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We consider a portfolio of stocks whose returns conform to a station-
ary, multivariate distribution whose all integer moments are finite. For
this portfolio we derive the distribution of eigenvalues of various sample
covariance matrices and the moments of the eigenvalue distribution, for
a particular type of distribution, in terms of the parameters of the portfo-
lio distribution.
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1. Introduction

There are some ideas from nuclear and statistical physics that appear
to be helpful in multivariate analysis. Here we mention the computation
of a partition sum of a one-dimensional Coulomb gas [1] or planar diagram
expansions of theories for strong interactions [2]. The modeling of a Hamil-
tonian of a nucleus as a random matrix, a random matrix whose elements
are chosen such that the spectrum coincides with the measured spectra of
nuclei [3] has stimulated investigations of Random Matrix Ensembles (to be
termed the Random Matrix Theory). The matrices in the ensembles are
invariant under particular similarity transformations what implies that cer-
tain properties of the ensemble, like probability densities of eigenvalues, are
universal. The idea appeared to use these universal properties for stochastic
inference in finance. One [4–8] derived a qualitative way of filtering noise
from financial time series. Interesting applications for market factor models
like the Capital Asset Pricing Model [9] appeared. One also speculated if it
was possible to infer multivariate distribution of stocks from the distribution
of eigenvalues of a sample covariance matrix.
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Since, however, the filtering noise method is only based on a result valid
for the number of stocks N → ∞ and the length of time series T → ∞
and since it is based on the assumption of Gaussian fluctuations and it also
assumes a particular form of the population covariance matrix caution has
to be taken in the blind use of that result. In our opinion progress in sta-
tistical inference will only be possible if new analytical results are obtained.
Some articles [10, 11] extended the theory to correlated Gaussian matri-
ces (Wishart ensembles). The work [10] is a considerable step forward but
the theory still assumes a particular form of the population covariance ma-
trix (translational-invariance) the corrections for non-stationarity are made
ad hoc and no closed system of equations was found for the estimators of
the spectral moments of the population covariance matrix as a function of
the spectral moments of the sample covariance matrix. It was also not clear
how to compute confidence intervals for the estimators mentioned above. In
this work we formulate a generic theory of the distribution of eigenvalues
of a sample covariance matrix drawn from a non-Gaussian population with
all finite integer moments. We do not assume any particular form for the
population correlations between two different returns at two different times.
We also speculate on computing percentiles of the distribution of eigenvalues
and on generalizing the theory to Lévy stable populations.

2. The model

Consider a portfolio S := {Si,t}
N,T
i,t=1,1 whose returns Xi,t := dt log(Si,t)

satisfy an equation:

dSi,t

Si,t
:= Xi,t = α(S)

︸ ︷︷ ︸

=0

dt+

N,T
∑

j,ξ=1

O(i,t),(j,ξ)Yj,ξ , (1)

where α(S) = 0 (zero drift), the tensor

O :=
{
O(i,t),(j,ξ)

}t,ξ=1,...,T

i,j=1,...,N
(2)

(population covariance tensor) is symmetric, and {Yj,ξ}
N,T
j,ξ=1 are iid random

variables (base variables), with common even probability density ρY (y) and
an analytical log-characteristic function

ψY (λ) := log (Fy [ρY ] (λ)) =

∞∑

l=1

c2l

(2l)!
λ2l , (3)
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where c2l for l = 1, 2, . . . are cumulant of the density of base variables. Note
that the model (1) can be written as

~Xt =

T∑

ξ=1

O
t,ξ
~Yξ , (4)

where ~Xt := (X1,t, . . . ,XN,t)
T and ~Yt := (Y1,t, . . . , YN,t)

T and O
t,ξ

(i, j) :=

O(i,t),(j,ξ). Whence the model is equivalent to a random vector Moving
Average (MA) model with non time-homogeneous coefficients. Since fit-
ting methods for MA models are known (see Durbin Levinson algorithm
in [12]) our analysis provides a new approach to the model, an approach
whose performance can be tested.

In the population (1) we define following matrices

E(X) =







1
T

T∑

t=1
Xi,tXj,t , space covariances

1
N

N∑

i=1
Xi,tXi,t′ , time covariances

1
D

D∑

i=1
Xj,tXi,j , time-space cross-covariances

1
D

D∑

i=1
Xi,jXj,t , space-time cross-covariances

(5)

whereD := min(N,T ). We note that these are all possible sample covariance
matrices that can be constructed from products of two different random
variables Xi,t. We denote the sample covariance matrices in a compact
way as:

E(X)j1,j2 = d
i
j1,j2

2∏

q=1

Xi2q−1,i2q
, (6)

where i := (i1, i2, i3, i4) and

d
i
j1,j2

:= δj1,i
ξ(1)

δiξ,iηδi
η(1) ,j2 , (7)

where (ξ, η) = (2, 4) and (ξ(1), η(1)) = (1, 3) for space covariances, (ξ, η) =
(1, 3) and (ξ(1), η(1)) = (2, 4) for time covariances, (ξ, η) = (1, 4)
and (ξ(1), η(1)) = (2, 3) for time-space cross-covariances and (ξ, η) = (2, 3)
and (ξ(1), η(1)) = (1, 4) for space-time cross-covariances respectively. It is our
objective to analyze the eigenvalues and eigenvectors of the sample covari-
ance matrices (5) in order to estimate the largest possible set of population
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parameters O of the underlying distribution. For this purpose we define a
Greens’ function (resolvent) G(z) viz

G(z) =
(
z − E(X)

)−1
(8)

for z ∈ C.
The whole information about the eigenvalues of E(X) is contained in the

Generalized Density of Eigenvalues (GDE) D
(k)
Λ (z). We have

limǫ→0Im Op(k)
[
G(z + ıǫ)

]
(9)

=
π

CD
k

∑

1≤i1<...<ik≤D

k∑

p=1

δ
(
z − λip

) ∏

q 6=p

q=1,...,k

(λip − λiq)
−1 =: πD

(k)
Λ (z) ,

where the operator Op(k) is such that

Op(k) [·] :=
1

CD
k

∑

1≤i1<...<ik≤D

Mini1,...,ik [·] , (10)

where Mini1, ..., ik are minors of dimension 1 ≤ k ≤ N , and

CD
k := D!/(k!(D − k)!).

That statement follows from the fact that the numbers Op(k) [·] specify the
characteristic polynomial of · uniquely since

det[· − λ1] =

D∑

k=0

CD
k Op(k) [·] (−λ)D−k . (11)

Expanding the resolvent (8) in a Taylor series around z = 0 we obtain
a following expansion of the GDE:

πD
(k)
Λ (z) =

∞∑

m=0

(−1)m

m!
πδ(m)(z)Op(k)

[
Em(X)

]
, (12)

where δ(m)(z) is the m-th derivative of the delta function.
We define a Generalized Spectral Moments (GSM) of order m,k of the

sample covariance matrix E(X) viz:

(λm)(k) :=

∫

C

dzzmD
(k)
Λ (z) =

1

CD
k

∑

1≤i1<...<ik≤D

k∑

p=1

λm
ip

∏

q 6=p(λip − λiq)
(13)
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and from (10) and (12) we get

(λm)(k) = Op(k)
[
Em(X)

]
. (14)

From (14) and from (6) we get:

(λm)(k) =
1

CD
k

∑

l

C (l)





k∏

q=1

m∏

p=1

2∏

ξ=1

Xl
q,p
2ξ−1,l

q,p
2ξ



 , (15)

where l :=
{

lq,p
ξ

}

, where q = 1, . . . , k, p = 1, . . . ,m and ξ = 1, 2, and

lq,p
ξ = 1, 2, . . . ,D, and the coefficients in (15) read:

C (l) :=
∑

1≤i1<...<ik≤D

∑

π(k)

sign(π(k))

×
∑

j

k∏

q=1

d
lq,1

iq ,j
(q)
1

d
lq,2

j
(q)
1 ,j

(q)
2

· . . . · d
lq,m

j
(q)
m−1,i

π
(k)
q

, (16)

where j := {jqp}, where q = 1, . . . , k, p = 1, . . . ,m− 1, and jqp = 1, 2, . . . ,D
and the constants d are defined in (7). We note that the relation (15) is
a quite general relation that is valid also in other statistical populations in
particular in those that have infinite integer moments. Relation (15) holds as
a equality in distribution. That equality can be used to compute percentiles
of the distribution of eigenvalues of the sample covariance matrix.

Now we are going to compute the expectation value of the GSM (13).
For this purpose we express the 2m-correlation function of the variables
Xl := Xl1,l2 in (1), where the pair index l is an ordered pair (l1, l2), as a
decomposition of permutations π2m into mθ, where θ = 1, . . . ,m, cycles of
length 2θ. This is termed as the Wick theorem for non-Gaussian distribu-
tions and it can be proven in a similar manner as the Gaussian Wick theorem
is proven. We have:

〈Xl1Xl2 . . . Xl2m
〉 =

∑

π2m
Pm

q=1 qmq=m





m∏

q=1

c
mq

2q



 (17)

×





m∏

q=1

mq∏

ξ=1

O
(2q)
l
π
(2m)
(Aq+(ξ−1)2q+1)

,...,l
π
(2m)
(Aq+(ξ−1)2q+2q)



 ,
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where Aq =
∑q−1

p=1 2pmp, the constants c2q are cumulants of base variables

and O
(2q)
l1,...,l2q

are 2q-population covariances defined in (18) where:

O
(2θ)
li1 ,...,li2θ

:=
NT∑

k=1

2θ∏

ξ=1

Oliξ ,k . (18)

We note that for given mθ there are

(2m)!
∏m

θ=1((2θ)!)
mθ (mθ)!

(19)

expansion terms in (17) (see Table I) In the case of Gaussian distributed
base variables the sum in (17) reduces to cycles of length two only and the
number of terms in the sum equals (2m − 1)!!. This is the Wick theorem
known from literature.

We take the expectation value of (15), we use (1), we identify

lq,p
ξ =

(

lq,p
2ξ−1, l

q,p
2ξ

)

= l(q−1)4m+(p−1)4+ξ (20)

for q = 1, . . . , 4, p = 1, . . . ,m, ξ = 1, 21 and we use the Wick theorem (17)
and, after lengthy but straightforward transformations, we obtain:

TABLE I

Characterization of permutations π2km according to division into cycles.

km # of permutations for given (m1,m2, . . .)

1 1(1)

2 3(2) 1(0, 1)

3 15(3) 15(1, 1) 1(0, 0, 1)

4 105(4) 35(0, 2) 210(2, 1)
28(1, 0, 1) 1(0, 0, 0, 1)

5 945(5) 1575(1, 2) 3150(3, 1)
630(2, 0, 1) 210(0, 1, 1) 45(1, 0, 0, 1)

1(0, 0, 0, 0, 1)

6 10395(6) 5775(0, 3) 51975(2, 2)
51975(4, 1) 462(0, 0, 2) 13860(3, 0, 1)

13860(1, 1, 1) 1485(2, 0, 0, 1) 495(0, 1, 0, 1)
66(1, 0, 0, 0, 1) 1(0, 0, 0, 0, 0, 1)

1 The first and the last index in (20) are ordered pairs of indices.
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〈

(λm)(k)
〉

:=
∑

Pkm
q=1 qmq=km

π(2km)





km∏

q=1

c
mq

2q




∑

l1,...,l2km

Hm,k(l)

×
km∏

q=1

mq∏

ξ=1

O
(2q)
l
π
(2km)
(Aq+(ξ−1)2q+1)

,...,l
π
(2km)
(Aq+(ξ−1)2q+2q)

, (21)

where

Hm,k(l) :=
1

CD
k

∑

1≤i1<...<ik≤D

det
(
gip,iq(l)

k
p,q=1

)
, (22)

where

gip,iq(l) := δ
ip,l

q,1

ξ(1)
δlq,m

η(1)
,iq

m∏

p=1

δ
l
(q,p)
ξ

,l
(q,p)
η

m−1∏

p=1

δ
l
(q,p)

η(1)
,l

(q,p+1)

ξ(1)

(23)

and Aq =
∑q−1

p=1 2pmp.

The outer sum in (21) runs over all possible decompositions of permu-
tation π2km into mq cycles of length 2q and the inner sum runs over pair
indices l1, . . . , l2km = 1, . . . ,D. The cycles are ordered in ascending order of
their length. The ξ-th cycle of length 2q:

(

π
(2km)
(Aq+(ξ−1)2q+1), . . . , π

(2km)
(Aq+(ξ−1)2q+2q)

)

(24)

is given a weight c2q and a 2q-correlation tensor element, defined in (18),
endowed with indices corresponding to the cycle. The weight of the per-
mutation is obtained by multiplying the weights of cycles and finally the
expression is multiplied by a constant Hm,k(l), a constant that is propor-
tional to the (D − k)-th coefficient of the characteristic polynomial of the

matrix {gi,j(l)}
D
i,j=1, a coefficient that does not depend on the cumulants

and the correlation tensor but does depend on the indices l. The quantity
Hm,k(l) is a linear operator acting in the 4km-dimensional space of l indices
with integer values. This linear operator is a linear combination of CD

k · k!
operators, labeled by an ordered sequence I := 1 ≤ i1 < i2 < . . . < ik ≤ D
and by a permutation πk, with a coefficient being the sign of the permuta-
tion πk. The operators are 4km-dimensional Kronecker delta functions of
the form
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δ(4km)
(

M (I;πk) · l
)

, (25)

for some the 4km-dimensional matrices M := M(I;πk). In the case k = 1

the matrix M := M(i1;π
1) in (25) reads:

M
(q,p),(q,p)+ξ

= 1 ,

M
(q,p),(q,p)+η

= −1 , for p = 1, . . . ,m ,

M
(q,p)+km,(q,p)+η(1) = 1 ,

M
(q,p)+km,(q,p)+ξ(1) = −1 , for p = 1, . . . ,m− 1 ,

M
q+2km−k,(q−1)m+1+ξ(1) = 1 ,

M
q+2km−k,(q−1)m+m+η(1) = −1 , (26)

(27)

for q = 1, . . . , k. Here we denoted (q, p) := (q − 1)m+ p. The matrix is zero
otherwise.

 b  D -b -D  b  C -b -C c 2
2N 0T 0

(3,4),(1,2)

 d  B  c -B -c  B -d -B c 2
2N 1T -1

(1,4),(2,3)

 c  B  c -B -c -B -c  B c 2
2N 0T -1

(2,4),(1,3)

 e  D  c -D -c  B -e -B c 4
1N 0T -1

(1,2,3,4)

Fig. 1. Graphical representation of expansion terms of the second, k = 1 spectral

moment of the space sample covariance matrix. The (lower) upper case letters are

ordered pairs (space, time) of indices of a product of discrete Fourier transforms

of the translationally invariant population covariance matrices Õk (this was not

mentioned in text). The columns correspond to given powers of cumulants and the

rows correspond, from below to above, given powers of 1/T . The permutation of

a given term is displayed on the right-hand side.

In the generic k 6= 1 case the matrix in (25) is also easily found; only
the last k rows are modified. Here the units in (27) are two-dimensional
identity matrices. The set of l indices that are picked out by the operator
(25) are obtained as the null space of a matrix M by means of Singular Value
Decomposition. By this means we express the GSM in terms of contractions
of the population covariance tensor (see Figs. 1 and 2). Now we show how
results known from literature appear as special cases of equation (21).
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 b  E -b -E  b  D -b -D  b  C -b -C c 2
3N 0T 0

(5,6),(3,4),(1,2)

 c  B  e -B -e  B -c -B  c  D -c -D c 2
3N 1T -1

(5,6),(1,4),(2,3)

 c  E -c -E  c  B  d -B -d  B -c -B c 2
3N 1T -1

(3,6),(4,5),(1,2)

 e  C  b -C -b  D  b -D -b  C -e -C c 2
3N 1T -1

(1,6),(2,5),(3,4)

 e  B  d -B -d  B  c -B -c  B -e -B c 2
3N 2T -2

(1,6),(4,5),(2,3)

 b  C  b -C -b -C -b  C  b  D -b -D c 2
3N 0T -1

(5,6),(2,4),(1,3)

 b  D -b -D  b  C  b -C -b -C -b  C c 2
3N 0T -1

(4,6),(3,5),(1,2)

 b  C  b -C -b  D  b -D -b -C -b  C c 2
3N 0T -1

(2,6),(1,5),(3,4)

 c  B  d -B -d  B  c -B -c -B -c  B c 2
3N 1T -2

(4,6),(1,5),(2,3)

 c  B  c -B -c -B  d  B -d -B -c  B c 2
3N 1T -2

(2,6),(4,5),(1,3)

 d  B  c -B -c -B -c  B  c  B -d -B c 2
3N 1T -2

(1,6),(3,5),(2,4)

 c  B  c -B -c -B  c  B -c  B -c -B c 2
3N 0T -2

(4,6),(2,5),(1,3)

 c  B -c -B  c  B -c -B  c  B -c -B c 2
3N 0T -2

(3,6),(2,5),(1,4)

 c  B -c -B  c -B  c  B -c -B -c  B c 2
3N 0T -2

(3,6),(1,5),(2,4)

 c  B  c -B -c  B -c -B  c -B -c  B c 2
3N 0T -2

(2,6),(3,5),(1,4)

 f  E  b -E -b  D  b -D -b  C -f -C c 2
1c 4

1N 0T -1
(5,6,1,2),(3,4)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(3,4,1,2),(5,6)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(2,4,1,3),(5,6)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(1,4,2,3),(5,6)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(2,3,1,4),(5,6)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(1,3,2,4),(5,6)

 b  D  e -D -e  F -b -F  b  C -b -C c 2
1c 4

1N 0T -1
(1,2,3,4),(5,6)

 f  E  d -E -d  B  c -B -c  B -f -B c 2
1c 4

1N 1T -2
(3,6,1,2),(4,5)

 f  E  d -E -d  B  c -B -c  B -f -B c 2
1c 4

1N 1T -2
(2,6,1,3),(4,5)

 f  E  d -E -d  B  c -B -c  B -f -B c 2
1c 4

1N 1T -2
(1,6,2,3),(4,5)

 e  D  c -D -c  B -c -B  c -B -e  B c 2
1c 4

1N 0T -2
(4,6,1,2),(3,5)

 c  E -c -E  c  B  d -B -d  B -c -B c 2
1c 4

1N 0T -2
(4,5,1,2),(3,6)

 c  E  d -E -d  B  c -B -c -B -c  B c 2
1c 4

1N 0T -2
(3,5,1,2),(4,6)

 c  E  d -E -d  B  c -B -c -B -c  B c 2
1c 4

1N 0T -2
(2,5,1,3),(4,6)

 c  E  d -E -d  B  c -B -c -B -c  B c 2
1c 4

1N 0T -2
(1,5,2,3),(4,6)

 g  F  e -F -e  C  d -C -d  B -g -B c 6
1N 0T -2

(1,2,3,4,5,6)

Fig. 2. The same as in Fig. 1 but for third, k = 1 spectral moment.

3. Examples

We assume that the correlation tensor factorize-s, meaning that
O(i,t),(j,ξ) = Ci,jAt,ξ, into spatial and temporal parts Ci,j and At,ξ, respec-
tively, and that both parts are translationally invariant, meaning that Ci,j =
Ci−j and At,ξ = At−ξ , respectively. We denote the Spectral Moments of both

parts by M1(n) := 1
N

Tr[Cn] and M2(n) := 1
T

Tr[An], respectively. Then the
k = 1 spectral moments of the space sample covariance matrix (first in (5))
read:

mc1 = c2 M1(2)M2(2) , (28)

mc2 =
c4 M1(2)2 M2(2)2

T
+ c2

2
(

M1(4)M2(2)2 + rM1(2)2 M2(4)

+
M1(4)M2(4)

T

)

, (29)

mc3 =
c6 M1(2)3 M2(2)3

T 2
+ c2 c4

(
5M1(2)M1(4)M2(2)M2(4)

T 2

+
7M1(2)M1(4)M2(2)3 + 3 rM1(2)3 M2(2)M2(4)

T

)
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+ c2
3

(

M1(6)M2(2)3 + 3 rM1(2)M1(4)M2(2)M2(4)

+ r2 M1(2)3 M2(6) +
4M1(6)M2(6)

T 2

+
3M1(6)M2(2)M2(4) + 3 rM1(2)M1(4)M2(6)

T

)

, (30)

where we denoted mcn :=
〈
(λn)(1)

〉
. We note that the first term and the

next three terms on the right-hand side in (29) correspond to the graph on
the right-hand side and to the graphs on the left-hand side from down to
above in Fig. 1, respectively. The reader is encouraged to verify that the
graphs in Fig. 2 also correspond to particular terms on the right-hand side
of equation (30).

In the Gaussian case (c2n = 0 for n > 1 (higher cumulants)) we retrieve
the known relations (equations (34) in [10]2). The corrections for finite values
of higher cumulants in (29) are essential and the question if these corrections
tend to zero in the thermodynamic limit (in the limit T,N → ∞) as it is
commonly assumed in most papers on this subject, is not simple without an
a priori knowledge of the population covariance tensor.

4. Summary

We have expressed the generalized spectral moments 〈λm〉(k) of the sam-
ple covariance matrices as sums over decompositions of π2km permutations
into cycles of all possible lengths.

Terms corresponding to permutations composed entirely of cycles length
two (mθ = 0 for θ > 1 and m1 = km) are dominant in terms of their absolute
value. Other terms are inverse proportional to positive powers of N and T .

5. Open questions

The open questions are:

1. What are other resolvents (8) suitable for parameter estimation in
other classes of random distributions?

2. Is it possible to find closed form expressions, like (13), for fractional
generalized spectral moments?

2 The authors have taken c2 = 1.
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3. Can we construct, in (9) and (10), operators related to the eigen-
vectors of sample covariance matrices in order to extract the whole
information about the population covariance matrices? Can inverse
participation ratios, (next-)nearest neighbor distributions of eigenval-
ues (universal properties of certain ensembles of random matrices) be
used for inference of population covariances?

4. Can the model be generalized to a Lévy stable population?

5. How can the results helpful in risk minimization (minimize the risk
measure subject to given return) for different risk measures (variance,
VaR, absolute values of the return)?

6. Conclusions

We have obtained a system of non linear equations that relate the gen-
eralized spectral moments of the sample covariance matrices to spectral mo-
ments of the population covariance matrix in a unique way, ie without any
additional assumptions about the parameters of the model. We have derived
the Wick theorem for non-Gaussian random variables. This can be helpful
for the computation of partition sums of non-harmonic field theories coupled
to a thermal bath.

This work has emanated from research conducted with the financial sup-
port of Science Foundation Ireland (SFI Basic Award 04/BR/P0251). The
participation in the conference was financed by COST Action P10 “Physics
of Risk”. We are also grateful to Jerzy Jurkiewicz, Zdzisław Burda and Mark
Michael Meerschaert for useful discussions.
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