials 5 0/2=0 3/7=043
Services 19 0/16=0 1/49 2 0.02
Utilities 6 0/3=0 0/10=0
Capital Goods 5 0/2=0 0/7=0
Transportation 2 — —

value is second only to the Energy sector (composed by 3 stocks) where all
stocks are connected within them so that ¢5 = 1. The stocks belonging to
the Energy sector are BG, BP and SHEL. We see in Fig. 7 that both BP
and SHEL are characterized by high values of their degree (number of links
with other elements). This fact implies that the Energy sector is strongly
connected both within the sector and with other sectors. This behavior is
different from what has been observed in the analysis of 100 highly capital-
ized stocks traded in the US equity market [25]. In Fig. 7 we observe that
stocks of the Financial sector are strongly connected with stocks belonging
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to different sectors. In particular RBS is the center of the biggest star in
the graph. On the contrary, the sector of Services is poorly intra-connected:
q§ = 0 and qg’ 2 0.02 and poorly connected to other sectors. In conclu-
sion we observe two different behaviors. The Financial and Energy sectors
are strongly intra-connected and strongly connected with other sectors. The
sector of Services is poorly intra-connected and poorly interacting with other
sectors.

4. Empirical results: 5-minute data

4.1. Random Matrix Theory

The properties of correlation matrix and of its eigenvalues and eigen-
vectors change dramatically when one considers cross correlations between
returns computed at a 5-minute time horizon. The largest eigenvalue is A\ =
11.2 and this sets the variance of the space orthogonal to it to~c72 = (0.87.
The noisy region of the spectrum is characterized by the values A, = 0.78
and Apax = 0.99. With these values one would conclude that 19 eigenvalues
contain economic information. This is quite surprising because one would
expect that for a short time horizon the correlation coefficients are less in-
fluenced by economic sectors than when one considers daily returns. We will
see in the following sections that clustering methods support this view.

Figure 8 shows the components uzl of the first eigenvector. In the x
axis of this figure the stocks are sorted in decreasing order according to
the total number of trades recorded in the investigated period. The figure
shows that the most heavily traded stocks have a larger component in the
first eigenvector. This behavior is not observed in the first eigenvector for
daily returns.

A possible interpretation of this result is the following. Suppose that,
as a first approximation, the dynamics of the set of stocks is described by
a one factor model, i.e. a model in which the dynamics of each variable is
controlled by a single factor. The equation describing the one factor model
is given by

ri(t) = i f (8) + 2 Veit), (7)

where ¢;(t) is a Gaussian zero mean noise term with unit variance and it

is assumed that the noise terms are uncorrelated one with each other and

with the factor, i.e. (g;(t)e;(t)) = d;; and (f(t)ej(t)) = 0. The parameter 2
(0)

gives the fraction of variance explained by the common factor f(t) and v, "’ =

\/1-= 722. The model describes a system where n variables are essentially

controlled by a common factor describing a weighted mean. This type of
model is, for example consistent with the Capital Asset Pricing Model of
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Fig. 8. Components u} of the first eigenvector of the correlation matrix of 5-minute
returns. In the z axis of this figure the stocks are sorted in decreasing order
according to the total number of trades recorded in the investigated period.

stock market behavior. It is possible to show [39] that the spectrum of this
model is given by a large eigenvalue A; ~ >, 72-2 and n — 1 eigenvalues
whose density can be obtained by using RMT. We wish to address here the
question of the dependence of the first eigenvector from the ~; parameters.
It is possible to show that in the large n limit the first eigenvector is well
approximated by the vector u! oc g = (71,72, ..., )7 . In fact the correlation
matrix of the model of Eq. (7) has off diagonal elements p;; = ~;y; for
i # j [39]. The product of the i-th row of the correlation matrix times the
vector g gives (1 + >, ; 732) ~ 5 Z;‘Zl 7]2 ~ ~;A1, which implies that g
well approximates the eigenvector w! in the large n limit.

Thus the result shown in Fig. 8 can be interpreted in the following way.
At 5-minute horizon the market is approximated by a one factor model of
Eq. (7). The ~; are related to the trading frequencies because more actively
traded stocks are usually the ones with the highest capitalization and these
stocks are the ones following more closely the mean behavior of the market,
i.e. the common factor f(t).

The sector analysis of 5-minute correlation matrix performed with RMT
shows less clear results than for daily returns. Figure 9 shows the contri-
bution X* of Eq. (3) for the first 9 eigenvalues of the correlation matrix
of 5-minute returns of 92 LSE stocks. The first, second, fourth, sixth, and
especially ninth eigenvector show peaks indicating the prominent role of one
or few sectors in determining the dynamics of these eigenvectors.
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Fig.9. Contribution X* of Eq. (3) for the first 9 eigenvectors of the correlation
matrix of 5-minute returns of 92 LSE stocks. The order of sectors is the same as
in Table I.

However, a systematic correspondence as in the case of daily returns
is not observed. Moreover it is unclear what kind of information can be
associated to the first 19 eigenvalues carrying information not affected by
statistical uncertainty.

It is therefore worth to consider what results are provided by correlation
based clustering algorithms for the same time horizon.

4.2. Single linkage correlation based clustering

At a 5-minute time horizon the structure of the MST and hierarchical
tree are quite different from the analogous trees at a daily time horizon.
Figure 10 shows the hierarchical tree obtained by using the SLCA for the
selected 92 stocks at a 5-minute time horizon. We proceed here in analogy
with the discussion done for the one day time horizon to put in emphasis
similarities and differences between the results obtained for the two time
horizons. Specifically, in panel (a) all stocks belonging to the Financial
economic sector are highlighted, while in panel (b) the stocks belonging to
the Services economic sector are highlighted. The hierarchical tree shows
that now the mean level of correlation in the market is lower than at one
day time horizon. The level of clustering is also less pronounced at this time
horizon. In fact, panel (a) of Fig. 10 shows how the stocks of the Financial
sector are only poorly clustered, contrary to the case shown in panel (a) of
Fig. 2. Panel (b) of Fig. 10 shows that at a 5-minute time horizon there is
absence of any amount of clustering for stocks of the Services sector.
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Fig. 10. Hierarchical tree obtained by using the SLCA starting from the 5-minute
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Fig.11. MST obtained starting from the 5-minute price returns of 92 highly traded
stocks belonging to the SET1 segment of the LSE. Only electronic transactions
occurred in year 2002 are considered. The Financial economic sector (black) and
the Services (gray) economic sector are highlighted. It is evident the existence of
two stocks that behave as hubs. One of them is RBS, which gathers 29 stocks, 7
of which belong to the Financial sector. The other hub is SHEL which gathers 17
stocks.
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In Fig. 11 the MST of the 92 stocks computed at a 5-minute time horizon
is shown. As in Fig. 3, the stocks belonging to the Financial sector (black
circles) and Services sector (gray circles) are highlighted. Several stocks of
the Financial sector cluster around RBS. The organization of the 92 stocks
around two hubs (SHEL and RBS) is here more pronounced than at a daily
time horizon. In particular, RBS has now a degree of 29 and SHEL has a
degree of 17. However, while at a daily time horizon 10 stocks of the Finan-
cial sector are linked to RBS, at the present time horizon only 7 Financial
stocks are linked to RBS. A possible interpretation is that RBS acts as hub
mainly for its economic sector at a daily time horizon, while at a shorter
time horizon, when economic sectors are expected to play a minor role, RBS
is influential for the whole stock market. These results are similar to what
has been observed for 100 stocks traded in US equity markets in Ref. [19].

4.8. Average linkage correlation based clustering

In Fig. 12 we show the dendrogram obtained for the 5-minute returns by
applying the ALCA to the correlation based distance matrix of the system.
In panel (a) of Fig. 12 the black lines are again identifying the Financial
sector. In the figure, we observe that just an intra-sector cluster of 3 elements
is formed. Specifically, Lioyds TSB Group (LLOY), RBS, HSBC Holdings
(HSBA) cluster together at a distance level d ~ 1.08. In panel (b) the black
lines are identifying stocks belonging to the Services sector. As in the case
of daily returns only an intra-sector cluster of 3 stocks is recognized by the
ALCA. Tt involves stocks Dizons Group (DXNS), Boots (BOG) and Compass
Group (CPG).
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Fig.12. Dendrogram associated to the ALCA performed on 5-minute returns of a
portfolio of 92 stocks traded in the LSE in 2002. Panel (a): The black lines are
identifying stocks belonging to the Financial Sector. Panel (b): The black lines are
identifying stocks belonging to the Services Sector.
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A direct comparison of Fig. 12 and Fig. 4 shows that at the time hori-
zon of 5-minute the Financial cluster observed for daily returns is not yet
formed. More generally a strong reduction of structures in the dendrogram
is observed when going from daily returns to 5-minute returns.

4.4. The Planar Mazimally Filtered Graph

Lastly we discuss the properties of the PMFG obtained for the portfolio
of stocks by considering 5-minute returns. A comparison of Fig. 13 and Fig. 7
shows that the PMFG experiences a major modification. In fact, if we just
focus on the stocks with the highest value of degree, some of them increase
their degree whereas others decrease their own. Specifically, RBS and SHEL
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Fig.13. PMFG obtained from 5-minute returns of a set of 92 stocks traded in the
LSE in 2002. Black circles are identifying stocks belonging to the Financial sector.
Gray circles are identifying stocks belonging to the Services sector. Other stocks
are indicated by empty circles. Black thicker lines are connecting stocks belonging
to the Financial sector. Gray thicker lines are connecting stocks belonging to the
Services sector.

increase their degree from 42 to 62 and from 24 to 37 respectively, whereas
BP and Amuvescap (AVZ) decrease their degree from 23 to 18 and from 24
to 5, respectively. This difference shows that the role of most connected
stock can be quite different at different time horizons.
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In Table III the intra-sector connection strength discussed in Section
3.5 is evaluated for the 5-minute time horizon. Table III shows that only
three sectors have a connection strength different from zero. Specifically
the Energy sector has connection strength qg’ = 1 and the Financial sector
g3 = 0.71 and ¢35 = 0.75 indicating a behavior of both the sectors similar
to the one observed for daily returns. Finally the sector of Services has
qg’ 2 0.06 revealing a clustering of the same order of the one observed for
daily returns. A critical difference between the two time horizons appears
for several sectors. The most striking example being the sector of Basic
Materials. In Table III we see that the connection strength of the sector
is zero, with respect to both the connection strength measures. On the
contrary when daily returns are considered the connection strength ¢3 = 0.43
was observed. This difference suggests that the intra-sector correlation of
Basic Materials stocks needs time to be settled up into the market. Several
of the remaining sectors show a behavior analogous to the one of Basic
Materials. This effect is detected by all the considered techniques, thus
indicating the need of time for the market to assess a certain degree of
correlation among stocks.

TABLE III

Intra-sector connection strength (5-minute returns).
SECTOR ns qr=cyflns —3] ¢ =c3/[3ns— 8
Technology 4 0/1=0 0/4=0
Financial 20  12/1720.71 39/52 = 0.75
Energy 3 - 1/1=1
Consumer non-Cyclical | 12 0/9=0 0/28=0
Consumer Cyclical 10 0/7=0 0/22=0
Healthcare 6 0/3=0 0/10=0
Basic Materials 5 0/2=0 0/7=0
Services 19 0/16=0 3/49 = 0.06
Utilities 6 0/3=0 0/10=0
Capital Goods 5 0/2=0 0/7=0
Transportation 2 — —

5. Conclusions

All the methods considered in the present paper are able to detect in-
formation about economic sectors of stocks starting from the synchronous
correlation coefficient matrix of return time series. The degree of efficiency
in the detection is depending on the return time horizon. Specifically, the
system is more hierarchically structured at daily time horizons confirming
that the market needs a finite amount of time to assess the correct degree
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of cross correlation between pairs of stocks whose prices are simultaneously
recorded [19]. Our comparative study shows that, at a given time horizon,
the considered methods can provide different information about the sys-
tem. For example, at one day time horizon the method based on RMT pre-
dominantly associates the eigenvectors of the six highest eigenvalues which
are not affected by statistical uncertainty respectively to the market factor
(first eigenvalue and eigenvector), the Consumer non-Cyclical sector (second
eigenvalue), the Financial sector (third eigenvalue), a linear combination of
Technology and Capital Goods sectors (fourth and fifth eigenvalues) and
the Helthcare sector (sixth eigenvalue). In the present case, RMT does not
provide information about the existence and strength of economic relation
between stocks belonging to the sectors of Energy, Consumer Cyclical, Basic
Materials, Services, Utilities and Transportation. A detailed investigation
of the hierarchical trees obtained by the SLCA and ALCA shows that these
methods are able to detect efficiently most of the clusters detected with the
methods of the RMT and also other clusters related to other sectors. The
only sector that RMT detects in a way which is more efficient with respect to
the correlation based clustering procedures is the cluster of stocks belonging
to Consumer non-Cyclical sector. One sector which is not detected by both
RMT and hierarchical clustering methods is the sector of Services. RMT
is not able to detect it whereas SLCA and ALCA are able to detect only
limited aggregation of elements of it.

Our comparative analysis of the hierarchical clustering methods shows
that SLCA and ALCA also provide different information. Specifically, the
SLCA is providing information about the highest level of correlation of the
correlation matrix whereas the ALCA averages this information within each
considered cluster. In this way the average linkage clustering is able to
provide a more structured information about the hierarchical organization
of the stocks of a portfolio.

Additional information with respect to the one associated with the MST
of the system can be also detected by considering the properties of the
PMFG. This graph provides quantitative information about the degree of
inter-cluster and intra-cluster connection of the various elements.

In summary, we believe that our empirical comparison of different meth-
ods provide an evidence that RMT and hierarchical clustering methods are
able to point out information present in the correlation matrix of the inves-
tigated system. The information that is detected with these methods is in
part overlapping but in part specific to the selected investigating method.
In short, all the approaches detect information but not exactly the same
one. For this reason an approach that simultaneously makes use of several
of these methods may provide a better characterization of the investigated
system than an approach based on just one of them.
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