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The shell energies of spherical nuclei obtained by folding in the particle-
number space and in the energies of individual nucleons are compared. The
effect of coupling of the single-particle motion with the shape vibration on
the magnitude of the both types of the shell corrections is discussed.
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Already in the 60’s Myers and Świa̧tecki have proposed the macroscopic-
microscopic method of evaluating the binding energy of deformed nuclei [1].
This method with modifications proposed by Strutinsky [2], provides the
most accurate mass formulae [3,4]. The original Strutinsky prescription for
the evaluation of the shell energy by smoothing the single-particle energy
spectra (e-folding) was improved in 1969 by Nilsson et al. [5]. In this ap-
proach the microscopic energy correction consists of shell and pairing parts
which are added to the binding energy evaluated within one of the macro-
scopic models, e.g. the Lublin–Strasbourg drop [4]. Despite of the known
problems arising when dealing with finite-depth nuclear mean-field poten-
tials, the Strutinsky method is widely used up to the present.

A revised version of the shell-correction method, based on a new way of
evaluating the smooth part of the total single-particle energy was recently
proposed in Ref. [6]. The new estimate of the smooth energy bases on the
folding in the particle number space (N -folding). It properly fulfils the
plateau condition, which is not always true in the Strutinsky approach, and
it is more stable with respect to the energy cut-off in the single particle
spectrum — important when dealing with nuclei far from stability.
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In the new approach, the spherical nuclei are more bound (by a couple
of MeV) than it is predicted by the traditional Strutinsky method, while the
deformed isotopes have almost the same energy in both models. It raises a
question: what does it mean? Is the new approach able to reproduce the
measured masses and details of the potential energy surface of nuclei? The
answer is yes — if one takes into account the coupling between the collective
and individual particle motions.

Following the ideas of Ref. [7] we have shown in [8] that the coupling of
the shape vibrations with the single particle motion, completely neglected
in all previous calculations of the Strutinsky type, decreases the magnitude
of the shell energy for spherical nuclei by a couple of MeV.

The consideration which follows will explain the influence of the particle-
phonon coupling on the magnitude of the shell effects. Let us consider
a deformed single-particle potential V (~r; {αk}). Around spherical shapes
(αν = 0) the potential can be written as:

V (~r; {αν}) ≈ V (~r; 0) +
∑

ν

[
∂V (~r; {αν})

∂αν

]

αν=0

αν = V (~r; 0) + Ĥ ′ . (1)

The deformation parameters αν in the above expansion can be expressed
by the boson creation (B̂+

ν ) and annihilation operators (B̂ν) representing
the surface vibrations. In the 2nd quantization the linear in αν term which
couples the single-particle Hamiltonian with the shape vibrations is

Ĥ ′ ≡
∑

i,j;ν

[
〈j| ∂V

∂αν
|i〉 ĉ+

j ĉi B̂+
ν + 〈i| ∂V

∂αν
|j〉 ĉ+

i ĉj B̂ν

]
. (2)

Here c+
i and ci are the fermion creation and annihilation operators, respec-

tively.
The perturbed single-particle energies e′i are given by

e′i = ei + ∆ei = ei −
∑

i,j;ν

〈i; 0ν |Ĥ ′|j; 1ν〉〈j; 1ν |Ĥ ′|i; 0ν〉
(ej + ~Ων) − (ei + 0)

, (3)

where ei and |i〉 are energies and wave-functions of the unperturbed Hamil-
tonian and ~Ων is the energy of the surface phonon of the polarity ν.

Let us remind that the shell energy is given by

Eshell =
∑

i

e′i(ni − ñi) , (4)

where ni and ñi are the occupation probabilities in a nucleus with and
without shell structure, respectively. The perturbed Eshell and unperturbed
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E
(0)
shell shell energy differs by

∆Eshell = Eshell − E
(0)
shell ≈

∑

i

∆ei(ni − n̄i) . (5)

According to Ref. [7] this difference is of the order 5 MeV for spherical 208Pb,
because ∆ei has the same sign as ni−n̄i both for the hole and particle states.
In case of deformed nuclei, where the high degeneracy of the single-particle
levels is absent, the shell energy is almost unchanged.

This effect can be easily explained by the study of the influence of the
collective shape vibration on the single particle motion within the Born–
Oppenheimer approximation. Let us consider the spherical Bohr Hamilto-
nian for quadrupole oscillations

Ĥcoll = − ~
2

2D

(
β−4 ∂

∂β
β4 ∂

∂β
+ β−2(sin 3γ)−1 ∂

∂γ
sin 3γ

∂

∂γ

)
+

1

2
Cβ2 , (6)

where D and C are the mass and stiffness parameters and β and γ are the
quadrupole axial and nonaxial deformation, respectively. The ground-state
wave-function of Ĥcoll reads:

Ψ0 = (8π2)−1/2(2π)−1/4b−5/2 exp(−β2/4b2) , (7)

where b = (~2/4CD)1/4. The mass and stiffness parameters can be estimated
from the experimental data using the following relations:

√
C

B
= E2+ ;

√
C · B =

1

2

( 3

4π
ZeR2

◦

)2
/B(E2; 2+ → 0+) , (8)

which are valid in harmonic approximation.
The effective shell energy reduction can be obtained as the expectation

value between the ground state collective wave functions:

〈Eshell〉 = 8π2

∞∫

0

dβ

60◦∫

γ=0

|Ψ0|2Eshell(β, γ)β4| sin 3γ| dγ . (9)

The shell energy of 90Zr evaluated by N -folding method [6] for the single-
particle spectrum of the Yukawa-folded Hamiltonian as in Ref. [3] is plotted
in Fig. 1 (solid line and squares) as function of the quadrupole deformation β.
Similar as it was already predicted by Myers and Świa̧tecki [1] the shell cor-
rection for this double-magic nucleus is negative and its magnitude decreases
with deformation. The dashed line represents the probability |Ψ0|2β5 which
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stays in the integral (9) after performing the integration over γ. It is seen
in Fig. 1 that the probability is picked up at non-zero β deformation which
corresponds to a significantly smaller than for the spherical shape (β = 0)
magnitude of the shell correction. The effective shell energy 〈Eshell〉 obtained

by Eq. (9) is by 3.7 MeV smaller than E
(0)
shell=8.7 MeV.
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Fig. 1.

Similar effect may be observed for other spherical nuclei. Using the ex-
perimental data on energies E2+ and B(E2; 2+ → 0+) transitions (NUDAT
data base) and two types of folding: the traditional Strutinsky e-folding
(circles) and the new N -folding method (squares), we have evaluated the
effective shell energies (filled symbols) and compared them with their static
values (open symbols) in Fig. 2. It is visible that the coupling with the shape
vibrations diminishes the magnitude of the shell corrections by a few MeV.
Due to this effect the shell energies obtained by N -folding would be closer to
their experimental values while the Strutinsky type estimates would become
too small.

These results give a hope that the macroscopic-microscopic model with
the new shell energy could reproduce the binding energies of the known
isotopes, if the effect of particle-phonon coupling is taken into account.
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