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We study empirical covariance matrices in finance. Due to the limited
amount of available input information, these objects incorporate a huge
amount of noise, so their naive use in optimization procedures, such as
portfolio selection, may be misleading. In this paper we investigate a re-
cently introduced filtering procedure, and demonstrate the applicability of
this method in a controlled, simulation environment.
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1. Introduction

Investment decisions are governed by weighing risk vs. reward, that
is possible loss against expected return. Markowitz’ classical portfolio the-
ory [1] assumes that the underlying stochastic process is multivariate normal
with known returns and covariances. In practice, these parameters have to
be determined from observations on the market. Since the number of obser-
vations is necessarily limited, empirically determined parameters will always
contain a certain measurement error. Even if we disregard the notoriously
hard problem of estimating returns and concentrate solely on the covari-
ances, we still run into a problem of serious information imbalance: the size
N of typical bank portfolios is too large compared to the amount of infor-
mation contained in the finite-length time series available for the assets in
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the portfolio. As the number of input data is N × T , where T is the length
of the time series, whereas the number of data needed for the construction
of the covariance matrix is O(N2), we expect that the quality of the esti-
mate depends essentially on the ratio N/T and that the error goes to zero
only in the limit of very small N/T . Now the problem is that N/T is never
sufficiently small in practice, in fact, it may easily become larger than unity,
the threshold value where the covariance matrix becomes singular and the
portfolio selection problem meaningless.

Over the past decades a large number of different techniques have been
developed to tackle this problem and reduce the effective dimension of large
bank portfolios [2]. Our purpose here is to apply a recently introduced filter-
ing procedure [3] in a well controlled simulation setting where the efficiency
of the method can be reliably tested.

In order to determine the optimal portfolio, one has to invert the co-
variance matrix. Since this has, as a rule, a number of small eigenvalues,
any measurement error will get amplified and the resulting portfolio will be
sensitive to the noise. In order to study the effect of noise, we start from
a known correlation matrix, dress it with noise, and reestablish the results
of [4]. Next, we apply the cleaning procedure of [3] to the empirical covari-
ance matrix, and investigate the improvement of the result compared with
the original, unfiltered theory.

2. Results and discussion

2.1. Model correlation matrix

Let us start from a known covariance matrix, C, of size N × N , repre-
senting the true correlation between N instruments making up the portfolio.
The portfolio weights wi , (i = 1, . . . ,N), satisfy the constraint

∑

i wi = 1,
and we assume that short-selling is allowed, i.e. some of the weights can be
negative. For the sake of simplicity, we do not impose any further condi-
tions on the weights (like e.g. the usual constraint on expected returns, which
cannot be determined on a daily horizon with any reliability anyhow), and
concentrate on the minimal risk portfolio. In a Gaussian world the natural
measure of risk is the portfolio variance which is then our objective function
to be minimized,

R2 =

N
∑

i,j=1

wi Cij wj . (1)

After some trivial algebra one finds the optimal weights as

w∗

i =

∑N
j=1 C

−1
ij

∑N
i,j=1 C

−1
ij

. (2)
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It is natural to assume that stocks of companies belonging to a given
industrial sector are more strongly correlated than those belonging to dif-
ferent sectors. Accordingly, we expect that the covariance matrix displays
a block diagonal structure. For simplicity, we assume that the elements
outside the diagonal blocks (that describe some general correlation with the
whole market) are all equal and non-negative, ̺0 ≥ 0, and the elements
̺i, (i = 1, 2, . . .), describing intra-sector correlations in the diagonal blocks
are constants within each block, and larger than those outside the blocks,
̺i ≥ ̺0. The model just described is the same as the one introduced by
Noh [5]. For the sake of simplicity again, we study a case when the cor-
relation and covariance matrices are the same, i.e. we set the variance of
individual instruments to unity. The structure of the correlation matrix,
which we will refer to as the market-plus-sectors-model in the following, is
then given by the pattern shown in figure 1. Such a matrix, containing M
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Fig. 1. Structure of the market-plus-sectors model correlation matrix. Correlation

with the market is ̺0, while the correlation inside sector i is ̺i (i = 1, 2, . . .).

sectors, possesses M small eigenvalues given by 1 − ̺i < 1, i = 1, 2, . . ..
The corresponding eigenvectors will be strongly localized, having only two
nonzero elements (of equal absolute value but opposite sign). Their multi-
plicity is Ni−1, i=1, 2, . . . (where Ni is the number of entries within sector i),
i.e. the total multiplicity of the small eigenvalues is N − M . In addition,
there are M large eigenvalues (λ > 1), typically singlets, that depend on all
the parameters of the model: ̺0, ̺i, and Ni. That is, an M sector matrix
has 2M different eigenvalues. By virtue of the Frobenius–Perron theorem,
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the largest eigenvalue will necessarily be a singlet of O(N), with an eigen-
vector having all positive components. This mode can then be identified
with the whole market.

On the whole, this simple model reproduces all the main features ob-
served in the spectra of real-life empirical covariance matrices [6]. It will
also be useful to consider two special cases of the model: When all the ̺i’s
are the same and equal to ̺0, the block structure disappears, and we are
left with a one-factor model, where only covariances with the market mat-
ter. The spectrum of the corresponding covariance matrix consists of merely
two values, a large eigenvalue of order N , and an (N − 1)-fold degenerate
small eigenvalue, 1 − ̺0 < 1. As a further simplification, we can even drop
̺0, and end up with the unit matrix as the most trivial covariance matrix
conceivable.

2.2. Empirical correlation

Assuming that we have chosen one of the above models, the market-plus-
sectors model, the one-factor model, or just the unit matrix, we can construct
the corresponding empirical correlation matrix from them as follows: we
generate finite time series from the true correlation matrix C,

xit =
∑

j

Ai,j yjt t = 1, . . . , T , (3)

where A is the Cholesky decomposition of the true correlation matrix
C = AA

T , and yjt is a random Gaussian variable with mean zero and
variance 1 at time t.

Then the empirical correlation matrix is given by the usual estimator as

C
(e) =

1

T

T
∑

t=1

xitxjt . (4)

The resulting empirical covariances will fluctuate from sample to sample.
The main effect of this noise will be to resolve the degeneracy of the small
eigenvalues, so that for a large enough matrix they form a quasi-continuous
band. For N and T going to infinity so that r = N/T is fixed and smaller
than one, the spectral density of the small eigenvalues will be given by the
Marchenko–Pastur spectrum [7]. (For r larger than one, an additional Dirac-
delta appears at the origin.) For small enough r’s the large eigenvalues
remain relatively unaffected by the noise, but as r grows and approaches
unity, the effect of noise becomes dramatic, as we demonstrate below.
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The Markowitz-weights corresponding to the empirical covariance matrix
are

w
(e)
i =

∑N
j=1 C

(e)−1
ij

∑N
i,j=1 C

(e)−1
ij

. (5)

Now we can evaluate the risk associated with this choice of the portfolio.
A possible way to characterize the effect of measurement error is to eval-
uate the variance by using the true correlation matrix C with the weights
calculated from the empirical one, C

(e),

R(e)2 =

N
∑

i,j=1

w
(e)
i Cij w

(e)
j . (6)

Since the empirical weights are not optimal, we always have R(e)2 ≥ R2.
In the following we will use

q2
0 =

R(e)

R
≥ 1 (7)

as a measure of the effect of noise on portfolio selection. q0 can be easily
evaluated for the special case when the true covariance matrix is just the unit
matrix. Then the empirical covariance matrix will be a random matrix with
a spectral density fast converging to the Marchenko–Pastur spectrum [7]:

̺(λ) =
1

2rπλ

√

(λ − λ<)(λ> − λ) , (8)

where r = N/T , λ<,> = (1 ±
√

r)2. Evaluating q0 in the diagonal represen-
tation, we get

q2
0 =

∫

dλ 1
λ2 ̺(λ)

(∫

dλ 1
λ
̺(λ)

)2 =
1

1 − r
. (9)

This strikingly simple result, dating back to a discussion between the
present authors, was first published in [4]. It remains valid up to O(1/N)
corrections also for the one-factor model, and, within corrections controlled
by the size of the sectors, also for the market-plus-sectors model. It tells us
that as the size N of the portfolio grows and approaches the length of the
time series T , the error in the portfolio diverges. While it is a commonplace
that at the threshold N = T the portfolio problem becomes meaningless (the



2762 G. Papp et al.

covariance matrix looses its positive definite character), it does not seem to
have been noticed in the quantitative finance literature earlier that the error
can be given by such a simple exact formula.

A comparison between the theoretical prediction and the simulation is
displayed in figure 2: the agreement is perfect. Concerning the relevance of
our simple result for real markets, one has to realize that it has been derived
on the basis of idealized conditions: perfect stationarity of the process and
Gaussian distribution of returns. Neither of these holds true on real markets,
therefore we believe that our formula is a lower bound for the error in real-life
portfolios.
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Fig. 2. One factor model results for N = 100, q0 versus r: optimization with

empirical correlation matrices (errorbars), random matrix result (solid line), and

optimization with the cleaned one-sector correlation matrix (stars). For r > 1 the

standard Markowitz theory is not applicable.

Given the fact that r is never small in practice, and, in fact, it may
even go beyond the critical value r = 1, it is imperative that some sort of
filtering or cleaning procedure be applied, in order to reduce the effect of
noise. A number of these techniques is available in the literature [2]. Each
of them corresponds to injecting some external information, additional to
the time series data, into the empirical covariance matrix. The procedure
proposed recently in [3] requires that we make an educated guess concerning
the structure of the market. We are going to test its performance in the
next section.
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2.3. Cleaned correlation

Studies of real financial empirical matrices [6] have revealed that they
only have a relatively small number of large eigenvalues (in the case of the
S&P500 less than 20), the rest are small, and conform rather well to the
Marchenko–Pastur pattern (8). This must mean that the number of relevant
sectors is fairly small compared with the size of the portfolio. Our task is
therefore to reconstruct the true correlation matrix assuming a structure
with a few sectors.

The general theory of the cleaning procedure of the empirical correlation
matrix dressed with Gaussian noise is described in [3]. Let G(Z) be the
resolvent for the cleaned correlation matrix

G(Z) =
1

N
Tr

1

Z − C
, (10)

with a similar formula for the resolvent g(z) of the empirical correlation
matrix. Then the relation between the two is expressed as

z g(z) = Z G(Z), with z =
Z

1 − r + rZG(Z)
. (11)

This can be translated into a relation between the corresponding moments,
and from the knowledge of 2M − 1 moments one is able to reconstruct M
sectors for the true correlation matrix. We also note that this procedure,
applied in the reverse direction, allows one to calculate the spectral density
for more complicated scenarios, for correlated random matrices. As a result,
the eigenvalue spectrum will slightly, but noticeably change, and come to a
closer agreement with the one observed in finance. The procedure described
in [3] allows one to reconstruct the eigenvalues only, but not the eigenvectors.
Our aim here is to reconstruct the true correlation matrix using the cleaned
eigenvalues and the empirical eigenvectors. The question is whether such a
procedure can lead to any improvement?

We present our result in figures 2, 3, for the one-factor model and the
market-plus-sectors model, respectively. The true correlation matrix is well
reconstructed in both cases, the portfolio built from the (cleaned) empirical
data is suboptimal by only 5–10%. Thus, the cleaning procedure leads to a
very substantial improvement compared with the naive use of the empirical
covariance matrix, and allows the optimization to be performed even in the
range N > T .

The cleaning procedure does not determine the number of sectors, or
of the eigenvalues to be searched for, it is a parameter of the fitting. We
tested the method with different numbers of eigenvalues (i.e. different num-
bers of sectors), and observed the changes in performance depending on the
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Fig. 3. Market-plus-sectors model results for N = 100, q0 versus r, for different

numbers of eigenvalues reconstructed. Above 4 eigenvalues the result does not

change anymore.

trial structure. We find that there is a clear saturation after one reaches
the number of eigenvalues corresponding the number of sectors in the true
correlation matrix, and a further increase of the number of searched eigen-
values does not changes the result. This allows one to determine the proper
number of sectors by looking for the signature of saturation.

On the other hand, no problem arises if one sets the number of searched
eigenvalues higher than required: the cleaning procedure will return less
independent eigenvalues, saturating at the maximal number allowed by the
number of sectors.

In conclusion, we have performed a preliminary study of the effect of
the random matrix based cleaning described in [3] on the optimization of
financial portfolios. We have found that the method works very efficiently
in an artificial test environment, reproducing nearly perfectly a one-factor
model scenario, and leading to a huge improvement in a market-plus-sectors
model with a moderate number of sectors. It is obvious that before a final
judgment can be passed on the method, a more detailed study of its various
aspects should be performed, extending also to a possible cleaning of the
eigenvectors. Furthermore, a careful comparison of the efficiency of the
method with other filtering procedures proposed in the literature is clearly
necessary.
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