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I review the approach of using large N matrix field theory to fold RNA
and then discuss a recent simplified model that could be solved analytically.
I then outline how entropic contributions could be included starting from
first principles.

PACS numbers: 02.50.–r, 87.15.–v

Over the last decade, RNA has transformed itself from being a relatively
minor player in the central dogma of Watson and Crick to being one of the
central players in molecular biology. Indeed, it has been demonstrated that
in addition to its “information carrier” role in protein synthesis, some types
of RNA’s, known as ribozymes, have an enzymatic activity which is crucial
to the functioning of the cell. As a consequence of this new prominent role of
RNA, the search for the three dimensional structure of RNA has become an
important problem in biology. This view was expressed forcefully by Tinoco
and Bustamante [1].

With various collaborators [2–6] Henri Orland and I have developed in
detail a practical program to fold RNA using large N matrix field theory.
A excellent review of this program may be found in the preceding talk by
Orland [7] at this conference. In this talk I focus on a simplified and soluble
version of this problem [6].

Let us begin with a schematic overview of the relevant biology for the
benefit of some readers. RNA is a heteropolymer constructed out of a four-
letter alphabet: C,G,A, and U (for the four bases or nucleotides: cytosine,
guanine, adenine, and uracil). In solution, there is an attraction between
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C and G and between A and U, with energies ε(C,G) ≃ −3 kCal/mole
and ε(A,U) ≃ −2 kCal/mole respectively (300◦ K ≃ 0.6 kCal/mole ≃
1/40 eV). There is also a weaker attraction between G and U, with ε(G,U) ≃
−1 kCal/mole.

Consider an RNA sequence {s} = {s1, s2, · · · , sL} (where si takes on
one of the 4 possible values C,G,A, and U). For example, we might be
given the sequence {s} = {CCCGUUAACCG · · ·}. Given this sequence the
RNA heteropolymer folds itself into a definite shape due to the attraction
just mentioned between the nucleotides. The problem is to determine the
configuration most favored by energetic and entropic considerations. With
L ∼ 102 for example the combinatorial possibilities are already staggering.

The hydrogen bond responsible for the attraction between nucleotides
saturates, which merely means that once a given C is paired with a G, it
cannot be paired with another G. For our purposes we could think of the
nucleotides as beads on a flexible chain, with the beads to be “glued” together
in pairs.

As discussed in detail in [2] and in the preceding talk by Orland [7] at this
conference, the combinatorial heart of the problem is given by the following
integral over L independent N × N Hermitian matrices ϕi, i = 1, . . . , L:

ZL(N) =
1

AL(N)

∫ L
∏

k=1

dϕk e−
N
2

P

ij(V
−1)ij Tr(ϕiϕj) 1

N
Tr

L
∏

l=1

(1 + ϕl) (1)

with the normalization factor

AL(N) =

∫ L
∏

k=1

dϕke−
N
2

P

ij(V
−1)ijTr(ϕiϕj) . (2)

Here Vij is a given, but rather complicated, L by L matrix constructed out
of Boltzmann factors and so on. This Gaussian integral is easily evaluated
to be

ZL(N) = 1 +
∑

i<j

Vij +
∑

i<j<k<l

VijVkl +
∑

i<j<k<l

VilVjk + . . .

+
1

N2





∑

i<j<k<l

VikVjl + . . .



 +
1

N4
(. . . ) + · · · . (3)

If we define e−βµ ≡ 1
N2 then we can write (3) as

ZL(N) = 1 +
∑

i<j

Vij +
∑

i<j<k<l

VijVkl +
∑

i<j<k<l

VilVjk + . . .
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+e−βµ





∑

i<j<k<l

VikVjl + . . .



 + e−2βµ × (genus 2 pseudoknots)

+e−3βµ × (genus 3 pseudoknots) + . . .

=
∑

Cij

e−β(E(C)+µg(C)) . (4)

Here C denotes the L × L real symmetric contact matrix

Cij =
{

1 if i, j are bonded
0 otherwise

, (5)

E(C) the energy of the configuration C, g(C) the genus of the configuration
C, and

∑

Cij
the sum over all possible contact matrices. In other words,

the RNA matrix model in (1) describes the folding of an RNA molecule at
zero entropy (i.e. very low temperature), but with a topological chemical
potential µ ≥ 0 which effectively controls the amount of pseudoknots in
the folded molecule. Each term in (4) corresponds to one particular way of
folding the RNA molecule.

The expression in (1) contains information about the folding energy of
an RNA molecule, but not its entropy. It was argued in [2] that for a first ap-
proximation it may suffice to suppress the entropic factor. In the Appendix
we sketch how the entropic factor could be added into our formulation for a
price.

In [2] the matrix integral was massaged into the form of a matrix field
theory which was then studied by a steepest descent expansion in the large
N limit. The resulting expression proved to be highly non-trivial, but re-
produced all the known pseudoknots and more [3, 4]. In a recent paper, [6]
Vernizzi, Orland, and I studied a much simplified version of this problem.
We replaced the complicated matrix V by the much simpler matrix defined
by Vij = v for i 6= j and Vii = v + a, with a a regulator so that V −1 exists.
After a series of Hubbard–Stratanovich transformations, we can simplify (1)
to

ZL(N) =
1

Ã(N)

∫

dσ e−
N
2v

Trσ2 1

N
Tr(1 + σ)L (6)

with Ã(N) another normalization factor. The original integration over the
L matrices ϕk in Eq. (1) has been reduced to an integration over a single
N×N matrix σ. I may perhaps remind the reader at this point that L is the
length of the RNA, while N would be related to the Mg++ ion concentration
in biological terms. The parameter v measures the strength with which the
nucleotides are “glued” to each other.
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At this point, we have a standard problem in random matrix theory
which could be solved in two different ways. Since this is a Gaussian problem
we could, after using a series of identities, reduce the generating function
for ZL(N) to a generalized Laguerre polynomial [6]. Alternatively, we could
modify a method introduced by Kazakov to turn the generating function
into a contour integral [8].

To understand the information contained in ZL(N) let us consider a
specific example, say

Z8(N) = 1+
(

28v + 140v2 + 140v3 + 14v4
)

+
(70v2 + 280v3 + 70v4)

N2
+

21v4

N4
.

(7)
The meaning of these numbers, 28, 140, and so on, are as follows. The
power of v corresponds to the number of pairs of nucleotides that are glued
together. The power of 1/N2 is the topological genus of the diagram as
explained in [2] and [5]. Thus, for L = 8 there are 28 planar diagrams
with one pair of nucleotides glued together, and 70 diagrams on the torus
(i.e. genus one closed surface) with two pairs of nucleotides glued together,
and so on. The total number of diagrams for each fixed genus can be obtained
by putting v = 1. For instance, the total number of diagrams on the torus
for L = 8 is (70v2+280v3+70v4)/v → 1 = 420. On the other hand, the total
number of diagrams, irrespective of the genus, can be obtained by putting
N = 1. For instance, the number of diagrams for L = 8 with four pairs of
nucleotides glued together is 14 + 70 + 21 = 105.

The general 1/N2 topological expansion of ZL(N) with v = 1 is:

ZL(N) =
∞

∑

L=0

aL,g
1

N2g
, (8)

where the coefficients aL,g give exactly the number of diagrams at fixed
length L and fixed genus g. We could recursively obtain all the coefficients
aL,g. Moreover, by normalizing each aL,g by the total number of diagrams at
fixed L, i.e. by N ≡ ZL(1), we can obtain the distribution of the number of
diagrams. Plots of the distributions of diagrams as a function of L and g are
given in [6]. We note the interesting feature that for any given L ≫ 1 most of
the diagrams are not planar, and they have a genus close to a characteristic
value 〈g〉L which increases with L: we find numerically that it scales like
〈g〉L ∼ 0.23L at large L. Also, for each fixed L there is a maximum possible
value for g, namely g ≤ L/4. Conversely a structure can have a genus g only
if it has a length at least L ≥ 4g.

In conclusion, we have shown how to compute the number of folded
structures as a function of the length and of the genus of the RNA. This
model is of course very schematic and oversimplified. It shows however that
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for a random RNA, the average topological character scales linearly with
the length of the chain. As most wild RNA have an almost planar structure
(with a genus g ≤ 2), this implies that their sequences have been greatly
designed by evolution in order to achieve this specificity.

This work was supported in part by the National Science Foundation
under grant number PHY 99-07949.

Appendix

We will now sketch how entropic considerations could be incorporated
into our matrix theory formulation. The material in this appendix is based
on work with Orland and Vernizzi [9].

It is instructive to start from the first principles of statistical mechan-
ics. Boltzmann taught us to evaluate the sum over all configurations Z =
∑

config e−βE(config) where β = 1/T is the inverse temperature in units with
the Boltzmann constant set to unity. In the present context we have then

Z =

∫

· · ·

∫

d3x1 · · · d
3xLe−β

PL−1
j=1 K(|~xj+1−~xj |)

×
∏

i>j

e−βwhc(|~xi−~xj |)e−βE(|~xi−~xj |,si,sj ,i,j). (9)

Here K(|~xj+1 − ~xj |) denotes the energy of the backbone along the chain
connecting the nucleotide at j to the next nucleotide at j+1, whc(|~xi−~xj|) a
hard-core potential between nucleotides at i and j, and E(|~xi−~xj|, si, sj, i, j)
denotes the binding energy of a pair of nucleotides at i and j when they are
bound. Note that E(|~xi −~xj |, si, sj , i, j) depends not only on the separation
between the two nucleotides but also on their identities si and sj and their
location along the chain i and j.

We will comment on these three energies and the series of approximations
that one may consider making to render the problem tractable or at least
formulable as a matrix field theory.

The hard-core repulsion whc(|~xi−~xj |) takes into account the fact that nu-
cleotides are to first approximation hard spheres with radius b. In principle,
we should also include the dependence of whc on si and sj since different
nucleotides have different sizes. In practice, the hard-core repulsion just
means that in the Monte-Carlo integration over the spatial location of the
nucleotides the integrand is to be set equal to 0 whenever |~xi − ~xj| < 2b.

The energy E(|~xi − ~xj |, si, sj , i, j) will in general have the form

E(|~xi − ~xj|, si, sj, i, j) = θ(|i − j| > 4)ε(si, sj)v(|~xi − ~xj |, si, sj) . (10)

The step function θ(|i − j| > 4) takes into account the rigidity constraint,
that the chain is not infinitely flexible. Only nucleotides spaced apart by
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more than 4 units could bind. The 4 × 4 symmetric matrix ε(si, sj) has
entries that are either 0 or 1. Thus, we could take ε(C,G) = 1, ε(A,U) = 1,
ε(C,U) = 0, and so on. The attractive potential v(|~xi−~xj |, si, sj) could also
depend on si and sj as indicated; for instance the potential between C and
G may be taken to be different from the potential between A and U. We
are going to make the simplifying approximation that the most important
dependence on si and sj has already been taken into account by the matrix
ε(si, sj). Evidently, we are also making the approximation that the binding
between nucleotides does not depend on orientation so that v depends only
on |~xi − ~xj | and not on ~xi − ~xj .

Since we already took out the hard-core repulsion, the attractive poten-
tial v(r) goes negative for b < r < R, and vanishes otherwise; here R denotes
the range of the potential. Two length scales b and R are involved. If the
approximation b ≪ R is valid, then we could take v(r) to be a well of depth
v0 extending from r = 0 to r = R.

Since the factor e−βE(|~xi−~xj |,si,sj ,i,j) is equal to 1 when the nucleotides
are not bound, it is convenient to define Uij by

e−βE(|~xi−~xj |,si,sj ,i,j) = 1+(e−βE(|~xi−~xj |,si,sj ,i,j)−1) ≡ 1+Uij(|~xi−~xj|, si, sj) .
(11)

If the approximate form for v(r) holds, then Uij(|~xi −~xj|, si, sj) ≃ eβw −1 if
|~xi−~xj| < R and |i−j| > 4, and Uij(|~xi−~xj |, si, sj) ≃ 0 otherwise. In other
words, Uij is non-zero when the nucleotides at i and j are close enough to
be paired with each other.

Next, if w is large enough and R small enough, we could try to represent
the |~xi − ~xj| dependence of Uij(|~xi − ~xj|, si, sj) approximately by a delta
function

Uij(|~xi − ~xj |, si, sj) = Vij(si, sj)δ(|~xi − ~xj|) . (12)

In this approximation, Vij(si, sj) depends on si and sj through ε(si, sj) :
Vij(si, sj) = 0 if ε(si, sj) = 0.

Finally, we come to K(|~xj+1 − ~xj|), the energy of the backbone along
the chain connecting the nucleotide at j to the next nucleotide at j + 1.
This is the easiest to discuss since there is a literature on simple models of
homopolymers for which the partition is given by

Zsimple =

∫

· · ·

∫

d3x1 · · · d
3xLe−β

PL−1
j=1 K(|~xj+1−~xj |)

and not the vastly more complicated (9). Various models for K(|~xj+1 − ~xj|)
could be used. For example, we could suppose the nucleotides to be con-
nected by elastic rods of length l and spring constant k, so that
K(|~xj+1 − ~xj |) = 1

2k|~xj+1 − ~xj |
2. Another popular approximation is to use
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rigid rods of length a and replace the Boltzmann factor e−βK(|~x|) by the
probability distribution Pδ(~x) = 1

4πa2 δ(|~x| − a). Since the Gaussian is easier
to handle than the delta function, a further approximation is often made

replacing Pδ(|~x|) by the probability distribution P (~x) = ( 3
2πa2 )

3
2 e−

3
2a2 |~x|

2

,
where the coefficient in the width of the Gaussian is determined by demand-
ing that the second moment 〈|~x|2〉 is the same for the two distributions Pδ(~x)
and P (~x). (Note that the ratio of the first moment 〈|~x|〉 in P to that in Pδ

is 2
√

2
3π ∼ 0.92, a number close enough to 1 for our purposes.)

We would like to generalize the matrix model in Eq. (1) to include the
entropic contribution. Given the detailed discussion earlier, it is now clear
that all we have to do is write, instead of (1),

ZL(N) =

∫

· · ·

∫

d3x1 · · · d
3xLe−β

PL−1
j=1 K(|~xj+1−~xj |)

∏

i>j

e−βwhc(|~xi−~xj |)

×
1

AL(N)

∫ L
∏

k=1

dϕk e−
N
2

P

ij(U
−1)ij Tr(ϕiϕj) 1

N
Tr

L
∏

l=1

(1 + ϕl).(13)

Note that in the integral over the ϕk’s the inverse of V is now replaced by
the inverse of U where Uij(|~xi − ~xj |, si, sj) = Vij(si, sj)δ(|~xi − ~xj |) as given
in (12). The result of the integration over the ϕk’s is now an expression
similar to (3) but with Vij(si, sj) replaced by Vij(si, sj)δ(|~xi − ~xj |).

To write this as a matrix field theory, we need to make a further rough
approximation. The radial delta function δ(|~xi − ~xj|) is difficult to handle

and so we replace it by the 3-dimensional delta function δ(3)(~xi−~xj) through
the following schematic steps

δ(|~xi − ~xj |) ∼ 4π|~xi − ~xj|
2δ(3)(~xi − ~xj) ∼ 4πR2δ(3)(~xi − ~xj) . (14)

We then obtain (suppressing the normalization factor)

ZL(N) =

∫

· · ·

∫

d3x1 · · · d
3xLe−β

PL−1
j=1 K(|~xj+1−~xj |)

∏

i>j

e−βwhc(|~xi−~xj |)

×

∫ L
∏

i=1

DΦi(~x) e−
N
2

R

d3x
P

ij(V
−1)ij Tr(Φi(~x)Φj(~x))

×

{

1

N
Tr

L
∏

l=1

(1 + Φl(~xl))

}

. (15)

Note that the matrices ϕi have been promoted to matrix fields Φi(~x).
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Within this field theoretic framework we could also extend and gener-
alize this expression further. In particular, by replacing Tr(Φi(~x)Φj(~x)) by
Tr(Φi(~x)(−∇2 + m2)Φj(~x)) we could have an interaction potential of finite
range ∼ m−1 instead of the infinitely short ranged delta function in (14).
When we carry out the Gaussian integration over the matrix fields Φi(~x)’s we
obtain for every contraction a factor Vij multiplied by the Yukawa function
∫

d3k
(2π)3

e
i~k·(~xi−~xj )

k2+m2 .

As remarked earlier, the hard core repulsion could probably be handled
only numerically, and so we suppress it here. If we also make the rigid rod
approximation, then we obtain

ZL(N) =

∫ L
∏

i=1

DΦi(~x) e−
N
2

R

d3x
P

ij(V
−1)ij Tr(Φi(~x)Φj(~x))

×

∫ L−1
∏

k=1

d3x2e
− 3

2a2 |~xj+1−~xj |2

{

1

N
Tr

L
∏

l=1

(1 + Φl(~xl))

}

. (16)

This multimatrix field theory model contains the energy rules of the
RNA, the entropic contribution of the chain in 3D, some sterical constraints
(the chain is not infinitely stretchable). By making a systematic expansion
we could obtain the entropy factor, which in the literature is typically in-
cluded in an ad hoc fashion. Note that in this field theory the action is
merely Gaussian, but the observable is rather involved.

In summary, we note that the advantage of the formalism introduced
in [2] and further developed here [9] is that it allows us to make a system-
atic expansion, in contrast to some of the more ad hoc approaches in the
literature.
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