THE NUCLEAR INTERACTION OF \varSigma HYPERONS* **

J. Dąbrowski J. Rożynek

Theoretical Division, A. Sołtan Institute for Nuclear Studies Hoża 69, 00-681 Warsaw, Poland

(Received September 26, 2005)

The analyses of the strangeness exchange (K^-, π) and the associated production (π^-, K^+) reactions are presented. They indicate — together with the observed properties of Σ atoms — that the Σ single particle potential V_{Σ} is repulsive inside nuclei and has a shallow attractive pocket at the nuclear surface. This conclusion is consistent with the Nijmegen model F of the hyperon–nucleon interaction. It is demonstrated how the strong-interaction shifts and widths measured in Σ atoms may be used to obtain information on the nucleon density distributions.

PACS numbers: 21.10.Ft, 21.10.Gv, 13.75.Ev, 36.10.Gv

1. Introduction

Our present knowledge of the Σ hyperon interaction with nuclear matter, represented by the single particle (s.p.) potential V_{Σ} , comes from the following sources:

— Final state interaction of Σ hyperons in the strangeness exchange (K^-, π) reactions (see, e.g., [1], and [2]).

— Final state interaction of Σ hyperons in the associated production (π, K^+) reactions (see [3], and [4]).

— Free space hyperon-nucleon scattering data, to which the hyperonnucleon interaction potential $V_{\Sigma N}$ may be fitted (see, *e.g.*, [5–8]), and with this potential one may calculate V_{Σ} (see, *e.g.*, [9–11]).

— Strong interaction shifts ε_a and widths Γ_a of the observed Σ^- atomic levels [12, 13].

All these sources imply that the ΣN interaction is well represented by the Nijmegen model F of the baryon-baryon interaction [6], which leads

^{*} Presented at the XXIX Mazurian Lakes Conference on Physics August 30–September 6, 2005, Piaski, Poland.

^{**} This research was partly supported by the Polish State Committee for Scientific Research (KBN) under Grant No. 2P03B7522.

to V_{Σ} which is repulsive at densities ρ of nuclear matter of the order of the equilibrium density $\rho_0 = 0.166 \text{ fm}^{-3}$ and is slightly attractive at low densities encountered at nuclear surface [11, 14, 15].

Since the strong interaction shifts and widths in Σ^- atoms are sensitive to the proton and neutron density distributions ρ_n and ρ_p , we may use the Σ^- atomic data to gain information on these density distributions.

In Sec. 2, we describe how the properties of V_{Σ} and $V_{\Sigma N}$ follow from the analysis of the strangeness exchange and associated production reactions. In Sec. 3, we discuss the possibility of gaining information on ρ_n and ρ_p from the Σ^- atomic data. Conclusions are presented in Sec. 4.

2. Information on V_{Σ} and $V_{\Sigma N}$

Gaining information on V_{Σ} from the Σ production processes was burdened for a long time by the inaccurate early CERN results for the strangeness exchange (K^-, π) reactions [16]. The situation was clarified, when new experiments were performed at Brookhaven [17] with an order of magnitude better statistics. A simple analysis of the pion spectra measured in Brookhaven in the (K^-, π^+) reaction on the ⁹Be target was performed in [2] in impulse approximation. The results, shown in Fig. 1, suggest that V_{Σ} is repulsive inside nuclei with the strength of about 20 MeV.

Fig. 1. Pion spectrum from (K^-, π^+) reaction on ⁹Be at $\theta_{\pi} = 4^{\circ}$ at $p_K = 600 \text{ MeV}/c$. The curves A, B, C, D were calculated with a square well potential V_{Σ} with the strength 20, 10, -10, and -20 MeV, respectively.

A similar analysis of the kaon spectrum measured in KEK [3] in the associated production (π^-, K^+) reaction on the ²⁸Si target was performed in [4]. The results shown in Fig. 2 lead to a similar conclusion with a slightly stronger repulsion of V_{Σ} .

Fig. 2. Kaon spectrum from (π^-, K^+) reaction on ²⁸Si at $\theta_K = 6^\circ$ at $p_{\pi} = 1.2 \text{ GeV}/c$. See text for explanation. The curves A, B, C were calculated with a square well potential V_{Σ} with the strength -20, 20, and 40 MeV, respectively.

An important feature of V_{Σ} is its isospin dependence [14]. For a Σ^{\pm} moving with momentum k_{Σ} in nuclear matter of density ρ with neutron excess $\alpha = (N - Z)/A$, we have:

$$V_{\Sigma^{\pm}}(\rho, k_{\Sigma}) = V_0(\rho, k_{\Sigma}) \mp \frac{1}{2} V_{\tau}(\rho, k_{\Sigma}) \alpha .$$
⁽¹⁾

As discussed in [14], the π^- spectrum observed in the Brookhaven (K^-, π^-) experiments [17] indicates that the final state interaction of the Σ hyperon is here less repulsive than in the (K^-, π^+) reaction. This suggests a sizable strength of the Σ Lane potential V_{τ} , consistent with the value of $V_{\tau}|_{\rho=\rho_0}$ ~ 80 MeV estimated in the phenomenological analysis [12] of Σ^- atoms.

We may exploit our information on V_{Σ} to find the most reliable version of the Σ -nucleon interaction potential $V_{\Sigma N}$. In the present discussion, we consider the Nijmegen models of of the baryon-baryon interactions: models D [5], F [6], soft-core (SC) model [7], and the new soft-core (NSC) model [8]. Within the Brueckner theory, one may obtain with these models the corresponding effective interactions in nuclear matter. This was done by Yamamoto *et al.* [11], and we use here their effective YNG interaction. It is a configuration space representation of the *G*-matrix calculated in the low order Brueckner (LOB) theory. With the help of the YNG interaction, we calculate V_0 and V_{τ} , by applying the expressions derived in [14]. Our results obtained for $V_0(\rho, k_{\Sigma} = 0)$ and $V_{\tau}(\rho, k_{\Sigma} = 0)$ are shown in Fig. 3 and 4¹. We notice that at densities ρ of the order of the nuclear matter densities ρ_0 , only model F leads to a repulsive $V_0 \sim 20$ MeV, in agreement with the results of the analyses of the (K^-, π) and (π, K^+) reactions described above, whereas all the remaining models lead to an attractive V_0 . At the same time, the attractive character of V_0 at low densities (relevant in Σ^- atoms) revealed by model F guaranties that it leads to

Fig. 4. Potential $V_{\tau}(\rho, k_{\Sigma} = 0)$.

¹ The dependence on k_{Σ} , which is rather weak (especially in case of V_{τ}), is discussed in [18].

a strong-interaction energy shifts in Σ^- atoms towards increased binding of the atomic levels, in agreement with experiment (see [13]). As far as the Lane potential is concerned, we see that at $\rho \sim \rho_0$, model F leads to $V_{\tau} \sim 80 \text{ MeV}$, in agreement with the previously mentioned estimates, whereas models D and SC lead to a weaker V_{τ} , and model NSC leads to negative value of V_{τ} .

We conclude that among the Nijmegen baryon–baryon interaction models, only model F appears to be a realistic representation of the ΣN interaction.

3. Information on ρ_n and ρ_p

If we know the complex Σ s.p. potential in nuclear matter (its imaginary part may be directly related to the cross section for the $\Sigma\Lambda$ conversion process $\Sigma + N \to \Lambda + N$) and apply the local density approximation, we may follow [13] and calculate the strong-interaction shifts ε and widths Γ of Σ^- atomic levels [12,13], provided we know the neutron and proton density distributions ρ_n and ρ_p . Here, we want to hint at a possibility of exploiting the sensitivity of the calculated values of ε and Γ to the form of ρ_n and ρ_p (especially in the peripheral region of the nucleus) to gain information on ρ_n and ρ_p .

We consider the case of the Σ^- Pb atom because of the relatively high accuracy of the three data points measured in [19]: the energy shift ε and the width Γ of the lower level with the principal and orbital quantum numbers $n = 9, \ l = 8$, and the width Γ^u of the upper level with $n = 10, \ l = 9$. We want to find nucleon densities in ²⁰⁸Pb, $\rho_n(r)$ and $\rho_p(r)$ which lead to the best agreement between the measured values of ε, Γ , and Γ^u and these values calculated with model F of the Nijmegen interaction.

Let us consider model F and, e.g. model D. We start with HF densities ρ_n and ρ_p calculated by Skalski [20] with the Skyrme interaction SkM^{*}. Values of ε , Γ , and Γ^u calculated with these densities lead to $\chi^2|_D = 7.9$ and $\chi^2|_F = 65.2$, respectively, for model D and F. The fact that the wrong model D leads to a better agreement with experiment than the correct model F indicates that the HF densities require corrections. The steps in which these corrections are introduced, are described in detail in [21]. They lead to the modified proton density distribution $\tilde{\rho}_p$ with the unchanged root-meansquare radius (with the neutron distribution unchanged). The energy shift and widths ε , Γ , and Γ^u calculated with these densities give: $\tilde{\chi}^2|_D = 22.7$ and $\tilde{\chi}^2|_F = 7.6$. Thus the corrected densities lead to the desired situation in which the realistic model of the ΣN interaction leads to the best agreement with the Σ^- Pb atomic data. The essential features of the corrected densities are visualized in Fig. 5 which shows $\alpha(r) = [\rho_n - \rho_p]/[\rho_n + \rho_p]$. Whereas with the HF densities the nuclear periphery consists mainly of neutrons, with the corrected densities the neutron to proton ratio at the nuclear periphery is approximately equal N/Z.

Fig. 5. The local neutron excess $\alpha(r)$ calculated with the HF density ρ_p and with the modified density $\tilde{\rho}_p$.

4. Summary

— The analysis of the new strangeness exchange and associated production data indicates that the Σ s.p. potential V_{Σ} inside the nuclear core is repulsive.

— Among the Nijmegen models of the ΣN interaction only model F leads to a V_{Σ} repulsive at nuclear densities appearing inside nuclei.

— Assuming that model F is a realistic picture of the ΣN interaction, the analysis of the Σ atomic data may lead to information on ρ_n , ρ_p at the nuclear periphery.

REFERENCES

- [1] C.B. Dover, D.J. Millener, A. Gal, *Phys. Rep.* **184**, 1 (1989).
- [2] J. Dąbrowski, J. Rożynek, Acta Phys. Pol. B 29, 2147 (1998).
- [3] H. Noumi et al., Phys. Rev. Lett. 89, 072301 (2002).
- [4] J. Dąbrowski, J. Rożynek, Acta Phys. Pol. B 35, 2303 (2004).
- [5] N.M. Nagels, T.A. Rijken, J.J. de Swart, *Phys. Rev.* D12, 744 (1975);
 15, 2547 (1977).
- [6] N.M. Nagels, T.A. Rijken, J.J. de Swart, *Phys. Rev.* **D20**, 1663 (1979).
- [7] P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C40, 2226 (1989); Nucl. Phys. A547, 245c (1992).
- [8] T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C59, 21 (1999).
- [9] J.Dąbrowski, J.Rożynek, Phys. Rev. C23, 1706 (1981).

- [10] Y. Yamamoto, H. Bandō, Progr. Theor. Phys., Suppl. 81, 9 (1985).
- [11] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda, S. Nagata, Progr. Theor. Phys., Suppl. 117, 361 (1994).
- [12] C.J. Batty, E. Friedman, A. Gal, Phys. Rep. 287, 385 (1997).
- [13] J. Dąbrowski, J. Rożynek, G.S. Anagnostatos, Eur. Phys. J. A14, 125 (2002).
- [14] J. Dąbrowski, Phys. Rev. C60, 025205 (1999).
- [15] J. Dąbrowski, Nucl. Phys. A691, 58c (2001).
- [16] R. Bertini *et al.*, *Phys. Lett.* B90, 375 (1980); B136, 29 (1984); B158, 19 (1985).
- [17] R. Sawafta, Nucl. Phys. A585, 103c (1995); S. Bart et al., Phys. Rev. Lett. 83, 5238 (1999).
- [18] J. Dąbrowski, Acta Phys. Pol. B 36, 3063 (2005).
- [19] R.J. Power et al., Phys. Rev. C47, 1263 (1993).
- [20] J. Skalski, private communication; Acta Phys. Pol. B 34, 1977 (2003).
- [21] J. Dąbrowski, J. Rożynek, Eur. Phys. J. A25, 137 (2005).