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The use of multi-antenna arrays has been predicted to provide substan-
tial throughput gains for wireless communication systems. However, these
predictions have to be assessed in realistic situations, such as correlated
channels and in the presence of interference. In this review, we show re-
sults obtained using methods borrowed from statistical physics of random
media for the average and the variance of the distribution of the mutual
information of multi-antenna systems with arbitrary correlations and in-
terferers. Even though the methods are asymptotic in the sense they are
valid in the limit of large antenna numbers, the results are accurate even for
small arrays. We also optimize over the input signal covariance with chan-
nel covariance feedback and calculate closed-loop capacities. This method
provides a simple tool to analyze the statistics of throughput for arrays of
any size.

PACS numbers: 02.50.–r, 42.25.Dd, 84.40.Ua, 89.70.+c

1. Introduction

In recent years the use of multi-antenna arrays in both transmission and
reception has attracted considerable interest. For sufficiently rich scattering
environments the Shannon capacity of an nT -element transmitting and an
nR-element receiving array is roughly proportional to min(nR, nT ) for large
numbers of antennas [1, 2]. To assess the capacity gains using such MIMO
(Multiple Input Multiple Output) technologies in realistic situations, sev-
eral factors have to be considered. First, the degree of spatial correlations
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between antennas at both transmitter and receiver determines the effective
number of independent channels. Second, the amount of channel informa-
tion at both receiver and transmitter also affects the maximum through-
put. For example, for interference-limited systems, the accuracy of instan-

taneous channel information of the interference at the receiver will determine
how effective the interference suppression will be. Similarly, increased chan-
nel information at the transmitter can in some cases substantially increase
throughput. Realistically, full channel information at the transmitter is im-
practical. Instead, partial or statistical channel information, such as the
channel covariance may be fed back more efficiently.

For large antenna numbers the analysis of MIMO ergodic capacities (ex-
pectation value of mutual information over channel realizations) is greatly
facilitated by the use of asymptotic techniques of random matrix theory
(RMT) techniques. These methods were introduced in this context by vari-
ous authors, starting with Foschini [1] and Telatar [2].

The infinite antenna open-loop capacity expression was first derived in
the context of CDMA codes in [3] and more recently it was applied to the
context of multi-antenna systems [4]. Using methods developed in [5], the
infinite antenna capacity with uncorrelated channels and uncorrelated inter-
ferers was calculated by [6]. Very recently, the results of [3] were extended
by [7] to calculate the open-loop capacity of spatially correlated channels
in the infinite antenna limit. In all of these previous studies, the scaling
of the capacity with the number of antennas was studied as the number of
antennas grows indefinitely. However, for realistic finite antenna systems
this scaling may not be adequate to describe the antenna array capacity.
We note that more recently, some of these results were obtained in closed
form using character expansions [8, 9] and other methods [10, 11]. However,
we will not deal with these works here, since the methods discussed here are
more general and the results simpler.

In this paper, extending the work of [12] we analyze the distribution of
the MIMO capacity and present analytic expressions for the mean and the
variance of the capacity distribution in the presence of correlated channels
and interferers. Specifically, we find that in the formal limit of large an-
tenna numbers, the first and second moments of the capacity distribution
are of order O(n) and O(1), where n is the number of antennas (with higher
moments being of O(1/n) [13]). As a result, the capacity distribution tends
to a Gaussian for large n. The mathematical framework and the derivation
of these expressions is presented elsewhere [13]. Here we verify numerically
that the analytic expressions derived in [13] are quite accurate even for just
a few (i.e. 2–3) antennas in each array and that the capacity distribution
is very well represented by our expressions for its first and second moments
(i.e., that the distribution is Gaussian). In addition, for large antenna num-



Statistical Mechanics of Multi-Antenna Communications: . . . 2721

bers we develop a method to analytically optimize over the input signal
covariance subject to the channel covariance. This method enables us to
derive analytic expressions for the closed loop capacity, when partial knowl-
edge of the channel is available at the transmitter (covariance feedback) and
gives extremely accurate results for all multi-antenna systems, as discussed
also in [14]. The analytic methods presented here provide a powerful tool
for analyzing array systems with even few antennas. It should be noted that
very recently, similar results were verified [11, 15, 16], but for uncorrelated
channels and no interference. Also, [17] recently obtained asymptotic results
of the average mutual information of a finite antenna MIMO system with a
certain type of correlated channels characterized by a single parameter, the
richness of the channel.

In the next section we define the problem and introduce relevant quanti-
ties. In Section 3 we present results for the average mutual information. We
also show how to optimize over the signal covariance to obtain the closed
loop capacity with covariance feedback. In Section 4 we focus on two specific
examples: First, we analyze a MIMO system with a multi-antenna interferer
whose channel is known at the receiver — a case relevant to multi-user detec-
tion. For this case we assume all channels are i.i.d. for simplicity. Second,
we consider a MIMO system with correlated transmitting antennas. For
both cases, we present results for the mean and the variance of the mutual
information distribution and we compare them to simulations.

2. Definitions

We consider the case of single-user transmission from nT transmit an-
tennas to nR receive antennas over a narrow band fading channel. We also
include a number nI of interfering transmitters in addition to the noise at
each receiver. yα, the components of the nR-dimensional received complex
signal vector y can be written as

yα =

√

ρs
nT

nT
∑

a=1

Gs
αax

S
a +

√

ρi
nI

nI
∑

a=1

Gi
αax

I
a + zα , (2.1)

where α = 1 . . . nR and Gs is a complex matrix with the channel coefficients

from the transmitting to the receiving arrays. Similarly, Gi describes the
channel from the interfering antennas to the receiver array. xS

a and xI
a are

the transmitted and interfering signals, assumed to be both Gaussian. The
signal covariance Q with entries Qab = E[xS

a xS∗
b ], is normalized so Tr {Q} =

nT . The Gaussian noise vector zα, and the interfering signals xI
a are assumed

to be i.i.d., i.e., E[zαz∗β] = δαβ and E[xI
ax

I∗
b ] = δab. Here, ρs and ρi are

the average signal-to-noise and interference-to-noise ratios. The signal-to-
interference-and-noise ratio can also be written as SINR = ρs/(1 + ρi).



2722 A.L. Moustakas, S.H. Simon, A.M. Sengupta

The associated mutual information can be expressed as [6] I = IS − II ,
where IS , II are given by

IS = log det

(

1 +
ρi
ni

GiGi† +
ρs
nT

GsQGs†

)

,

II = log det

(

1 +
ρi
ni

GiGi†

)

, (2.2)

where 1 is the unit matrix. The log above (and throughout the whole paper)
represents the natural logarithm and thus I, IS and II are all expressed in
nats/sec/Hz. It should be noted that this equation for the mutual informa-
tion can be generalized to wideband multipath channels.

Due to the underlying randomness of Gs and Gi, the mutual information

I is also a random quantity. To analyze its statistics we assume that Gs, Gi

are zero mean Gaussian matrices. The covariance for Gs is defined to be

〈Gs
αaG

s
βb

∗〉 = Tab Rαβ . (2.3)

The notation 〈·〉 denotes the ensemble average over channel realizations. R

is the nR × nR correlation matrix of the incoming signal at the receiver,
respectively, normalized so that Tr {R} = nR. T is the nT × nT corre-
lation matrix describing the antenna correlations at the transmitter array
with Tr {T } = nT . The dependence of these matrices on array properties,
polarization and channel properties as angle spread have been described in
various references [7, 12, 18]. One might consider similar nontrivial corre-

lations in the covariance of Gi. However, for simplicity, in this paper we

restrict our attention to the case of Gi being i.i.d. (Generalizations that

consider more complicated statistics of Gi cases can also be treated using
similar methods [13]).

In Eq. (2.2) it is assumed that the receiver knows the channel matrices

Gs, Gi. The difference between the interference
[

GiGi†
]

and the noise term

(the “1” term inside the log det term) is that in the former term the receiver
has detailed knowledge of the interfering channel, while in the latter no such
knowledge is available.

The purpose of this paper is to analyze the statistics of the mutual
information I in (2.2) for Gaussian channels having correlations given by
(2.3). This is done by calculating the moments of the mutual information.
We thus introduce the generating function g(ν) of I
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g(ν) =

〈

[

det
(

N +
ρi
nI

GiGi† + ρs
nT

GsQGs†
)]−ν

[

det
(

N +
ρi
nI

GiGi†
)]−ν

〉

=
〈

e−νI
〉

(2.4)

= 1 − ν〈I〉 +
ν2

2
〈I2〉 + . . . .

Assuming that g(ν) is analytic at least in the vicinity of ν = 0, we can
express log g(ν) as follows

log g(ν) = −ν 〈I〉 +

∞
∑

p=2

(−ν)p

p!
Cp , (2.5)

where Cp is the p-th cumulant moment of I. For example, C2 = Var(I) =

〈(I − 〈I〉)2〉 is the variance and C3 = Sk(I) = 〈(I − 〈I〉)3〉 is the skewness
of the distribution. Thus to obtain the moments of the mutual information
distribution we need to calculate g(ν) for ν in the vicinity of ν = 0. This is
not necessarily any easier than evaluating the moments Cp directly, which is
a notoriously difficult task, since one has to average products of logarithms of
random quantities. In contrast, averaging g(ν) for integer values of ν involves
averages over integer powers of determinants of random quantities, in which
case some analytic progress can be made. Once this is done, we will invoke
the assumption that we can analytically continue the generating function
to ν → 0. This is the standard replica trick used commonly in statistical
mechanics. From the form of (2.4), we see that to properly take into account
the different sign of the exponent of the determinants, we need to introduce
both complex (bosonic) and Grassman (fermionic) variables [13].

3. Ergodic capacity

In this section we analyze the average mutual information 〈I〉Q where the
average is taken for fixed Q. We will use the general analytical expression
derived in [13], which is valid for large antenna numbers. Two ergodic ca-
pacities are considered. For the first case no channel information is available
at the transmitter. Here the optimal signal covariance Q is unity — there
are no preferred antennas or directions at the transmitter. Thus the open
loop ergodic capacity is simply COL = 〈I〉Q=1 = 〈I〉, where the subscript
Q = 1 will be dropped for simplicity. In contrast, when channel information
is available at the transmitter in the form of channel statistics (e.g. R, T ),
the optimal Q that maximizes 〈I〉Q may in general be non-trivial. Thus
the closed loop ergodic capacity will be CCL = maxQ,TrQ=nT

〈I〉Q. Note



2724 A.L. Moustakas, S.H. Simon, A.M. Sengupta

that maximization over Q is performed after the average, since only partial
(statistical) information is available at the transmitter. This is a realistic
model for incorporating closed loop feedback, since full and timely channel
knowledge at the transmitter is not possible without overloading the reverse
link.

3.1. Average mutual information 〈I〉Q
The average mutual information 〈I〉Q in the limit of large antenna num-

bers is derived in [13] and can be expressed as 〈I〉Q = 〈IS〉Q − 〈II〉Q where
the subscript Q will subsequently be dropped for simplicity. Here 〈IS〉 is
given by

〈IS〉 = log det (1 + ts QT ) − tsrsnT

+ log det
(

1 + ρs rs R + ρi ri
)

+nI log
(

1 + ti
)

− tirinI , (3.1)

where the variables rs, ri, ts, and ti are given by the following system of
four equations in four unknowns

rs =
1

nT

nT
∑

a=1

[TQ]a
1 + ts [TQ]a

, (3.2)

ts =
1

nT

nR
∑

α=1

ρs Rα

1 + ρs Rαrs + ρiri
, (3.3)

ri =
(

1 + ti
)−1

, (3.4)

ti =
1

nI

nR
∑

α=1

ρi
1 + ρs Rαrs + ρiri

. (3.5)

Note that Eqs. (3.2), (3.3), and (3.5) are written in terms of the eigenvalues
of [TQ] and R, denoted here by [TQ]a and Rα, respectively. In practice, at
most two of the above equations need to be solved numerically.

Similarly 〈II〉 is given by

〈II〉 = nI

(

log u − 1 + u−1
)

+ nR log
(

1 + u−1ρi
)

(3.6)

with

u =
1

2

[

1 + ρiy +

√

(

1 + ρiy
)2

+ 4ρi

]

(3.7)

with y = nR/nI −1. As expected from the form of II in Eq. (2.2), this result
is the open-loop capacity in the large-antenna limit for the nR ×nI random

i.i.d. matrix Gi [3, 13].
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As shown in [13] one can also calculate the variance, and higher moments
of the distribution of I using methods that are exact in the limit of large
antenna number. We note again that successively higher moments of the
distribution decrease implying that the distribution hardens to a Gaussian.
Although the general expressions for the variance are somewhat complicated,
results will be shown below for the two simple cases discussed below. As
mentioned above, by making the assumption that the distribution is close
to a Gaussian we will be able to make very good approximations of the full
distribution of capacity.

3.2. Closed loop capacity: optimizing the signal covariance

As discussed in the beginning of this section, when the transmitter has
partial channel information in the form of correlations T , the signal co-
variance Q can be optimized to maximize the average mutual information
maxQ〈I〉Q. This method was introduced for MIMO systems without inter-
ference in [12] and is also discussed in [19], and is discussed in further detail
in [13]. It can easily be shown that the Q maximizing 〈I〉Q is simultane-
ously diagonalizable with T . This result has been shown [20] to hold in
general in the absence of interference for arbitrary antenna numbers (but
can be generalized to hold in the presence of interference). It can then be
shown [13] that in the large antenna number limit, the optimal eigenvalues
qa of Q (with a = 1 . . . nT ) are given by

qa =

[

1

Λ
− 1

Tats

]

+

, (3.8)

where [x]+ = xΘ(x) and Ta is the corresponding eigenvalue of T , with Θ(x)
the Heaviside Θ -function. Λ is determined by imposing the power constraint

Tr {Q} =

nT
∑

a=1

qa = nT . (3.9)

Essentially, the optimization of Q amounts to waterfilling over the modes of
T rather than the instantaneous channel Gs†Gs itself. Thus, the statisti-
cally waterfilled, closed-loop capacity is found by solving for five unknowns
(ts, rs, ti, ri,Λ) from Eqs. (3.2)–(3.5), (3.8), and (3.9) and using them to
evaluate Eq. (3.1). Nevertheless, again at most two equations need to be
solved numerically. It should be noted that in a network setting this type
optimization of Q need not be the optimum for the whole network [21].
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4. Applications

We now apply the above capacity equations of the previous section to two
representative situations. In addition to calculations of the ergodic capacity,
for the current applications we show how to calculate the variance of the
capacity distribution. Generally, while the average mutual information is
O(n), where n is the order of the number of antennas in each array, the
variance is O(1). In [13] we show that the skewness is O(1/n). This suggests
that for large antenna numbers the capacity distribution can be described
accurately by only its mean and its variance and thus that it approaches
a Gaussian. Below, we will make the same assumption for finite antenna
arrays to approximate the full capacity distribution.

4.1. Capacity distribution in the presence of interferers

whose channel is known at the receiver

In this section we consider the case of a MIMO system in the presence

of interfering transmitters whose channel Gi is known at the receiver. For

simplicity we assume that all channel coefficients (Gs and Gi) are i.i.d.

4.1.1. Ergodic capacity

We have 〈I〉 = 〈IS〉 − 〈II〉, where 〈II〉 is given by Eq. (3.6) and 〈IS〉
becomes:

〈IS〉 = nT (rs − log rs − 1) + nI

(

ri − log ri − 1
)

+nR log
[

1 + ρi ri + ρs rs
]

, (4.1)

where rs and ri are given by

nR

1 + ρiri + ρsrs
=

nI(1 − ri)

riρi
=

nT (1 − rs)

rsρs
(4.2)

which can be reduced to a simple cubic equation.

4.1.2. Variance

The variance can be written [13] in a straight forward manner in terms
of rs, ri and u of Eq. (3.7) as

Var(I) = − log

∣

∣

∣

∣

1 − nT

nR
(1 − rs)

2 − nI

nR

(

1 − ri
)2

∣

∣

∣

∣

− log

∣

∣

∣

∣

∣

1 − nR

nI

(

ρi
u + ρi

)2
∣

∣

∣

∣

∣

+ 2 log

∣

∣

∣

∣

∣

1 +

(

1 − ri
)

ρi
u + ρi

∣

∣

∣

∣

∣

. (4.3)
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To compare the above equations with simulations for simplicity we set
nT = nR = nI = n and consider n = 2, 3. Fig. 1 displays the cumulative
distribution of I for these two systems, for signal to interference and noise
ratio SINR = ρs/(1 + ρi) = 10 and interference to noise ratio ρi = 1. The
analytic results are simply Gaussian distributions with the calculated mean
and variance. Also displayed are the simulated distributions for the same
cases. The agreement between analytic and simulated distributions is decent
for two antennas and impressive for three (less than 1% difference). This
analysis suggests that for a few number of antennas our expressions for the
mutual information average and its variance are sufficient to describe the
full distribution.
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Fig. 1. Cumulative distribution (CDF) of the mutual information for n-transmitter,

n-receiver and n-interferer (for n = 2, 3) with i.i.d. signal and interfering channels

(R = T = 1). For both n = 2 and n = 3 we plot the CDF of the simulated mutual

information (solid lines) and a Gaussian distribution with average and variance

analytically calculated from Eq. (3.6), (4.1) and Eq. (4.3). We also display the

average 〈I〉 and the square root of the variance Var(I) of the simulated curves.

The error bar in the simulated values of the variance is approximately 2%. The

analytical results agree quite well with simulations.
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4.2. Closed loop vs. open loop capacity for spatially correlated transmission

We now remove the interfering transmitters by setting ρi = 0. How-
ever, here we will consider a correlated channel at the transmitter. For
concreteness, we assume that the antennas form a uniform linear ideal an-
tenna array with dλ = dmin/λ the nearest neighbor antenna spacing in
wavelengths and we assume a Gaussian power azimuth spectrum (with 2
dimensional propagation), i.e. the average incoming power at the antenna
array is P (θ) ∝ exp[−(θ/δ)2/2], [18] where δ is the angle spread measured
from the vertical to the array. This results in a T matrix given by

Tab =

180
∫

−180

dφ√
2πδ2

e2πi(a−b)dλ sin(φπ/180)−φ2/(2δ2) (4.4)

with a, b = 1 . . . nT being the index of transmitting antennas. For simplicity
we assume no correlations at the receiver (R = 1nR

). This situation corre-
sponds to a receiving mobile array deep inside the clutter and a transmitting
base-station array with correlations due to finite angle spread.

4.2.1. Ergodic capacity

In this case we have

〈I〉 = nR log (1 + ρsrs) − nT ts rs +

nT
∑

a=1

log (1 + tsqaTa) , (4.5)

where rs is calculated using

nRrsρs
1 + rsρs

=

nT
∑

i=a

[

1 − rs
Ta

]

+

(4.6)

and then ts, qa are determined from

ts = nRρs [nT (1 + ρsrs)]
−1 , (4.7)

qa =

[

1

tsrs
− 1

tsTa

]

+

. (4.8)

Interestingly, applying these equations to find when beamforming is optimal
(when only one qa is nonzero) produces extremely accurate results when
compared with the exact criterion for optimality of beamforming [14].

For the open loop case, qa ≡ 1, we solve for ts using

ts
ρs

=
nR

nT
− 1 +

1

nT

nT
∑

a=1

1

1 + tsTa
(4.9)
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and substitute in Eq. (4.7) to get rs. We now wish to quantify the through-
put gain due to channel feedback to the transmitter in the form of T . In
Fig. 2 the dependence of the open loop and closed loop capacity is plotted as
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Fig. 2. Plot of capacity per receiving antenna for 2 configurations, namely a

3-element array receiving from a 3-element transmitting array (3 × 3) and a

4-element transmitting array (4 × 3), respectively. In all cases the receiving ar-

ray has no antenna correlations (R = 1). The transmitting array is a uniformly

spaced array with neighboring antennas spaced by dmin. The spatial correlations

between antennas are calculated using Eq. (4.4) with δ = 5◦. The two lower curves

indicated as “Open Loop” depict the open loop capacity per receiving antenna for

these two configurations. At small antenna separation the capacities approach each

other. The top two curves indicated as “Closed Loop . . . ” represent the closed loop

capacities with covariance feedback: the transmitter adjusts to the typical channel.

The squares represent the values of antenna separation at which an additional non-

zero transmitting mode (qa in Eq. (4.7)) turns on. Note that these points coincide

to apparent kinks in the capacity. The horizontal straight lines are the capacities

per antenna in the absence of any antenna correlations (T = R = 1). The open

circles, and asterisks represent the values of the simulated mean capacities of the

4 × 3 and 3 × 3 configurations correspondingly. The agreement with analytical

results is very good.
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a function of antenna spacing for two transmitting array configurations. The
angle-spread is set to δ = 5◦. It is interesting to point out that for the low
SNR and angle-spread used, the closed loop capacity is substantially higher
than the open loop capacity and in fact it is higher than the open loop ca-
pacity of uncorrelated channels. Furthermore, we note that the closed loop
capacity is not convex and, especially for small arrays, has apparent discon-
tinuities in its slope. This effect is due to the fact that at certain points
(marked with squares in the figure) it is optimal for additional transmission
modes qa to become non-zero (see Eq. (4.7)). This non-convex and even
non-monotonic behavior of the closed loop capacity as a function of corre-
lations has been shown to be present in exact solutions of multi-antenna
arrays with few antennas in [14]. Finally the analytic solutions presented
here are in very good agreement with simulated ergodic capacities (depicted
with open circles and diamonds in the figure).

4.2.2. Variance

Using ts, rs and qa the variance Var(I) can be expressed [13] as

Var(I) = − log |1 − MtMr| , (4.10)

where

Mr =

(

ρsnR

nT

)

(1 + rsρs)
−2 (4.11)

and

Mt =

(

ρs
nT

)

Tr
{

(QT )2(1 + ts(QT ))−2
}

. (4.12)

Again, we model the capacity distribution as a Gaussian with the ap-
propriately calculated mean (from Section 4.2 above) and variance. Results
are shown in Fig. 3 for antenna spacing dλ = 1. We also compare the closed
loop capacity with covariance feedback with the full closed loop capacity, in
which case the instantaneous channel matrix is known at the transmitter.
We see that the mean throughput of the two closed loop schemes are within
5% of each other despite the low signal to noise ratio.
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Fig. 3. Cumulative distribution (CDF) of mutual information for 3 antenna trans-

mitting and receiving arrays in the absence of interferers (ρi = 0). Each closely

spaced pair of curves corresponds to a simulated mutual information distribution

(solid curves) and a normal distribution (dash-dotted curves) with mean and vari-
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timate and simulated distributions is impressive. This is especially so given that

nT = nR = 3 while the analytic method described in this paper is formally valid

only for large antenna numbers. The three pairs of curves plotted correspond to the

three corresponding curves plotted in Fig. 2 with nT = nR = 3, and SNR = 0dB,

dλ = 1 and δ = 5◦. The open loop curve assumes no feedback to the transmitter,

while the closed loop curve takes into account covariance feedback. The dashed

curve represents the full closed loop capacity distribution, where the full channel

matrix is fed back to the transmitter. The mean throughput of the two closed loop

schemes are within 5% of each other.

5. Conclusion

In conclusion, we have presented a model to calculate the mean and the
variance of the mutual information of MIMO systems in the presence of
spatially correlated channels, and with interference known at the receiver.
In addition, we have used this method to optimize with respect to the signal
covariance Q and thus analytically calculate the closed loop ergodic capacity
covariance feedback is available at the transmitter.

We have demonstrated the applicability of this model for arrays with
few antennas by comparing (a) the calculated ergodic mutual information
as a function of antenna separation to their corresponding simulated averages
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(Fig. 2) and (b) the simulated mutual information distribution to a Gaussian
distribution obtained by using the calculated mean and variance (Figs. 1, 3).
In both cases the agreement is remarkable. This model provides a simple
tool to accurately analyze the statistics of throughput of even small arrays
in the presence of arbitrary channel correlations, as well as interferers with
known channel at the receiver [13].
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