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The entropy S of the horizon 6§ = 7/2 of the Hawking wormhole written
in spherical Rindler coordinates is computed in this paper. Using Padman-
abhan’s prescription, we found that the surface gravity of the horizon is
constant and equals the proper acceleration of the Rindler observer. S is a
monotonic function of the radial coordinate £ and vanishes when £ equals
the Planck length. In addition, its expression is similar with the Kaul—-
Majumdar one for the black hole entropy, including logarithmic corrections
in quantum gravity scenarios.

PACS numbers: 04.60.—m, 02.40.—k, 04.90.+e

1. Introduction

The connection between gravity and thermodynamics is one of the most
surprising features of gravity. Once the geometrical meaning of gravity is
accepted, surfaces which act as one-way membranes for information will
arise, leading to some connection with entropy, interpreted as the lack of
information [1,2].

As Padmanabhan has noticed [3], in any spacetime we might have a
family of observers following a congruence of timelike curves which have no
access to part of spacetime (a horizon is formed which blocks the informa-
tions from those observers). Keeping in mind that QFT does not recognize
any nontrivial geometry of spacetime in a local inertial frame, we could use a
uniformly accelerated frame (a local Rindler frame) to study the connection
between one way membranes arising in a spacetime and the thermodynam-
ical entropy.

Another principle to which the horizon entropy is strongly related is the
Holographic Principle (|4] and references therein) which states that the num-
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ber of degrees of freedom describing the physics inside a volume — including
gravitation — is bounded by the area of the boundary which encloses the
volume. As entropy counts the microscopical degrees of freedom of a physical
system, it can be shown that [4-6]

S <

S

, (1.1)

where A is the boundary area. S equals A/4 only for a spacetime with a
horizon (black hole horizon, de Sitter cosmological horizon, Rindler horizon,
etc.).

2. The Ricci scalar splitting

The purpose of the present paper is to compute the horizon entropy for
the (Lorentzian version) of the Hawking wormhole spacetime [7], written as
(static) spherical Rindler coordinates.

2\ 2
ds? = <1 — 2—2> (—g*€* cos® Odt* + d&* + £2d2?) . (2.1)

The spacetime (2.1) may be obtained from the Hawking wormhole metric
written in Cartesian coordinates [§]

2 b2 ? v
ds*=[1-— N dat dx (2.2)

AT
by means of the coordinate transformation

z! = Esinfcoso, z? = Esinfsing,

= & cos B cosh gt 20 = £ cosfsinh gt . (2.3)
z® (e =0,1,2,3) are the Minkowski coordinates, (t,&, 6, ¢) — the spherical
Rindler coordinates, b — the wormhole’s throat radius (which will be taken
of the order of the Planck length), df2? = d6? + sin®0d¢?, g — a constant
with units of acceleration, n,, = diag(—1,1,1,1) and 2%z, = x* — (mo)z.
The spacetime (2.1) has a horizon at £ = b, which is also a null geodesic (the
hypersurface £ = b is in fact the Hawking wormhole which separates the two
causally disconnected, asymptotically flat regions, £ > b and £ < b). The
hypersurface £ = 0 from the Rindler geometry (b = 0) is no longer a horizon
here due to the conformal factor).

From now on we take into consideration only the region £ > b. The units
will be such that c= G =h =k = 1.
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Let us now use Padmanabhan’s prescription [2| to calculate the entropy
of the horizon § = 7/2, where the time-time component of the metric (2.1)
is vanishing (the hemispheres 0 < 6§ < 7/2 and 7/2 < § < 7 correspond
to the two Rindler observers which are causally disconnected). One can
show [2] that

R=%R+ KoK — (K2)* + 2V o(Ku® + a®)
= L+ 2V (Ku® +a®), (2.4)

where R is the 4-dimensional Ricci scalar, 3R — the scalar curvature of
a spacelike hypersurface X with u®*(o = 0,1,2,3) as normal, K3 is the
extrinsic curvature of X' with K = K§, a® = uf Vgu® — the corresponding
acceleration and L — the ADM Lagrangean. We integrate Eq. (2.4) over
a four-volume {2, bounded by X and by a timelike surface B, with normal
n® [2|. The induced metric on X' is hy, = g + uyuu, and the metric on
B is v, = guw — nuny. The hypersurfaces X' and B intersect on a two-
dimensional surface X’ N B on which the geometry is

TaB = GaB + UaUg — NaNg . (2.5)
We observe that the metric (2.1) can be put in the form [3]
ds? = —N?(z)dt* + fij(x)dx'da? (2.6)

where 4,7 = 1,2,3. In our case

N(z) = g¢ <1 - 2-2) cosf. (2.7)

Taking 3 to be the surface of constant time and keeping in mind that the
metric (2.1) is static, the trace K is vanishing. By integration of R/16m over
{2, the term with L will give the ADM energy.

3. The horizon entropy

Let us consider B as the surface § = 7/2, the horizon obtained from the
condition N = 0. The last term in the r.h.s. of (2.4) may be transformed in
a surface integral over B, giving the entropy of the horizon

1
S = & /aanaN\/Edgdqﬁdt, (3.1)
B



2764 H. CuLETU

where o is the determinant of the metric on the two-surface X’ N B. Since
the acceleration vector a, is spacelike, we can put ag = 0 at a given event
in a local Rindler frame [3]|. Therefore

Noz 3 b2 -1 b2

As the surface B approaches the horizon, the expression Natn, tends to
the surface gravity  of the hotizon § = 7/2. In our static spacetime (2.1)
with a horizon, the Euclidian action will be periodic in imaginary time with
the period T' = 27/g. In this case t € (0,T).

The normal vectors to the hypersurfaces X~ and B appear as

Uy = {gﬁ <1 - 2—2) cos 9,0,0,0} . (3.3)
and, respectively
Ny = [0,0,5(1 - 2—2),0)} . (3.4)
The corresponding metrics become
2 LAY 2 | 2702
ds |g:<1—£—2> (d&* + €2d2*) (3.5)
and
ds*|p = <1 - 2—2)2 (—g*€? cos? dt* + d&* + &% sin? 0dg?) (3.6)

while the geometry on the two-surface X' N B acquires the form

2\ 2
do? = (1 - %) (d€? + €2 sin? 0dp?) . (3.7)

The surface gravity x will be given by
K= Naana|9:7r/2 =\ gaﬁN,ocN,ﬁ|9:7r/2
2

b2 b2 b2 2
=g(1—- 5_2)_1 (1 + §> cos? 0 + <1 — f_2> Sinze‘g:ﬂ/g =g.

—~

3.8)
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In other words, the meaning of the constant g is just the surface gravity
of the horizon 6 = 7/2. Therefore, the expression of the entropy S will be

given by
T o2 &
S = %/dt//ﬁdg‘dgﬁ. (3.9)
0 0 0

After an integration over the imaginary time, the entropy of the horizon
0 = /2 is given by the well known expression in terms of the horizon area.
It would be interesting to find the function S(£). Keeping in mind that

\* .,
\/_:§<1—?> sin“ @, (3.10)

we have from (3.8) (with 0 = 7/2)

&2 42 b bt
S() = Z? <1+£—21n5—g> , (3.11)

where ll% = b? was introduced at the denominator. It is an easy task to show
that S(§) is a monotonic function. It vanishes at £ = b and, for £ > b, S
increases to the value 7&2/4b% = a/4b? (a represents the area of a circle of
radius £ — a part of the full horizon).

Let us compare (3.11) with the expression for a black hole entropy in-
cluding logarithmic corrections in quantum gravity (QG) scenarios [9-11]

l2
Sqa = a/4l} + alnl% +0 <EP> . (3.12)
P

Eq. (3.12) is derived by a direct microstate counting in string theory and loop
quantum gravity when the coefficient @ — which depends on the number of
field species — is negative. Writing Eq. (3.11) in the form

_a) my e _m
S() = 122 In 72 +7ln2 - (3.13)

we observe the similarity with the Kaul-Majumdar expression (3.12), with
a = —m/2 in our case.
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4. Conclusions

We applied in this paper Padmanabhan’s method to compute the entropy
of the horizon § = 7/2 for the Hawking wormhole spacetime, written in
(static) spherical Rindler coordinates. The surface gravity is constant (note
that the lapse function N depends on two variables, £ and #). In addition,
the Hawking temperature of the horizon is given by g/2m, since k = g. The
entropy is a monotonic function ; it increases from zero at & = b to m&2/4b?
at £ > b (note that &2 is just the Minkowski interval).

A comparison between our result (3.11) and the corrected Kaul-Majumdar
form of the Bekenstein—-Hawking black hole entropy leads to the conclusion
that they have similar structures, only the coefficients being different.
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