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In this study, in context of general relativity we consider Einstein,
Bergmann–Thomson, Møller and Landau–Lifshitz energy-momentum def-
initions and we compute the total energy distribution (due to matter and
fields including gravitation) of the universe based on Szekeres class I and
class II space-times. We show that Einstein and Bergmann–Thomson def-
initions of the energy-momentum complexes give the same results, while
Møller’s and Landau–Lifshitz’s energy-momentum definition does not pro-
vide same results for Szekeres class II space. The definitions of Einstein,
Bergmann–Thomson and Møller definitions of the energy-momentum com-
plexes give similar results in Szekeres class I space-time.

PACS numbers: 04.20.–q, 04.20.Cv

1. Introduction

One of the most interesting problems which remains unsolved since Ein-
stein proposal of general theory of relativity, is the energy-momentum local-
ization. After Einstein [1] obtained an expression for the energy-momentum
complexes many physicists, such as Landau and Lifshitz [2], Tolman [3],
Papapetrou [4], Weinberg [5], Qadir–Sharif [6] and Bergmann–Thomson [7]
had given different definitions for the energy-momentum complex. These
definitions were restricted to evaluate energy distribution in quasi-Cartesian
coordinates. This motivated by Møller [8] and many other, like Komar [9]
and Penrose [10], to construct coordinate independent definitions. Møller
proposed an expression which could be utilized to any coordinate systems.
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Because of this, the notion of energy-momentum prescriptions was severely
criticized for a number of reasons. Firstly, the nature of symmetric and
locally conserved object is non-tensorial one; thus its physical interpreta-
tion appeared obscure [11]. Secondly, different energy-momentum complexes
could yield different energy-momentum distributions for the same gravita-
tional background [12]. Finally, energy-momentum complexes were local
objects while it was generally believed that the suitable energy-momentum
of the gravitational field was only total, i.e. it cannot be localized [13]. There
have been several attempts to calculate energy-momentum prescriptions as-
sociated with different space-times [14, 15]. Virbhadra [16] showed that the
definitions of Einstein, Tolman and Landau and Lifshitz (LL) give the same
energy distribution for the Kerr–Newman metric. Later, Aguirregabiria
et al. [17] proved that definitions of Einstein, LL, Weinberg and Papa-
petrou give the same result for any metric of Kerr–Schild class. Later, Virb-
hadra [18] emphasized that these complexes in fact coincide for space-times
more general than the Kerr–Schild class. He also computed energy distribu-
tion for a general non-static spherically symmetric space-time of Kerr–Schild
class and found that all these definitions give the same result as given by
the Penrose quasi-local definition of energy. Vargas [19], by using teleparallel
gravity analogs of Einstein and Landau–Lifshitz energy-momentum defini-
tions found that energy is zero in Friedmann–Robertson–Walker space-times.
This result agrees with the previous works of Cooperstock–Israelit [20],
Rosen [21], Banerjee–Sen [22] who investigated the problem of the energy
in Friedmann–Robertson–Walker universe in Einstein’s theory of general
relativity. After this works, Saltı and Havare [23] considered Bergmann–
Thomson’s definition in both general relativity and teleparallel gravity for
the viscous Kasner-type metric.

The basic purpose of this paper is to obtain the total energy for Szekeres
class I and class II metrics by using the energy-momentum expression of
Einstein, Bergmann–Thomson, Møller and Landau–Lifshitz in general rel-
ativity. We will proceed according to the following scheme. In Section 2,
we give the Szekeres class I type and class II space-times and some kine-
matical quantities associated with these metrics. In Section 3, we give the
energy-momentum definitions of Bergmann–Thomson, Einstein, Møller and
Landau–Lifshitz’s in general relativity, respectively. In Section 4, we cal-
culate the total energy-momentum densities for the Szekeres space-times.
Finally, we summarize and discuss our results. Throughout this paper, the
Latin indices (i,j,. . . ) represent the vector number and the Greek (µ, ν . . .)
represent the vector components; all indices run 0 to 3. We use geometrized
units where G = 1 and c = 1.
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2. The Szekeres class I and Szekeres class II space-times

Szekeres [24] derived a remarkable set of inhomogeneous exact solutions
of Einstein’s field equations without cosmological constant. The source of
curvature of the models is an expanding, irrotational, and geodesic dust.
These solutions are divided into two classes usually denoted by I and II. The
class I solutions are usually presented in a way that is formally analogous to
the Tolman–Bondi spherically-symmetric solutions, which they generalize.
This class of solutions has primarily been used to model non-spherical col-
lapse of an inhomogeneous dust cloud [25]. The class II solutions are usually
considered as generalizations of the Kantowski–Sachs [26] and Friedmann–
Robertson–Walker (FRW) solutions and have primarily been studied as cos-
mological models [27]. Those of class II are more important as cosmological
models, because they can closely approximate, over a finite time interval,
the FRW dust models.

In this section, we introduce the Szekeres class II and Szekeres class I
metrics and then using these space-times we make some required calculations
and find some kinematical quantities.

2.1. The Szekeres class II model

The Szekeres class II space-time is defined by the line element [28]

ds2 = −dt2 + Q2dx2 + R2(dy2 + h2dz2) , (1)

where Q=Q(x,y,z,t), R=R(t) and h=h(y) are functions to be determined.
The kinematical quantities in Szekeres class II space-time [29] are given as
follows:

The expansion (θ) is

θ =
QtR + 2RtQ

RQ
. (2)

The shear scalar (σ2), and the rotation (Ω 2) of the four velocity vector
ui are determined as

σ2 =
1

3

(QtR − RtQ)2

Q2R2
, (3)

Ω
2 = 0 . (4)

The acceleration vector (u̇i) and the proper volume (U 3 =
√

−g) are
given by,

u̇i = (0, 0, 0, 0) , (5)

U3 = R2Qh , (6)
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where g is the determinant of the metric and x, y, z and t indices
describe the derivative with respect to x, y, z and t. Thus, we see
that the model given in (1) has expansion, non vanishing shear and
vanishing rotation and acceleration.

2.2. The Szekeres class I model

The Szekeres class I space-time is defined by the line element

ds2 = −dt2 + e2B(dx2 + dy2) + e2Adz2 , (7)

where A = A(x, y, z, t), B = B(x, y, z, t) are functions to be determined.
The expansion (θ) is

θ = 2Bt + At . (8)

The shear scalar (σ2), and the rotation (Ω 2) of the four velocity vector
ui are determined as

σ2 =
1

3
(At − Bt)

2 , (9)

Ω
2 = 0 . (10)

The acceleration vector (u̇i) and the proper volume (U 3 =
√

−g) are
given by,

u̇i = (0, 0, 0, 0) , (11)

U3 = e2B+A , (12)

where g is the determinant of the metric. Thus, we see that the model given
in Eq. (7) has expansion, non vanishing shear and vanishing rotation and
acceleration, like in the case of the class II space-time. When Q = R = eB

and h = eA−B, these results agree with Tomimura and Motta [29].

3. Energy-momentum in general relativity

In this section, we introduce Bergmann–Thomson, Einstein, Møller and
Landau–Lifshitz energy-momentum definitions, respectively.

3.1. Bergmann–Thomson’s energy-momentum formulation

The energy-momentum prescription of Bergmann–Thomson is given by

Ξ
µν =

1

16π
Π

µνα
,α , (13)
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where
Π

µνα = gµβV να
β (14)

with

V να
β = −V αν

β =
gβξ
√

−g

[

−g(gνξgαρ
− gαξgνρ)

]

,ρ
. (15)

Ξ 0
0 is the energy density, Ξ 0

µ are the momentum density components, and Ξ
µ
0

are the components of the energy current density. The Bergmann–Thomson
energy-momentum definition satisfies the following local conservation laws

∂Ξ µν

∂xν
= 0 (16)

in any coordinate system. The energy and momentum components are given
by

P µ =

∫ ∫ ∫

Ξ
µ0dxdydz . (17)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

Π
µ0ακαdS . (18)

κα stands for the 3-components of unit vector over an infinitesimal surface
element dS. The quantities P i for i=1,2,3 are the momentum components,
while P 0 is the energy.

3.2. Einstein’s energy-momentum formulation

The energy-momentum complex as defined by Einstein is given by

Θ
ν
µ =

1

16π
Hνα

µ,α , (19)

where

Hνα
µ =

gµβ
√

−g

[

−g(gνβgαξ
− gαβgνξ)

]

,ξ
. (20)

Θ0
0 is the energy density, Θ 0

α are the momentum density components, and
Θα

0 are the components of energy current density. The Einstein energy and
momentum density satisfies the local conservation laws

∂Θν
µ

∂xν
= 0 (21)

and energy and momentum components are given by
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P µ =

∫ ∫ ∫

Θ
0
µdxdydz . (22)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

H0α
µ ηαdS . (23)

ηα stands for the 3-components of unit vector over an infinitesimal surface
element dS. The quantities P i for i=1,2,3 are the momentum components,
while P 0 is the energy.

3.3. Møller’s energy-momentum formulation

The energy-momentum complex of Møller [30] is given by

Mν
µ =

1

8π
χνα

µ,α (24)

satisfying the local conservation laws:

∂Mν
µ

∂xν
= 0 , (25)

where the antisymmetric super-potential χνα
µ is

χνα
µ =

√

−g[gµβ,γ − gµγ,β ]gνγgαβ . (26)

The locally conserved energy-momentum complex M ν
µ contains contribu-

tions from the matter, non-gravitational fields. M 0
0 is the energy density and

M0
α are the momentum density components. The momentum four-vector of

Møller is given by

Pµ =

∫ ∫ ∫

M0
µdxdydz . (27)

After using the Gauss’s theorem, this definition transforms into

Pµ =
1

8π

∫ ∫

χνα
µ µαdS , (28)

where µα is the outward unit normal vector over the infinitesimal surface
element dS. Pi give momentum components P1, P2, P3 and P0 gives the
energy.
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3.4. Landau–Lifshitz energy-momentum formulation

Energy-momentum prescription of Landau–Lifshitz is given by

Ω
µν =

1

16π
S

µναβ
,αβ , (29)

where
Sµναβ = −g(gµνgαβ

− gµαgνβ) . (30)

Ω0
0 is the energy density, Ω 0

µ are the momentum density components, and

Ω
µ
0 are the components of energy current density. The Landau–Lifshitz

energy-momentum complex satisfies the local conservation laws

∂Ωµν

∂xν
= 0 (31)

in any coordinate system. The energy and momentum components are given
by

P µ =

∫ ∫ ∫

Ω
µ0dxdydz . (32)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

Sµα0ν
,ν ηαdS , (33)

where ηα stands for the 3-components of unit vector over an infinitesimal
surface element dS. The quantities P i for i=1,2,3 are the momentum com-
ponents, while P 0 is the energy.

4. The total energy and momentum of Szekeres universes

This section gives us the total energy of the universe based on class II
and class I metrics in theory of relativity, respectively.

4.1. Solutions in Szekeres class II model

4.1.1. Bergmann–Thomson energy-momentum

Considering the line element (1) for Eqs. (14) and (15), the required com-
ponents of Π µνα are

Π
000 = 0 , Π

002 = −2(hQy + Qhy) ,

Π
003 = −

2Qz

h
, Π

101 = −
4RhRt

Q
,

Π
202 =

2h(QtR + RtQ)

R
, Π

303 =
2(QtR + RtQ)

hR
. (34)
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Substituting this result into Eq. (13), we find that

Ξ
0
1 = −

RhRtQx

4π
, (35)

Ξ
0
2 =

R(RQthy + hRtQy + QRthy + RhQt,y)

8π
, (36)

Ξ
0
3 =

hR(QzRt + Qt,zR)

8π
, (37)

Ξ
0
0 =

1

8π

2hQyhy + h2Qyy + hQhyy + Qzz

h
, (38)

where x, y, z and t indices describe the derivative with respect to x, y, z, t.

4.1.2. Einstein energy-momentum

The required non-vanishing components of Hνα
µ are

H00
0 = 0 , H01

1 = −4QRhRt ,

H02
2 = −2Rh(QtR + RtQ) , H03

3 = −2Rh(QtR + RtQ) ,

H02
0 = −2(hQy + Qhy) , H03

0 = −
2Qz

h
. (39)

Substituting these results into Eq. (19), we get following energy and mo-
mentum densities in the form

Θ
0
1 = −

RhRtQx

4π
, (40)

Θ
0
2 =

R(RQthy + hRtQy + QRthy + RhQt,y)

8π
, (41)

Θ
0
3 =

hR(QzRt + Qt,zR)

8π
, (42)

Θ
0
0 =

1

8π

2hQyhy + h2Qyy + hQhyy + Qzz

h
. (43)

4.1.3. Møller energy-momentum

The required non-vanishing components of χνα
µ are

χ01
1 = −2R2hQt , χ02

2 = −2RQhRt , χ03
3 = −2RQhRt (44)

and if we take these results into Eq. (24), we obtain following energy and
momentum densities
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M0
1 = −

1

4

R2hQt,x

π
, (45)

M0
2 = −

1

4

RRt(hQy + Qhy)

π
, (46)

M0
3 = −

1

4

RhRtQz

π
(47)

M0
0 = 0 . (48)

4.1.4. Landau–Lifshitz energy-momentum

The energy of non-vanishing components of Sµναβ are

S1010 = −R4h2 , S2020 = −R2Q2h2 ,

S3030 = −Q2R2 , S0010 = −Q2R4h2 ,

S0022 = −Q2R4h2 , S0030 = −Q2R4h2 (49)

and if we take these results into Eq. (29), we obtain following energy and
momentum densities

Ω
0
1 =

1

8π

R4h2(QxxQ − 3Q2
x)

Q2
, (50)

Ω
0
2 = −

R2

8

(Q2
yh

2 + 4hQyhy + Qyyh
2Q + Q2h2

y + hQ2hyy)

π
, (51)

Ω
0
3 = −

R2(Q2
z + QQzz)

8π
, (52)

Ω
0
0 =

R2

8

(Q2
yh

2 + 4hQyhy + Qyyh
2Q + Q2h2

y + hQ2hyy + Q2
z + QQzz)

π
.

(53)

4.2. Solutions in Szekeres class I model

4.2.1. Bergmann–Thomson energy-momentum

Considering the line element (7) for Eqs. (14) and (15), the required
components of Π µνα are

Π
001 = −2eA(Bx + Ax) , Π

002 = −2eA(By + Ay) ,

Π
003 = −4e(2B−A)Bz , Π

101 = 2eA(Bt + At) ,

Π
202 = 2eA(Bt + At) , Π

303 = 4e(2B−A)Bt . (54)

Substituting this result into Eq. (13), we find that
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Ξ
0
1 =

1

8π

[

e(2B+A)(AxBt + AxAt + Bt,x + At,x)
]

, (55)

Ξ
0
2 =

1

8π

[

e(2B+A)(BtAy + AyAt + Bt,y + At,y)
]

, (56)

Ξ
0
3 = −

1

4π

[

e(2B+A)(BtAz − 2BzBt − Bt,z)
]

, (57)

Ξ
0
0 =

1

8π

[

eA(BxAx + A2
x + Bxx + Axx + AyBy + A2

y + Byy + Ayy)

+2e2B−A(2B2
z − BzAz + Bzz)

]

. (58)

4.2.2. Einstein energy-momentum

The required non-vanishing components of Hνα
µ are

H03
0 = −4e(2B−A)Bz , H01

1 = −2e(2B+A)(Bt + At) ,

H02
2 = −2e(2B+A)(Bt + At) , H03

3 = −4e(2B+A)Bt ,

H01
0 = −2eA(Bx + Ax) , H02

0 = −2eA(By + Ay) . (59)

Substituting these results into Eq. (19), we get following energy and mo-
mentum densities in the form

Θ
0
1 =

1

8π

[

e2B+A(2BtBx + 2BxAt + AxBt + AtAx + Bt,x + At,x)
]

,(60)

Θ
0
2 =

1

8π

[

e2B+A(2BtBy + 2ByAt + BtAy + AyAt + Bt,y + At,y)
]

, (61)

Θ
0
3 =

1

4π

[

e2B+A(AzBt + 2BzBt + Bt,z)
]

, (62)

Θ
0
0 =

1

8π

[

eA(BxAx + A2
x + Bxx + Axx + ByAy + A2

y + Byy + Ayy)

+2e(2B−A)(2B2
z − BzAz + Bzz)

]

. (63)

4.2.3. Møller energy-momentum

The required non-vanishing components of χνα
µ are

χ01
1 = −2e(2B+A)Bt , χ02

2 = −2e(2B+A)Bt , χ03
3 = −2e(2B+A)At (64)

and if we take these results into Eq. (24), we obtain following energy and
momentum densities
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M0
1 = −

1

4π

[

e(2B+A)(2BtBx + AxBt + Bt,x)
]

, (65)

M0
2 = −

1

4π

[

e(2B+A)(2BtBy + BtAy + Bt,y)
]

, (66)

M0
3 = −

1

4π

[

e(2B+A)(2BzAt + AtAz + At,z)
]

, (67)

M0
0 = 0 . (68)

4.2.4. Landau–Lifshitz energy-momentum

The energy of non-vanishing components of Sµναβ are

S1010 = −e2(B+A) , S2020 = −e2(B+A) ,

S3030 = −e4B , S0010 = −e2(2B+A) ,

S0020 = −e2(2B+A) , S0030 = −e2(2B+A) (69)

and if we take these results into Eq. (29), we obtain following energy and
momentum densities

Ω
0
1 = −

1

8π

[

e2(B+A)(Axx + 2A2
x)

]

, (70)

Ω
0
2 = −

1

8π

[

e2(B+A)(Ayy + 2A2
y)

]

, (71)

Ω
0
3 = −

1

8π

[

e4B(8B2
z − 8BzAz + 2Bzz + 2A2

z − Azz)
]

, (72)

Ω
0
0 =

1

8π

[

e2(B+A)(Bxx + 2B2
x + 4BxAx + Axx + 2A2

x + By + 2B2
y

+4ByAy + Ayy + 2A2
y) + e4B(8B2

z + 2Bzz)
]

. (73)

5. Summary and discussion

The subject of energy-momentum localization in the general theory of
relativity has been very exciting and interesting; however it has been associ-
ated with some debate. Recently, some researchers have been interested in
studying the energy content of the universe in various models.

The object of present paper is to show that it is possible to solve the
problem of localization of energy in general relativity by using the energy
and momentum complexes. In this paper, we get the energy distributions of
the inhomogeneous and anisotropic Szekeres cosmological models, we have
considered four different energy and momentum complexes in general rel-
ativity: e.g. Bergmann–Thomson, Einstein, Møller and Landau–Lifshitz.
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We have found that:

(I) The total energy and momentum (due to matter plus field) distribu-
tion in Einstein and Bergmann–Thomson formulations are the same
in Szekeres class II type space-time. Nevertheless, the Møller and
Landau–Lifshitz energy-momentum complexes disagree with Einstein
and Bergmann–Thomson energy-momentum complexes, but different
definitions of this formulation agree with each other.

(II) The total energy distribution in Einstein and Bergmann–Thomson for-
mulations (Θ0

0 = Ξ 0
0 ) are exactly same in Szekeres class I space-time

and there is a proportion with momentum complexes with Einstein,
Bergmann–Thomson and Møller distributions in Szekeres class I type
space-time while disagree with Landau–Lifshitz energy-momentum def-
inition.

(III) Møller energy distributions are identically zero in inhomogeneous and
anisotropic Szekeres space-time.

(IV) The results advocate the importance of energy-momentum complexes.

The authors would like to thank Marek Kutschera and referees for valu-
able corrections and suggestions.
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