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A new simple nonlocal generalization of the Frenkel–Kontorova model
of dislocation in solid body as a type of the nonlocal sine-Gordon equa-
tion with the generalized interaction term is suggested. Its limit cases,
symmetries and exact analytical solutions are obtained. This type of the
nonlocal sine-Gordon equation is shown to possess one-solitonic solutions
which are a nonlocal deformation of the corresponding classical solutions
of the sine-Gordon equation. Exact analytical solutions of this equation
and its Lagrangian integrability and geometrical approach are considered.
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1. Introduction

It seems reasonable, of all the possible nonlinear evolution equations, to
pick up rather “nice” ones to be analyzed in detail. This requirement of
“niceness” is met by the so-called integrable nonlinear equations in which
additional symmetry allows application of the newly coined methods, such
as inverse scattering [1], micro-differential operators [2] and algebraic geom-
etry [3].

The sine-Gordon equation (SGE)

φtt − aφxx = b sin (λφ) , (1)

is one of the basic nonlinear equations both in mathematics and modern
physics. In mathematics it appears as an equation for the surfaces of con-
stant negative curvature (a = λ = −b = 1) and was already known to
F. Minding and E. Beltrami. Its physical applications are related with the
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description of dislocations in solid state physics [4], motion of Bloch mag-
netic walls in magnetic crystals [5], magnetic flux propagation in supercon-
ductors [6] and so on [7]. In these applications, the SGE gives the simplest
nonlinear description of the phenomena under consideration. More adequate
models correspond to SGE (1) nonlocal generalizations.

All known nonlocal generalizations of SGE could be divided into two
groups: (1) where the kinetic or (2) the dynamic term is under nonlocal
generalization. To the first group belong various generalizations where the
local operator ∂xxφ is replaced by the integro-differential operator L[φ] [8]:

φtt − L[φ] = b sin (λφ) . (2)

In particular, to the family of the evolution Eq. (2) belong various interest-
ing examples of nonlocal Josephson electrodynamics. These examples were
introduced in [9–14], where one of the basic model equations is

φtt − Ĥφx + sinφ = 0 , (3)

where Ĥ is the Hilbert transform (see Appendix). The evolution Eq. (3)
was an object of study in a series of papers [11, 12, 15–18].

To the first group belongs also the nonlocal generalization of SGE pro-
posed in [19]:

φtt − Dα
xφ + sinφ = 0 , (4)

where Dα
x is the Riesz partial fractional derivative (see Appendix). For this

equation, a family of breather-like solutions (i.e. solutions that are localized
in space and periodic in time) has been found numerically, and it has been
shown that these entities are quite robust and can be generated in the course
of evolution of initial states of a rather different shape.

Another type of nonlocal generalization of SGE was proposed in [20,21]:

φxx − φtt = 2 cos

[

φ(x, t)

2

]
∫

f(x − y) sin

[

φ(y, t)

2

]

dy , (5)

where f(x) = 1/(x4 + σ4) or Gauss-type. It is shown that small amplitude
solitons of the nonlocal SGE can create coupled states. The effect is due to
a change of the dispersion originated by nonlocal nonlinearity. The evolution
Eq. (5) in the general case could be generalized in the form

φxx − φtt = F [φ] , (6)

where F [φ] is a nonlinear and nonlocal function of φ(x, t).
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In the current paper, a new type of nonlocal generalization of the Fren-
kel–Kontorova dislocation model is suggested. The corresponding evolution
equation is the nonlocal SGE. Its limit cases, symmetries and exact ana-
lytical solutions are obtained. This type of the nonlocal SGE equation is
shown to possess one-solitonic solutions which are a nonlocal deformation of
the corresponding classical solutions of the SGE equation. Exact analytical
solutions of this equation and its Lagrangian integrability and geometrical
approach are considered.

2. Nonlocal generalization of the Frenkel–Kontorova

dislocation model

Let us consider a one-dimensional lattice with atoms in the integer num-
bers of the real x-axis. The influence of the underlying layer of atoms is
approximated by the potential energy

U(x) =
af0

2π

[

1 − cos

(

2πx

a

)]

, (7)

where x is the coordinate, a is the lattice constant, and f0 is a constant of
the shape of the potential. Let the displacement of the n-th atom from the
position of equilibrium be

yn(t) = xn(t) − na , (8)

where xn(t) is the coordinate of the n-th atom (see Fig. 1). The influence
of the neighboring atoms in the same layer is usually expressed by elastic
forces: k(xn+1 − xn) − k(xn − xn−1), where k is the coefficient of elasticity.
Taking into account expressions (7) and (8), the equation of motion of the
n-th atom of the mass m is

m(yn)tt = −f0 sin

(

2πyn

a

)

+ k(yn+1 − 2yn + yn−1) . (9)

Fig. 1. Schematic picture of dislocation. Two layers of the crystal lattice. The

position of the atoms of the bottom layer is marked by circles ( o ). The influence

on the atoms of the upper layer ( • ) is reduced to the effect of potential energy (7).

The interaction of atoms of the upper layer could be as usual described by spring

interaction. Arrays show the corresponding displacements.
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If the corresponding limits exist and are finite,

lim
a→0

am

2πf0

= t20 , lim
a→0

a3k

2πf0

= x2
0 , (10)

we may introduce dimensionless space and time variables

x′ =
x

x0

, t′ =
t

t0
(11)

and derivatives of the function ϕ(x′, t):

lim
a→0

(

2πyn

a

)

= lim
a→0

(

2πyn/x0

a/x0

)

= ϕx′(x′, t) , (12)

lim
a→0

x2
0

2π

a3

(

yn+1 − 2yn + yn−1

)

= ϕx′x′(x′, t) . (13)

In the text below, the prime mark (′) is omitted.
This allows us to express the equation of motion (9) in a dimensionless

form:
(ϕx)tt − (ϕx)xx + sinϕx = 0 . (14)

After substitution ϕx ≡ φ we arrive to the classical SGE (1).
Let us assume that atoms in the one-dimensional lattice sites undergo

a chaotic but in the general case non-Gaussian perturbation. In this case the
limit lim

a→0
(2πyn/a) could not exist, but there exists the limit lim

a→0
(2πyn/aα),

where 0 < α ≤ 1. Then, instead of (12) we may obtain

lim
a→0

(

xα−1
0

2πyn

aα

)

= Dα
x φ(x, t) , (15)

where Dα
x is a fractional derivative of the order α. From the geometrical

point of view, the existence of the limit (15) means that at a small distance
the geometry of the displacement looks like

∆y ∼ C(∆x)α , (16)

and the coefficient C is the above-mentioned value of the fractional deriva-
tive. This property of the perturbation function yn(t) and the corresponding
φ(x, t) is closely related to the property of the scale invariance,

A(x) → λ∆A(λx) , (17)

where ∆ is the index of the scale invariant function A(x), or in other words,
to the property of fractal sets [22].
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Thus, in the case of a non-integer dimension of the real interval x ∈ D of
the axis x, D ∈ R, we have to use the limit (15), and the equation of motion
in this case takes the form

(Dα
xφ)tt − (Dα

xφ)xx + sin (Dα
xφ) = 0 , (18)

or, using the properties of the fractional derivative (see Appendix), we obtain

Dα
x

[

φtt − φxx + D−α
x sin (Dα

xφ)
]

= 0 . (19)

Among the all possible solutions of this equation let us consider a set of
functions φ(x, t) for which

φtt − φxx + D−α
x sin (Dα

xφ) = 0 , (20)

and the boundary condition obeys the relation Dα
xφ(x, t0) = 0. In this case,

the inverse operator D−α
x ≡ Iα

x exists and for α 6= 1 equals

RD−α
x ≡ RIα

x = −2 cos
(απ

2

)

(

Iα
+ + Iα

−

)

. (21)

Note here that according to the semigroup character of the fractional
derivatives Dα

xD−α
x = 1, but

D−α
x Dα

xf(x) = f(x) − Dα−1
x f(x)

(x − a)α−1

Γ (α)
, (22)

where a is the left border of the interval x ∈ D ⊂ R.
Thus, we may consider the evolution equation (20) as a nonlocal defor-

mation of the classical Frenkel–Kontorova model, which coincides with the
SGE. The next problem is analysis of the evolution equation (20).

3. Symmetries, solutions, Lagrangian, etc.

Let us consider a special type of the nonlocal SGE (NSGE):

φtt − aφxx = bD−α
x sin (λDα

xφ) , (23)

where a, b and λ are constants, φ = φ(x, t) ∈ C2(D) ⊂ R, x ∈ Ω ⊂ R,
dim Ω = α(0 < α ≤ 1), t ∈ R, (x, t) ∈ D = Ω × R, dim D = 1 + α, and
Dα

x means a space fractional Riesz derivative of the order α (see Appendix).
This equation is a simple generalization of the above obtained evolution
Eq. (20). In our classification, its belongs to the second group of the possible
nonlocal generalizations of SGE (6), where the term of potential interaction
is modified.



2938 P. Miškinis

At the first sight NSGE (23) looks very complicated, but actually it is
an equivalent transformation of the interaction term. Indeed, in the case of
linear dependence this term does not change.

In the case of small values of the parameter α, the infinitesimal form of
Eq. (23) is as follows:

φtt − aφxx = b sinλφ + αL[φ] , (24)

where L[φ] is a local perturbation of the classical SGE, when at α → 0 the
NSGE turns into the ordinary SGE (1).

In the case of small amplitudes |λDα
xφ| � 1, the NSGE turns into the

linear Klein–Gordon equation with the “mass” term λbφ.
If φ(x, t) is a solution of the SGE, then the function

φ1(x, t) =
2πn

λ
± φ(C1 ± x,C2 ± t) , n = 0,±1,±2, . . . , (25)

where C1, C2 are arbitrary constants, is also an exact solution of SGE. The
signs in expression (25) could be chosen arbitrarily. Unfortunately, this
does not hold for NSGE solutions, but would be useful for generating new
solutions of NSGE by the known solution of SGE.

3.1. The Lagrangian

It could be verified that the NSGE (23) has the following Lagrangian
form:

L =

+∞
∫

−∞

{

1

2

[

(Dα
xφt)

2 − (D1+α
x φ)2

]

+
b

λ
[1 − cos (λDα

xφ))]

}

dx . (26)

Thus, the equation of motion (23) could be derived by using the modified
Noether theorem. For instance, the energy-momentum tensor Tik in the
metric ηik (xi = (x, t) ⊂ D; i, k = 0, 1)

Tik = (Dα
xiφ)(Dα

xlφ)ηlk − ηikL , (27)

where L is the Lagrangian density in expression (26).
The existence of the energy-momentum tensor Tik (27) and equation of

motion (7) means the vanishing of the divergence of tensor T k
i in the whole

area D
∂T k

i

∂xk
= 0 , (28)
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and the existence of the related conserved quantities. Then, for instance,
the condition (12) means the existence of conservation of momentum Pi:

Pi = λ

+∞
∫

∞

T 0
i dx

∣

∣

∣

t=const.
. (29)

Indeed, for the field functions φ(x) ∼ |x|−(1+ε) for x → ±∞ from the condi-
tion (28) and Stockes theorem it follows that

∫

C

T k
i dlk = 0 , (30)

where C is a rectangle with the generating lines x0 = x0
1 and x0 = t0. Thus,

Pi(t1) =

+∞
∫

−∞

T k
i dSk

∣

∣

∣t=t1
=

+∞
∫

−∞

T k
i dSk

∣

∣

∣t=t1
= Pi(t2) . (31)

If the variable x in the general case corresponds to a generalized coordinate
(e.g., an angle), the other conserved quantity in the case of symmetric T ik

is the angular momentum M ik:

M ik =

∫

(xi dP k − xk dP i) . (32)

Indeed, this is the case when the divergence of the density of M ik vanishes.
Note here that in the case of one space variable the angular momentum has
only one nonzero component M 01. In the general case,

∂

∂xl

(

xiT kl − xkT il
)

= T ik − T ik = 0 . (33)

Thus, in the nonlocal case of our NSGE we may introduce the corre-
sponding nonlocal generalizations of the classical conserved quantities.

3.2. The travelling wave solution

The NSGE has the travelling wave solution — a nonlocal generalization
of one-solitonic solution.

(a) Let bλ(µ2 − ak2) > 0, then

φ(x, t) =
4

λ
D−α

x arctg

{

exp

[

±bλ(kx + µt + θ0)
√

bλ(µ2 − ak2)

]}

, (34)

where k, µ, θ0 are arbitrary constants.
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(b) Let bλ(µ2 − ak2) < 0, then

φ(x, t) =
4

λ
D−α

x arctg

{

exp

[

±bλ(kx + µt + θ0)
√

bλ(ak2 − µ2)

]}

, (35)

where k, µ, θ0, like above, are arbitrary constants. Thus, the influence of
nonlocality leads to the space shape deformation of the solution.

4. Integrability

The classical SGE belongs to the family of integrable evolutionary equa-
tions. Is it possible to proof the same for the NSGE?

Let us consider the SO(2, 1) linear integrable system,

Φt = UΦ , Φx = V Φ , (36)

where U and V take values in the Lie algebra so(2, 1). This means that U
and V may be of the following two types:

(i) : U =





0 C B
−C 0 A
B A 0



 , V =





0 F E
−F 0 D
E D 0



 , (37)

(ii) : U =





0 C B
C 0 A
B −A 0



 , V =





0 F E
F 0 D
E −D 0



 , (38)

where the coefficients A,B,C,D,E and F are suitable functions of φ and
their (non)local derivatives.

For the case (i), the integrable condition for system (36) in the case of
local functions and their derivatives is the Gauss equation of the imbedding
of the pseudo-sphere S1,1 ⊂ R

2,1, and for the case (ii) it is the Gauss equation
of the imbedding of the hyperplane H2 ⊂ R

2,1. Since the SGE corresponds
to the case of H2 ⊂ R

2,1, let us consider the case (ii).
Let l,m, n be an orthonormal frame of R

2,1, and −l2 = m2 = n2 = 1.
The condition l2 = −1 is the equation for H2 ⊂ R

2,1.
As follows from the linear system (36), the integrability condition is

Ux − Vt + [U, V ] = 0 . (39)

For the case (ii) it can be written in the following form:
(

Et − Bx

CE − BF
B +

Ft − Cx

CE − BF
C

)

x

−
(

Et − Bx

CE − BF
E +

Ft − Cx

CE − BF
F

)

t

+ CE − BF = 0 . (40)
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The nonlinear partial differential equation which admits an SO(2, 1) lin-
ear integrable system (CE − BF 6= 0) is (40). Moreover, Eq. (40) is the
Gauss equation for H2 ⊂ R

2,1, when B,C,E, F are arbitrary functions of
φ and their local derivatives. The basic difference between the local and
nonlocal cases is dependence of the coefficients A,B,C,D,E and F on the
possible nonlocal derivatives.

Let B = F = 0, and C =
√

λb cos (λDα
xφ/2), E =

√
λb sin (λDα

xφ/2).
From Eq. (40) we get the NSGE:

φtt − φxx = bD−α
x sin (λDα

xφ) . (41)

Thus, the NSGE belongs to the family of integrable nonlinear and non-
local evolution equations.

5. The geometrical approach

The classical SGE describes the surface of a constant negative curvature
imbedded in D-dimensional space. Regarding the Tschebyscheff coordinates,
the first and second fundamental forms of the surface are

I = ds2 = cos2 φ

2
dt2 + sin2 φ

2
dx2 , (42)

II = −d~r · d~n = cos
φ

2
sin

φ

2
(dt2 − dx2) . (43)

It is easy to verify that the Gauss curvature K of such surface is

K =
detQ

detG
=

b11b22 − b2
12

g11g22 − g2
12

= −1 , (44)

where Q and G are matrices of the second and first fundamental forms in
expressions (42) and (43). The mean curvature H = Sp (G−1Q):

H =
g22b11 − 2g12b12 + g11b22

g11g22 − g2
12

= −2 ctg φ . (45)

The quantities K and H (44) and (45) express the geometrical contents of
the SGE.

The classical way to derive the SGE is the substitution of the Christoffel
connection coefficients Γ k

ij, which are determined by the coefficients of the
first fundamental form gij ,

Γ k
ij =

1

2
gkl

(

∂gil

∂ξj
+

∂gjl

∂ξi
− ∂gij

∂ξl

)

, (46)
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into the Gauss equation:

∂Γ l
ij

∂ξk
− ∂Γ l

ik

∂ξj
+ Γ s

ijΓ
l

ks − Γ s
ikΓ

l
js = bijb

l
k − bikb

l
j , (47)

where ξi = (t, x).
Here we can consider one simplification. In the case of the first funda-

mental form ds2 = A2dt2 + B2dx2, the Gauss curvature could be obtained
from the expression (see e.g. [23])

K = − 1

AB

[(

At

B

)

t

+

(

Bx

A

)

x

]

. (48)

We can see, that the substitution of A = cos φ/2 and B = sinφ/2 into (42)
leads to the classical SGE:

φtt − φxx = −K sinφ . (49)

In the case of the nonlocal value of the coefficients, i.e. in the case when
there exists the fractional derivative Dα

x and

A = cos(Dα
xφ/2) , B = sin(Dα

xφ/2) , (50)

by substituting (50) into (48) we obtain the nonlocal generalization of the
SGE:

φtt − φxx = −KD−α
x sin(Dα

xφ) . (51)

Together with the coefficients of the second fundamental form,

b11 = −b22 = cos(Dα
xφ/2) sin(Dα

xφ/2) , (52)

according to Eq. (44), we can obtain the value of the Gauss curvature
K = −1.

Thus, for the first and second fundamental forms,

I = cos2
(

Dα
xφ

2

)

dt2 + sin2

(

Dα
xφ

2

)

dx2 , (53)

II = cos

(

Dα
xφ

2

)

sin

(

Dα
xφ

2

)

(dt2 − dx2) , (54)

the surface of the constant negative curvature K = −1 imbedded in (1+α)-
dimensional space obeys the NSGE:

φtt − φxx = D−α
x sin(Dα

xφ) . (55)
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6. Conclusions

Thus, the NSGE, like the ordinary SGE, has a Lagrangian form (26)
and one-solitonic solutions (34), (35). Despite the nonlocal nature of the
interaction term in the evolution equation, this model possesses nonlocal
deformations of localized solutions.

The asymptotic form has slowly falling tails φ(x) ∼ xα, which converge
to zero at α < 0, as follows from explicit expressions of the solutions. At the
same time the total value of the momenta I[φ] =

∫ +∞
−∞ φ(x, 0) dx diverges for

any α > −1. This means a nonlocal distribution of the momenta, energy
and related quantities.

From the asymptotic and infinitesimal form of NSGE (23) follow the
corresponding dispersion relations,

ω2 − ak2 = λb and ω2 − ak2 = W (k) , (56)

where W (k) corresponds to the Fourier transform for the linearized part of
the b sinλφ + αL[φ] according to Eq. (24) and which are the Klein–Gordon
and SGE modified dispersion relations.

The variety of the physical origination of SGE (1) allows us to apply the
obtained solutions not only to dislocation evolution in the modified Frenkel–
Kontorova model [1], but also to the Josephson effect [6-11], magnetic crys-
tals [2], semiconductors [3], etc. In the case of particle physics, worth noting
is the interesting idea of mass generation possibility for the classical SGE in
the case of |λDα

xφ| � 1.
Note here one important property. The continuation of the parameter

α ∈ [0; 2] does not mean a continuous transition of one evolution equation
to another. Let us have an evolution equation in the form

φtt − aφxx = Nα[φ] , (57)

where Nα[φ] means the nonlocal operator on φ(x, t), and α is the parame-
ter of nonlocality. The transformation of the operator Nα[φ] for α ∈ [0; 2]
induces transformation of the automorphism groups G0 and G2 (group sym-
metries of Eq. (57) for α = 0 and α = 2) for the corresponding local evolution
equations:

N0[φ]
α−−−−→ Dα α−−−−→ N2[φ]

Aut





y





y





yAut

G0
α−−−−→ T α α−−−−→ G2

where, in the general case, the operator of the fractional derivative Dα in-
duces an action on the group of translation operators T α.
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In other words, the continuous deformation of the evolution equation by
the nonlocal parameter α related with the space fractional derivative Dα

x is
not continuous in the topological sense, i.e. this continuous deformation is
not a diffeomorphysms in the group space of symmetries of the corresponding
equation induced by the translation operator T α.

This fact, which is a great drawback from the point of view of math-
ematics, but an advantage in phase transitions, induces the idea to apply
fractional calculus in phase transition theory. Here we will have not only the
asymptotic values of the symmetry groups like G0 and G2 as in the above
diagram, but also a detailed kinetic description of all intermediate states
0 < α < 2.

At the microscopic level, the fractional character of the space derivative
Dα

x is the result of the random motion of individual atoms. In the simplest
usual diffusion-like model we have to use Laplacian operators ∂xφ to model
the atom motion where the key assumption is that the random motion is
a stochastic Gaussian process.

The origin of non-Gaussian motion can be traced back to the existence
of long-range correlations in the dynamics, or the presence of anomalously
large particle displacements described by broad probability distributions.

Qualitatively, in the Frenkel–Kontorova model we have the perturbed
wave motion, but in the fractional case these perturbations have a nonlocal
nature. The influence of such nonlocal perturbations leads to the long-range
correlations or the presence of anomalously large particle displacements in
the dynamics of atoms.

Such a specific motion of atoms is the reason not only for the dynamics
of defects in the solid body. Recently, a growing number of works have
shown the existence of anomalous diffusion processes for which the mean
square displacement 〈[x − 〈x〉]〉 ∼ tγ grows faster (γ > 1), in the case of
superdiffusion, or slower (γ < 1), in the case of subdiffusion, than in the
Gaussian diffusion process [27].

Accordingly, an important open problem is to understand the dynam-
ics of such diffusion systems when the assumption of Gaussian diffusion
fails. This problem has a particular relevance to plasma physics, pertur-
bative transport experiments, in numerical simulation of three-dimensional
turbulence, and problems of solid body physics [27].
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Appendix A

To give an explicit expression for the Riesz pseudo-differential operator,

we first introduce the Weyl fractional integrals Iβ
± of the order β > 0 [24,25]:

Iβ
±φ(x) =















1
Γ (β)

x
∫

−∞
(x − ξ)β−1φ(ξ) dξ ,

1
Γ (β)

+∞
∫

x
(ξ − x)β−1φ(ξ) dξ .

(A.1)

Then the Weyl fractional derivatives could be introduced by the relations

Dα
±φ(x) =







±( d
dxI1−α

± )φ(ξ) , 0 < α < 1 ,

( d2

dx2 I2−α
± )φ(x) , 1 < α < 2 ,

(A.2)

where Iα
± denotes the Weyl fractional integrals of the order α > 0. When

α = 0, the Weyl fractional derivative degenerates into the identity operator

D0
±φ(x) = Iφ(x) = φ(x) . (A.3)

For the continuity of Dα
±φ(x) with respect to α,

D1
± = ± d

dx
, D2

± =
d2

dx2
. (A.4)

For an arbitrary α we have the definition

Dα
±φ(x) =















1
Γ [{α}]

d[α]

dx[α]

x
∫

−∞

φ(t) dt

(x−t)1+{α} ,

−1

Γ [{α}]

d[α]

dx[α]

+∞
∫

x

φ(t) dt

(t−x)1+{α} ,

(A.5)

where {α} and [α] are the fractional and integer parts of α > 0.
The Riesz fractional derivative, denoted sometimes as ∂α/∂|x|α, is de-

fined as

RDα
xφ(x) =







− Dα

++Dα

−

2 cos (απ/2) φ(x) , α 6= 1 ,
(

d
dxĤ

)

φ(x) , α = 1 ,
(A.6)

where Ĥ is the Hilbert transformation

Ĥφ(x) = v.p.
1

π

∞
∫

−∞

φ(ξ)

x − ξ
dξ , (A.7)

and the integral is understood in the sense of the Cauchy principal value.
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An important property of the Riesz fractional derivative RDα is that it
is a Fourier multiplier operator with the symbol |k|α. For some application
of the fractional calculus in the case of nonlinear and nonlocal integrable
models see, e.g., [26].
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