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A short review on multiuser communication systems is given. System
design for iterative multiuser decoding is improved by means of large sys-
tem results from statistical physics and random matrix theory. With the
application of multiuser detection for wireless communications in mind, it
is shown how a system of linear equations with random coefficients can
be solved efficiently exploiting the asymptotic convergence of its eigenvalue
spectrum. In addition, the conditional convergence of the diagonal elements
of a power of a random matrix drawn from a Marchenko–Pastur ensemble
is established.

PACS numbers: 89.70.+c, 84.40.Va, 02.60.Dc, 05.90.+m

1. Introduction

Wireless communication systems are designed to work in environments
with as few infrastructure as possible. They shall provide the users with
the freedom to communicate with whomever they want regardless wherever
they are. Since electromagnetic waves, the most popular carriers of digital
communications, propagate to almost any place, each user, though commu-
nicating with only a single other user, interacts, in principle, with all other
users in the network. Such a setting is hard to press in formulas, in particular
if the environment is arbitrary.

The failure of the so-called 3rd generation of wireless technology is, to
a large extent, due to a lack of understanding of the fundamental principle
governing wireless communications in the presence of many users operating
simultaneously. This knowledge gap has become a severe obstacle to the
further penetration of wireless communication devices into modern society
and lifestyle and, therefore, must be overcome.
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Research on the behavior of systems where many bodies mutually inter-
act with many others has been driven forward by physicists for more than a
century studying the interactions of particles in gases, fluids, and solids. Sta-
tistical physics and multi-user communications show strong analogies from
a conceptual point of view. In both cases many objects interact with each
other through variables that are constrained in a certain way. These inter-
disciplinary analogies can be exploited to advance the understanding and
design of future wireless communication systems. Though the analogies be-
tween the two fields do not extend too far and, in real-world communication
systems, statistical physics results cannot be applied directly, the engineer-
ing community can strongly benefit from the analytical toolboxes developed
by physicists. So far random matrix theory, originally studied to describe
spacings of nuclear energy levels, has received the most attention in wireless
system analysis and design. In addition, the replica method developed in
statistical physics has entered wireless communication to cope with the often
binary nature of wireless communication signals.

In wireless communications, random matrix theory and statistical me-
chanics tools have overwhelmingly used for performance analysis, see e.g.
[1–11]. Only few works [12–14] have used these large system tools for actual
design of communication systems. The content of paper [13] and of [12] and
its continuation [14] will be reviewed in this paper after a short introduction
into wireless communication systems. In addition to analysis and design,
references [15, 16] have used random matrix theory for modeling of wireless
communication channels.

2. Communication systems

Though our daily life is full of multi-dimensional communication sys-
tems, both natural and artifical ones, we are still lacking a comprehensive
theory describing their capabilities of carrying information. Even the seem-
ingly simple channel depicted in Fig. 1, called an interference channel, with
only two inputs and two outputs is not fully understood in information
theory. Upper and lower bounds are known on its capabilities of carrying
information from input #1 to output #1 while input #2 is simultaneously
communicating to output #2. Only in some special cases, the two bounds
co-incide. The search for a theory of characterizing precisely the capabili-
ties of information flow in whole networks seems to be hopeless, considering
that there has been no significant progress even on the interference channel
within the last two decades. The interference channel perfectly describes the
most common situation in everyday’s communication. Person #1 talks to
listener #1 while person #2 is talking to listener #2. Nevertheless, technical
communication systems are not designed as interference channels — mostly
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Fig. 1. Interference channel with two inputs and two outputs.

for the reason of our lack of understanding on how to deal with them — but
as the concatenation of a multiple-access channel and a broadcast channel
as shown in Fig. 2. A typical example for the concatenated approach is a
cellular phone network with the base station taking the part of the relay.
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Fig. 2. Concatenation of multiple-access channel and broadcast channel.

Fig. 2. Concatenation of multiple-access channel and broadcast channel.

The multiple-access channel is characterized by having only a single out-
put though having multiple inputs while the broadcast channel is the dual to
the multiple-access channel in terms of inputs and outputs. Both multiple-
access channel and broadcast channel (provided that it is at least stochasti-
cally degraded1) are well-understood in information theory literature [17].

The principles summarized in this work apply to a broad class of com-
munication channels. We do not aim to cover all or even most of them,
but restrict ourselves to the discrete vector-valued additive white Gaussian
noise channel. It is general enough to develop rich examples for the appli-
cation of the theory to be introduced, and simple enough to keep equations
illustrative.

In vector notation, the vector-valued additive white Gaussian noise chan-
nel is given by

y[ν] = H [ν]x[ν] + n[ν] (1)

with

1 See [17] for definition of stochastically degraded broadcast channels.
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• the K × 1 vector of transmitted symbols x[ν],

• the N × 1 vector of received symbols y[ν],

• the N × K channel matrix H [ν],

• the N ×1 vector of additive white Gaussian noise n[ν] with zero mean
(En = 0) and variance (EnnH = σ2

0I),

• and discrete time ν.

In order to simplify notation, the time index will be dropped whenever it is
not needed to express the dependency on discrete time explicitly.

The vector-valued additive white Gaussian noise channel can be also
written in an alternative manner: It is well known in literature [18] that the
signal

r[ν] = HH[ν]y[ν]

= HH[ν]H [ν]x[ν] + HH[ν]n[ν] (2)

provides sufficient statistics for the estimation of the signal x[ν]. This means
that all information about x[ν] that could be extracted from the received
signal y[ν] can also be extracted from the signal r[ν]. Thus, the two channels
(1) and (2) are actually equivalent in terms of all performance measures such
as bit error rate, signal-to-noise ratio, channel capacity, etc.

These two equivalent channels (1) and (2) appear in several areas of
wireless and wireline communications:

• In the forward link of a cellular CDMA system, the components of
the vector r are regarded as the signals of K individual users while
the vector y is the single input to the channel by the base station.
In this case, (2) describes a broadcast channel. In the reverse link
(uplink) of a cellular CDMA system, the components of the vector x

are regarded as the signals of K individual users while the vector y is
the single output of the channel observed by the base station. In this
case, (1) describes a multiple-access channel. In both cases the matrix
H contains the spreading sequences of the users as columns.

• In antenna array communications, the components of the vectors x

and y represent the signals sent and received by the K transmit and
N receive antenna elements, respectively. Multiple antenna elements
are employed to boost the data rate of one-to-one communication links.
In this case, (1) describes a single-input single-output channel, though
each input and output is a vector-valued observation and in literature
often referred to as multiple-input multiple-output (MIMO) system,
but not MIMO channel.
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• In cable transmission, the components of the vector x contains the sig-
nals sent on the bundled twisted pairs within a cable. The coefficients
in the matrix HHH describe the electromagnetic crosstalk between
the respective twisted pairs. In this case, (2) describes an interference
channel.

• For block transmission over a dispersive channel, the components of the
vectors x and y contain the symbols sent and received consecutively in
time. Discrete time ν counts blocks, and the matrix H is a circulant2

matrix of the channel’s discrete-time impulse response. In this case,
(1) describes a single-input single-output channel.

• In orthogonal frequency-division multiple-access (OFDM), the compo-
nents of the vectors x and r represent the K sub-carriers at transmit-
ter and receiver site, respectively, and the matrix HHH accounts for
inter-carrier interference. Depending on the purpose that is followed
when applying OFDM, the channel (2) can be considered as either
multiple-access, broadcast, interference, or single-input single-output
channel.

Regardless of the application one has in mind, the performance of digital
communication via the channel (1) can be analyzed for a variety of receiver
algorithms and assumptions on the properties of the channel matrix H.
Numerous results are reported in literature [18, 20] and no effort is made
here in trying to be comprehensive.

3. Iterative multiuser decoding

In order to achieve optimal performance for communication over a vector-
valued channel (1), the signal must, in general, be processed jointly over the
components of the vector and over time. This becomes a prohibitive task
even for vectors with only a few dimensions and simple channel codes, since
the number of states of the decoding trellis is exponential in the product of
the dimension of the input vector and the block-length of the code [21].

Since optimal information processing is infeasible, suboptimum algo-
rithms have to be used in practice. With the invention of turbo decoding
for approaching channel capacity on scalar communication channels in [22],
iterative decoding also became the method of choice for near-optimum mul-
tiuser communication with tolerable complexity and was studied by several
works among them [23–27]. All these papers found, with methods of vari-
ous kinds of sophistication, that iterative multiuser decoding, cf. Fig. 3, can
closely approximate optimal multiuser decoding if the level of interference is

2 Properties of circulant matrices are addressed in [19].
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Fig. 3. Iterative multiuser decoding (left hand side) versus separated detection and

decoding (right hand side).

low to moderately high and outperform all approaches separating detection
and decoding. Nevertheless, it was observed that iterations fail to converge
to correct decisions on the data if the interference level becomes to large.

Besides turbo codes, there is another class of codes for scalar communi-
cation channels called low-density parity check codes which are designed for
iterative decoding. Understanding the iterative decoding algorithm as an
instance of the belief propagation algorithm [28–30], an analysis tool for iter-
ative decoding called density evolution was found [31]. It consists of tracking
the empirical distribution of the decoder output from one iteration to the
next. Instead of tracking the evolution of the exact distribution, tracking
mean and variance of the distribution and imposing a Gaussian (mixture)
distribution turned out to be a very accurate approximation [32, 33].

Inspired by the result that irregularity in the design of low-density parity
check codes improves the convergence properties of the iterative decoding
algorithm [34–36], dis-uniformizing the powers over the user population in
iterative multiuser decoding was investigated in [13].

For the purpose of applying density evolution to iterative multiuser de-
coding an analytic expression for the uncoded error probability as a function
of the apriori information of the detector was found. For the optimum mul-
tiuser detector, such a formula was derived in the large system limit making
use the replica method. It reads

Pr(x̂k 6= xk) =
1√
2π

∞
∫

√
γkη

e−z2/2dz (3)
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with the parameter η being determined by the fixed-point equation

1

η
= 1 + β

∫

γ(1 − t2)

∫

R

1 − tanh
(

z
√

γη + γη
)

1 − t2 tanh2
(

z
√

γη + γη
)

e−z2/2

√
2π

dz dPγ,t (γ, t) .

(4)
Here, γ, t = 2Pr(x = 1) − 1, and Pγ,t (γ, t) denote the signal-to-noise ratio,
the bias of the prior, and the joint distribution of signal-to-noise ratio and
bias of the prior over the user population, respectively. A recent generaliza-
tion of this result is given in [37].

In order to solve the problem of optimal power assignment to the users,
it is shown that under practical assumptions on the choice of the codes and
target bit error rates, the iterations of the multiuser decoder lead to almost
complete elimination of the multi-access interference if

1
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− 1
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(
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))

1 − tanh2
(
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√

µ(γη) + µ(γη)
)

tanh2
(

z
√

γη + γη
)

×e− z2
+y2

2

2π
dz dy dPγ (γ) (5)

for all η ∈ (0; 1 − ε2), with the scalar function µ(·) describing the code
characteristics, and ε1, ε2 being some small margins required for implemen-
tation. The function µ(·) was found partially by simulation and partially
by union bounds depending on the range of the argument. With the help of
two properties of the condition (5), i.e. the linearity of the implicit equation
with respect to the load β and the fact that (5) is a fixed point equation, the
power optimization problem was formulated as a linear program and solved
numerically. For the convolutional codes studied in the paper, all optimal
power distributions were step functions with a finite number of steps.

The theoretical predictions obtained by asymptotic analysis and density
evolution were confirmed by simulations. With the optimized power distri-
bution, the iterations always converged to correct decisions on the data, even
for very high interference levels. No upper bound on the possible number of
users for a given spreading factor could be found. Moreover, with optimized
power distribution, the total data rate of the system could be more than
doubled.

For practical implementation, the optimum multiuser detector which is a
sub-block in the iterative multiuser decoder still has too high complexity. It
can be replaced, among other methods, by the conditional or unconditional
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linear minimum mean-squared error (MMSE) detector. The performances
of both linear detectors can be analyzed in the large system limit by means
of random matrix theory. The respective equations that are counterparts to
(4) read

1

η
= 1 + β

∫

γ(1 − t2)

1 + ηγ(1 − t2)
dPγ,t (γ, t) (6)

and
1

η
= 1 + β

∫

γ
∫

1 − t2dPt|γ (γ, t)

1 + ηγ
∫

1 − t2dPt|γ (γ, t)
dPγ (γ) (7)

for the conditional and the unconditional linear MMSE detector. While
the complexity of the optimum detector is exponential in the number of
users, complexity of these linear detectors is only cubic. In analogy to the
procedure for the optimum multiuser detector, a counterpart to condition (5)
can be found which shows the same nice properties, a fixed point equation
that is linear in the load, and allows for optimization of the users’ power
profile by linear programming. Replacing the optimum multiuser detector
by a simpler approach based on linear filters only a penalty of about 1 dB
needs to be paid, cf. Fig. 4.
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Power optimization based on the asymptotic approximation turned out
both accurate and simple enough to make real-time power optimization for
iterative multiuser decoding possible in deployed mobile radio communica-
tion systems. In contrast, the exact optimization problem without large
system approximation is, even for only a few users, still unsolved due to its
prohibitive complexity.

4. Asymptotic design of multistage detectors

As mentioned in the previous section, even simplified multiuser detectors
which are used in iterative multiuser decoding like the linear MMSE detec-
tors have cubic complexity in the number of users. That is, as they require
to solve a linear system of equations with one equation each per user. For
hundreds of users this is not a trivial task to be performed in a mobile hand-
set within microseconds. When it came to the frequency-division duplex
(FDD) mode of Europe’s UMTS3, some believed that multiuser detection,
though it would improve performance significantly, is infeasible with today’s
technology.

Motivated by the observation that the eigenvalues of large random ma-
trices become more and more predictable the larger the matrices are, refer-
ence [12] showed that multiuser detection should, in contrast to the common
believe, not become more difficult but, at some point, simplify if there are
enough users in the system. In [12], it is demonstrated how to simplify solv-
ing systems of linear equations given by a large random matrix drawn from
a Marchenko–Pastur4 ensemble exploiting the convergence properties of its
eigenvalues.

Assume you want to invert a K × K matrix X whose eigenvalues L =
{λ1, . . . , λK} are known to you. Note that due to the Cayley–Hamilton
Theorem [38] any matrix is a zero of its characteristic polynomial

K
∏

k=1

(X − λkI)
k = 0 . (8)

Expanding the product into a sum, we find

K
∑

k=0

ck(L)Xk = 0 (9)

3 Universal Mobile Telecommunications Standard (UMTS).
4 Since the spreading sequences in mobile radio standards are pseudo-random numbers,

the channel matrix can be well-approximated by a random matrix.
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with some coefficients ck depending on the eigenvalues of X. Solving this
equation for X0 = I and multiplying both sides by X−1 gives the desired
inverse matrix as a (K − 1)st order polynomial in X

X−1 = −
K−1
∑

k=0

ck+1(L)

c0(L)
Xk △

=

K−1
∑

k=0

w̃k(L)Xk. (10)

Since the eigenvalue distribution depends only on the statistics of X, the co-
efficients w̃k = −ck+1/c0 can be pre-computed for large-dimensional random
matrices.

While standard Gauss–Seidel iterations require, in principle, the sum-
mation of an infinite number of terms to achieve arbitrary precision, the
knowledge of the eigenvalues reduces the number of terms to be summed to
the dimension of the matrix.

Evaluating a polynomial of degree K − 1 can still be a task too compli-
cated to perform in real-time. Though polynomials with lower degrees can,
in general, not equal the inverse of the matrix, they may be accurate ap-
proximations. Depending on the cost function for the approximation error,
various designs for the coefficients of shorter polynomials are sensible.

Defining the total mean-squared error as cost function, the optimum
coefficients for a matrix polynomial of order L − 1

X−1 ≈
L−1
∑

k=0

wkX
k. (11)

are determined by a system of Yule–Walker equations [39]
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where

mk
△
=

1

K

K
∑

i=1

λk
i . (13)

Reference [39] suggested to track the empirical eigenvalue moments mk adap-
tively and to solve the Yule–Walker equations (12) in real-time. Since these
moments converge to non-random deterministic limits for a large class of
random channel matrices, they can be computed analytically as functions of
the channel statistics and so can the weights. The coefficients of the matrix-
valued polynomial which lead to the smallest deviation of output signal of
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the approximated detector from the exact detector are given by the solution
to the system of Yule–Walker equations (12). They depend only on the first
2L moments of the eigenvalue distribution of the matrix X which are well-
known in literature. This approach to weight design was proposed in [12]
and explicit expressions for the optimum weights and the achievable SINRs
were given for channel matrices with independent identically distributed en-
tries. It was generalized to channel matrices with more involved asymptotic
statistics in [14].

The weights can also be calculated adaptively interpreting the polyno-
mial expansion detector as a multistage Wiener filter [40,41]. This approach
was followed in [42] and large system SINRs were derived for equal power
users in terms of continued fractions. A generalization for users with differ-
ent powers can be found in [43]. Reference [44] highlighted the connection
between the Marchenko–Pastur distribution, continued fractions, and or-
thogonal polynomials for the analysis of polynomial expansion detectors.
Such a connection is well established in mathematical literature [45], but
found its way into the design and analysis of code-division multiple-access
only recently.

The weight design according to (12) with (13) minimizes the mean-
squared error of the solution of the system of linear equations to be solved.
For engineering purposes, however, minimizing the bit error probability of
the users is a more sensible, tough related goal of optimization. As shown
in [14], this leads to a different weight design, if the users’ channels have
different statistics. In that case the weight design is different for each user i.
Thus, the weights actually turn into diagonal matrices. The Yule–Walker
equations (12) stay valid, but (13) has to be replaced by

mk =
(

Xk
)

ii
(14)

for user i. Apparently, the weights depend on the particular diagonal ele-
ments of the powers of the matrix, not only on its average, the trace. Similar
to the convergence of the trace, the diagonal elements can also be shown to
converge to deterministic limits for a given signal power of user i. For the
reader’s convenience, this statement is made more precise in the appendix.

A particularly pleasant feature of this way to iteratively solve a linear sys-
tem of equations governed by a random matrix is the speed of convergence.
In [44], it was shown that the mean-squared error of the approximation de-
cays exponentially fast as long as the support of the eigenvalue density is a
subset of a finite interval on the positive real axis.

As a consequences of all these particular results, the complexity of imple-
menting multiuser detectors for a large number of users with pseudo-random
spreading was found to be merely quadratic than cubic in the number of
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users. The fundamental principle used to demonstrate the feasibility of in-
terference mitigation are not particular to code-division multiple-access, but
rely on fundamental properties of random matrices and their convergence of
its eigenvalues to deterministic limits. They can, therefore, be generalized
to a variety of other applications which involve the vector channel (1).

5. Summary and outlook

Random matrix theory and other large system properties can be suc-
cessfully used to come up with new designs of multiuser communication
systems. However, not for all practically relevant channel statistics, results
on the asymptotic eigenvalue distributions of channel matrices are available
in mathematical and physics literature.

Appendix A

Theorem 1 [14] Let A be a K×K diagonal matrix in C with bounded
elements and such that the sequence of the eigenvalue distribution of AHA

converges almost surely, as K →∞, to a non-random distribution function
F|A|2(λ) with upper bounded support. Let S∈C

N×K with random i.i.d. zero

mean entries with variance E{|sij |2}= 1

N , and limN→∞ E{N3|sij|6}<+∞.

Let R = AHSHSA. Conditioned on akk, the k-th diagonal element of
A, (Rℓ)kk converges almost surely, as N,K → ∞ with K

N → β, to the

conditionally deterministic quantity Rℓ
kk,∞

Rℓ
kk,∞ = |akk|2

ℓ−1
∑

s=0

Rs
kk,∞βmℓ−s−1

R
ℓ > 1 (A.1)

for any k, ℓ ∈ Z
+. ms

R
= E

{

1

K tr (Rs)
}

. The initial values of the recursion

are R0
kk,∞ = 1 and m0

R
= β−1. 2

A closed-form expression for the moments ms
R

can be found in [46].
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