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We discuss the wealth condensation mechanism in a simple toy economy
in which individual agent’s wealths are distributed according to a Pareto
power law and the overall wealth is fixed. The observed behaviour is the
manifestation of a transition which occurs in Zero Range Processes (ZRPs)
or “balls in boxes” models. An amusing feature of the transition in this
context is that the condensation can be induced by increasing the exponent
in the power law, which one might have naively assumed penalised greater
wealths more.
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1. Introduction

The rich really are different, as was first remarked by Pareto in the
1890s [1]. He was interested in quantifying the distribution of elites of various
sorts and found numerous examples of observables such as “wealth” (in some
suitable measure such as income) following a power law distribution at the
top end of the spectrum. In contrast the bulk of the income distribution
in most societies follows a log-normal distribution, which is often called
Gibrat’s law.

More explicitly the distribution of large wealths may be written as

p(w) ∼ w−1−α for w ≫ w0 . (1)

with α typically between 1–2. This distribution is referred to as Pareto’s
distribution and the exponent α as the Pareto index. The wealth distribution
of lesser mortals can be fitted by

p(w) =
1

w
√

2πσ2
exp

[
− log2 (w/w0)

2σ2

]
, (2)

where β = 1/
√

2σ2 is called the Gibrat [2] index.
Thinking as physicists it is natural to ask what kinds of processes might

lead to the observed distributions. For a single pot of money, say w(t), a
multiplicative stochastic process w(t + 1) = a(t)w(t) leads directly to a log-
normal distribution. Iterating w(t + 1) = a(t) · a(t − 1) · · ·w(0) and taking
a log gives:

log w(t + 1) = log a(t) + log a(t − 1) + · · · + log w(0) . (3)

Applying the central limit theorem then gives us the log-normal distribution
for w.

Getting a power law is a little harder, but Levy and Solomon [3] observed
that putting in a “poverty bound” wm

〈log a(t)〉 < 0, 0 < wm < w(t) (4)

meant that the drift to log w(t → ∞) → −∞ is balanced by the reflection on
the reflecting barrier located at 0 < wm and gives a power-law distribution.
Alternatively one can include additive noise, w(t + 1) = a(t)w(t) + b(t).
These give Pareto indices determined by α = 1/(1 − wm) and 〈aα〉 = 1,
respectively.

One can attempt to extend this approach by considering N pots of money
in interaction with one another, as was done by Solomon et al. who used a
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generalised Lotka–Volterra process [4]

wi(t + 1) − wi(t) = [εi(t)σi + ci(w1, w2, · · · , wN , t)] wi(t)

+ ai

∑

j

bjwj(t) (5)

and Bouchaud and Mézard [5] who constructed a flow-like model

dWi(t)

dt
= ηi(t)Wi(t) +

∑

j(6=i)

Jij(t)Wj(t) −
∑

j(6=i)

Jji(t)Wi(t) . (6)

This incorporates interactions between different agents with individual
wealths Wi(t) as well as multiplicative noise ηi(t). The model is amenable to
a mean-field treatment in which all the Jij(t) are equal and time-independent
and similarly for the ηi(t). In this case the probability of a normalised wealth
wi = Wi/W , with W = N−1

∑
i Wi, is given by the Pareto-like distribution

p(w) ∼ exp−α−1
w

w1+α
, (7)

where α = 1 + J/σ2 > 1 and σ2 is the variance of the Gaussian distribution
of η. This is clearly greater than one for the variant of the model described
above, but it may be adjusted by introducing various plausibly motivated
additional terms. With a little artistic licence one might call the case α < 1
a liberal economy and α > 1 a social economy.

Introducing the inverse participation ratio Y2 =
∑N

i=1 w2
i reveals very

different behaviour depending on whether α is greater or less than one.
Y2 acts as an order parameter which distinguishes between cases where
wealth is evenly distributed and cases where it is concentrated. In the evenly
distributed case we would expect wi ∼ 1/N then Y2 ∼ 1/N so Y2 → 0 as
N → ∞. However, for an unequal distribution one (or more) wi is extensive
and Y2 6= 0 as N → ∞. In the Bouchaud and Mézard model one finds
〈Y2〉 = 1 − α for α < 1.

If one calculates the average of the distribution (7), which corresponds
to the average wealth of the individual, one sees that the basic difference
between a social and a liberal economy is that it is finite in the former case
and infinite in the latter. Thus, for α ≤ 1 one would, due to the non-
integrable tail of the distribution, expect the appearance of rich individuals
in the ensemble, with a wealth N1/α times larger than the typical value.
The authors of [5] interpreted this result as a condensation phenomenon.
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2. The toy model

In the Bouchaud and Mézard model it is the non-integrable tail of the
distribution which is in effect driving the condensation for α < 1. It is
interesting to ask what might happen in the situation where the total wealth
of the economy W is fixed. It is not clear a priori whether condensation
would continue to take place.

We address this question here by assuming that p(w) ∼ 1/w1+α char-
acterises the single wealth-distributions in the ensemble with the individual
wealths adding to W = w1 + . . . + wN . For convenience, we assume that
each individual wealth wi is an integer given in units of the smallest available
currency unit. The joint probability distribution of wi’s is thus:

P (w1, ., wN ) =
1

Z(W,N)

∏

i

p(wi) δ

(

W −
N∑

i=1

wi

)

, (8)

where Z(W,N) is the appropriate normalisation factor,

Z(W,N) =
∑

{wi≥0}

∏

i

p(wi) δ

(
W −

N∑

i=1

wi

)
. (9)

The “partition function” Z(W,N) would of course be a trivial product of
independent factors if it were not for the overall constraint.

This model is known variously as the balls-in-boxes or backgammon
model [6, 7] where it has been applied to various condensation and glassy
phenomena. The picture is of W balls distributed between N boxes with
a prior probability of p(w) balls in a box. Z(W,N) also appears as the
steady state solution to the Zero Range Process (ZRP) [8] which has been
extensively studied in the context of non-equilibrium dynamics because of
its relationship to the Asymmetric Exclusion Process (ASEP) [9]. This is a
dynamical model which is defined by the hopping rates u(w) for w balls in
a box. In steady state these are related to the p(w) by

u(w) =
p(w − 1)

p(w)
. (10)

One could think of tailoring a suitable p(w) in a stationary distribution
from a particular choice of rates. An appropriate choice for a power law
p(w) would be u(w) ∼ 1 + b/w.

The model can be solved in the limit of an infinite number of boxes N
and fixed density of balls per box ρ = W/N (thermodynamical limit) by
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introducing the integral representation of the delta function

Z(N, ρ) =
∑

{wi≥0}

∏

i

p(wi)

× 1

2π

π∫

−π

dλe−iλ(w1+···+wN−ρN)

=
1

2π

π∫

−π

dλeiλρN

(
∑

w

p(w)e−iλw

)N

=
1

2π

π∫

−π

dλ exp (N(iλρ + K(iλ)) , (11)

where K is a generating function given by K(σ) = ln
∑∞

w=1 p(w)e−σw. Eval-
uating the integral using steepest descent gives

f(ρ) = σ∗(ρ)ρ + K(σ∗(ρ)) , (12)

where σ∗(ρ) is a solution of the saddle point equation ρ+K ′(σ∗) = 0 and f(ρ)
is a free energy density per box, Z(W,N) = eNf(ρ)+.... For a suitable choice
of the weights p(w) ∼ 1/w1+α the system displays a two phase structure as
the density is varied with a critical density ρcr. When ρ approaches ρcr from
below, σ∗ approaches σcr from above. When ρ is larger than ρcr , σ becomes
equal to the critical value σcr and the free energy is linear in ρ

f(ρ) = σcrρ + κcr , (13)

where κcr = K(σcr). The change of regimes at ρcr corresponds to a conden-
sation transition, in which an extensive fraction of the balls is in a single
box. The critical value σcr is equal to the logarithm of the radius of conver-
gence of the series in the generating function K(σ). In particular, for purely
power-like weights

p(w) =
1

ζ(1 + α)
w−1−α , w = 1, 2, . . . , (14)

σcr = 0. The normalisation factor is given by the Riemann Zeta function.
The transition to a condensed phase happens when W/N becomes larger

than a critical density w∗, which is nothing but the mean wealth

w∗ =
∑

w

w p(w) . (15)
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Since we can change the small w part of the distribution by tuning the
appropriate macro-economical parameters without affecting the large w be-
haviour of p(w), we have some control over where the threshold w∗ will lie.
We can define an effective probability distribution of wealth:

p̂(w) =
1

N

〈
N∑

i

δ(wi − w)

〉

P

(16)

which now, unlike the original p(w), takes into account the finite total
wealth W . Below threshold w∗, the system is in a phase in which the effective
probability distribution p̂(w) has an additional scale factor in comparison
with the old distribution p(w)

p̂(w) ∼ e−σwp(w) . (17)

Here, σ depends only on the difference W/N −w∗. It vanishes at threshold,
so that the old Pareto tails are restored at this point. Above threshold,
the macro-economy responds to the increasing average wealth by creating a
single individual with a wealth proportional to the total wealth W , namely
wmax = W − Nw∗

p̂(w) ∼ p(w) +
1

N
δw,W−Nw∗

. (18)

The behaviour of p̂(w) versus w is shown in Fig. 1, for index α = 3,
N = 128, 512, 2048 and a density W/N > w∗. At threshold the inverse
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Fig. 1. Effective probability density of wealth. α = 3, N = 128, 512, 2048 and

W/N > w∗.
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participation ratio

Y2 =
1

N2

〈
∑

i

w2
i

〉

P

=
1

N

∑

w

w2p̂(w) , (19)

changes, in the large N limit, from 0 to (W/N −w∗)
2, signalling the appear-

ance of a wealth condensation. Everything in excess of the critical wealth
Nw∗ ends up in the portfolio of a single individual. It can appear only in a
social economy (α > 1), because only in this case do we have a finite criti-
cal wealth per individual w∗. In a liberal economy, w∗ is obviously infinite,
meaning that the system remains always below threshold and there is never
any condensation.

One interesting feature of the current model is that increasing the power
α when the density of wealth is subcritical in a social economy can have the
effect of pushing the model into the condensed phase, as can be deduced
from plotting the critical density curve ζ(α)/ζ(1 + α), which is monotone
decreasing, as seen in Fig. 2. If we are sitting below the line at some sub-
critical wealth density and increase α at constant density we can end up
moving into the condensed phase, which is presumably not the intended
effect of any increase in α, since rather than penalising greater wealths it
initiates condensation.
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Fig. 2. The critical density curve ζ(α)/ζ(1 + α).
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3. Summary

We have shown that in a simple model of a a “social” economy, conden-
sation may occur if the total wealth of the society exceeds a certain critical
value. In our analysis, the system favours the occurrence of a single in-
dividual in possession of a finite fraction of the economy’s total available
wealth, providing a physical mechanism for “corruption”. The simple model
discussed in this note may be extended to open systems such an economy in
interaction with one or more others [10] using similar methods.

We have made no attempt to discuss the dynamics of condensation. This
has been investigated in the case of the ZRP [11] for both mean field ge-
ometry (which would be the appropriate framework for the model discussed
here) and other geometries. Transcribing these results leads one to expect
that the wealth condensation would proceed via a concentration of wealth
amongst a gradually decreasing number of individuals until one dominated.
The timescale for this would go as τ ∼ N2.

It should also be mentioned in closing that there has been a large body
of work on more or less realistic agent-based models of economic interac-
tions which include various interactions [12, 13]. It seems that the appear-
ance of power-law distributions for (extreme) wealth may be rather generic
in such models. This suggests that although the specific model discussed
here is perhaps best thought of as an amusing application of the Balls in
Boxes Model/Zero Range Process in an econophysics context by virtue of its
naivety, the study of the emergence and behaviour of power law distributions
of wealth with more sophisticated models is a worthwhile exercise.
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