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In this paper a real option approach for the valuation of real assets is
presented. Two continuous time models used for valuation are described:
geometric Brownian motion model and interest rate model. The valuation
for electricity spread option under Vasicek interest model is placed and the
formulas for parameter estimators are calculated. The theoretical part is
confronted with real data from electricity market.
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1. Introduction

The liberalization of electricity market caused that modeling on this
market became very important skill. It helps us to minimize loss and hedge
our position. It is a very interesting fact that spread option could be used
for valuation of some real assets as power plants or transmission lines. But
before that we need to know the spread option price formula. Very popular
model used for option valuation is the geometric Brownian motion model but
it is not very efficient. In the 2005 the idea of modeling domestic electric-
ity market using interest rate model was introduced by Hinz, Grafenstein,
Verschue and Wilhelm [1]. They valuated European call option written on
power forward contract under Heath Jarrow Morton model and, in this way,
created very interesting class of models.

The aim of my work is the valuation and calibration of electricity spread
option under interest rate model applied for electricity market. I start with
assumption of Vasicek model and using martingale methodology [2] valu-
ate spread option. Using the maximum likelihood function methodology
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I estimate model parameters. I compare constructed model with geometric
Brownian motion model by applying both models to real option valuation.
I make simulations to show the difference between two discussed models.

My paper is organized in the following way. At the beginning (Sec. 2)
I describe what does it mean that we bought a spread option, next (Sec. 3) I
introduce the reader into real options world. In Sec. 4, I describe valuation
methodology for spread option under interest rate model and present also
option price formula for geometric Brownian motion model. The calibration
methods for both models are described in Sec. 5. At the end, in Sec. 6, all
theoretical deliberation are confronted with real data and some simulation
results are presented.

2. Electricity spread options

In this section two interesting cross commodity derivatives on electricity
market are described. The first one is the spark spread option, which is based
on fact that some power plants convert gas into electricity. The underlying
instrument is the difference between the gas and electricity prices (the spark
spread). The basic parameter connected with this kind of instrument is the
heat rate, the ratio which describes the amount of gas required to generate
1MWh of electricity. The definition of such an instrument has a form [3,4]:
An European spark spread call option written on fuel F , at fixed swap ratio
K, gives its holder the right, but not the obligation to pay K times the unit
price of fuel F at the options maturity T and receive the price of one unit
of electricity.

It is easy to imagine such kind of option which better fits the Polish
electricity market. We should assume that the underlying instrument is the
difference between the carbon and electricity prices. But in this time there
is no possibility of valuation of such an option because we do not have the
representative carbon price. Generally, if we assume that PE and PF are,
respectively, future price of 1MWh of electricity and the future price of the
unit of fuel and K is the swap ratio than we could describe the payoff of the
European electricity–fuel spread call option as

CF(PE, PF, T ) = max [PE(T ) − KPF(T ), 0] ,

and the payoff of the European electricity–fuel spread put option has the
form

PF(PE, PF, T ) = max [KPF(T ) − PE(T ), 0] .

The second derivative is the locational spread option. It is based on
the fact that transmission of power from one location to another is a very
popular transaction. It is normal, for transmission system, that the power
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is moved from the place of lower price to the place of higher price and this
is why the transaction is profitable. The whole transaction depends on the
difference between the electricity prices and also on delivery costs and for
hedging we could use options. This kind of instrument could be defined in
following way [3]: An European call option on the locational spread between
the location one and location two, with maturity T , gives its holder the right
but not the obligation to pay the price of one unit of electricity at location
one at time T and receive the price of K units of electricity at location two.
Assume that P1 and P2 are the electricity prices at the first location and
second location, respectively. The payoff of the European locational spread
call option is given by

CL(P1, P2, T ) = max [P1(T ) − KP2(T ), 0] .

The put option is defined similar and the payoff of the European electricity–
fuel spread put option has the form

PL(P1, P2, T ) = max [KP2(T ) − P1(T ), 0] .

3. Real options

Suppose that for describing the commodity we use three qualities (G, t, L):
G — the nature of good, t — time when it is available, L — location where
it is available. We could define [5] a real option as technology to physically
convert one or more input commodities (G, t, L) into an output commodity
(G′, t′, L′). For example, most of power plants are real option because they
give us the right to convert fuel into electricity. The transmission line is also
real option. It gives us the right to change the electricity in one location
into electricity in second location. The works of Deng, Johnson and So-
gomonian [3,6] contain two formulas defining how to valuate generation and
transmission assets. If we define that uF(t) is a one unit of the time-t right
to use generation asset we could say that it is the value of just maturing,
time-t call option on the spread between electricity and fuel prices CF(t) and
the one unit value of capacity of power plant using some fuel F is given by

VF =

T
∫

0

uF(t)dt =

T
∫

0

CF(t)dt ,

where T is the length of power plant life.
Similarly if we define that uAB

L (t) is a one unit of the time-t right to
convert one unit of electricity in location A into one unit of electricity in
location B we could say that it is the value of just maturing, time-t call
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option on the spread between electricity prices in location A and B CAB
L (t).

The one unit value of such transmission asset is given by

VL =

T
∫

0

uAB
L (t)dt +

T
∫

0

uBA
L (t)dt =

T
∫

0

CAB
L (t)dt +

T
∫

0

CBA
L (t)dt ,

where T is the length of transmission network life.

4. Valuation methods

In this section I present the widely known geometric Brownian motion
model and valuate the call spread option for the new, interest rate model
using martingale methodology. All calculations are described below.

4.1. Geometric Brownian motion model

Suppose that the future prices of commodity are described by following
stochastic differential equations

dP1(t, T ) = µ1P1(t, T )dt + σ1P1(t, T )dWt,1 ,

dP2(t, T ) = µ2P2(t, T )dt + σ2P2(t, T )dWt,2 ,

where Wt,1 = ρWt,2 +
√

1 − ρ2W
′

t,2 and Wt,2, W
′

t,2 are i.i.d. Brownian mo-
tions. It is known fact [5], that the price of the spread call option with swap
ratio K and time to maturity T , written on futures contract with maturity
U < T is given by

C1(t) = e−r(T−t) [P1(t, U)Φ(d+(t)) − KP2(t, U)Φ(d−(t))] ,

where

d±(t) =
ln P1(t,U)

KP2(t,U) ±
σ2(T−t)

2

σ
√

T − t
,

and
σ2 = σ2

1 − 2σ1ρσ2 + σ2
2 .

4.2. Interest rate model

For domestic currency, for example MWh, we denote two processes:
p1(t, T ), p2(t, T ) which are the future prices of one unit of commodity. The
interest rate functions for such processes are, respectively:

drt,1 = (a1 − b1rt,1)dt + σ1dWt,1 ,
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and
drt,2 = (a2 − b2rt,2)dt + σ2dWt,2 ,

where Wt,1 = ρWt,2 +
√

1 − ρ2W
′

t,2 and Wt,2, W
′

t,2 are i.i.d. Brownian mo-
tions. We assume that there exist the savings security Nt (for example in
USD), with constant interest rate r, for which

P (t, T ) =
p(t, T )

e−rtNt

is the USD price of future delivery of 1 unit of commodity. We know [1]
that there exist a martingale measure P for which the discounted processes
p1(t, T )/Nt, p2(t, T )/Nt are martingales. We have

C2(0) =
N0EP

(

(p1(T,U) − Kp2(T,U))+N−1
T |F0

)

e−r0N0
.

We define the new discounting processes for i = 1, 2 as

dBt,i = Bt,irt,idt ,

where B0,i = 1. If we change the measure from P to P1

dP

dP1
=

NT B0,1

N0BT,1

we know that processes p̃1(t, T ) = p1(t, T )/Bt,1, p̃2(t, T ) = p2(t, T )/Bt,1 are
P1-martingales. From interest rate theory we obtain

dp̃1(t, T ) = p̃1(t, T )n1(t, T )dWt,1,

where
n1(t, T ) = −σ1

b1

(

1 − e−b1(T−t)
)

. (1)

If we change the measure again from P1 to P2

dP1

dP2
=

BT,1B0,2

B0,1BT,2

we know that p̂2(t, T ) = p2(t, T )/Bt,2 and p̂1(t, T ) = p1(t, T )/Bt,2 =
p̃1(t, T )Bt,1/Bt,2 are P2-martingales and similar to the earlier situation, we
have

dp̂2(t, T ) = p̂2(t, T )n2(t, T ) dWt,2 , (2)
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where
n2(t, T ) = −σ2

b2

(

1 − e−b2(T−t)
)

. (3)

After simple calculations we also have

dp̂1(t, T ) = p̂1(t, T )n1(t, T ) dW̃t,1, (4)

where

W̃t,1 = ρWt,2 +
√

1 − ρ2W̃
′

t,2 ,

W̃
′

t,2 = W
′

t,2 +
rt,1 − rt,2

n1(t, T )
√

1 − ρ2
t .

We also assume that
dN̂t = N̂tvdVt , (5)

where Vt = ρ1Wt,2 +
√

1 − ρ2
1W

′′

t,2, and Wt,2, W
′

t,2 , W
′′

t,2 are independent
Wiener processes. For discounted processes following equation is true

Pi(t, T ) =
pi(t, T )

e−rtNt

=
p̂i(t, T )

e−rtN̂t

. (6)

Having the necessary stochastic differential equations we could price the
option. We change the measure from P2 to Q in the following way

dP2

dQ
=

BT,2p2(0, U)

B0,2p2(T,U)
.

Process X(t, T ) = p1(t, T )/p2(t, T ) = p̂1(t, T )/p̂2(t, T ) is Q-martingale.
From Itô Lemma we know that

dX(t, T ) = X(t, T )(n1(t, T )dŴt,1 − n2(t, T )dWt,2) ,

where Ŵt,1 =ρWt,2 +
√

1 − ρ2Ŵt,2 and Ŵt,2 = W̃
′

t,2 +
n2

2
(t,T )−n2(t,T )ρn1(t,T )

n1(t,T )
√

1−ρ2
t.

Now, for calculation of the option price, we could use the Black–Scholes
formula

C2(0) =
p2(0, U)er0

N0
EQ

(

(

p1(T,U)

p2(T,U)
− K

)+ ∣
∣

∣
F0

)

= P2(0, U)EQ

(

(

P2(T,U)

P1(T,U)
− K

)+ ∣
∣

∣
F0

)

= P2(0, U)EQ((X(T,U) − K)+|F0)

= P2(0, U)(X(0, U)Φ(d+) − KΦ(d−))

= P1(0, U)Φ(d+) − KP2(0, U)Φ(d−) ,
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where

d± =
ln X(0,U)

K
± σ2(0,U)

2

σ(0, U)
,

σ2(t, T ) =

T
∫

t

(

n2
1(u, T ) − 2n2(u, T )ρn1(u, T ) + n2

2(u, T )
)

du ,

and Φ is the normal cumulative distribution function. For every time point
0 ≤ t ≤ T the option price with swap ratio K and time to maturity T ,
written on futures contract with maturity U < T is given by

C2(t) = P1(t, U)Φ(d+(t)) − KP2(t, U)Φ(d−(t)) ,

where

d±(t) =
ln P1(t,U)

KP2(t,U) ±
σ2(t,U)

2

σ(t, U)
.

This methodology could be used directly for locational spread options and
also for fuel–electricity spread options if we assume that the swap ratio
between MWh and unit of fuel is one.

5. Historical calibration

In this section we describe how to fit our models for real, historical data.
At the beginning we assume that we are given historical prices of future
contracts P1(tk, Tj) and P2(tk, Tj), k = 0, . . . , n, j = 0, . . . ,m, in discrete
time points t0 < t1 < . . . < tn and T0 < T1 < . . . < Tm, where tk+1− tk = dt
and Tj+1 − Tj = ∆T .

For geometric Brownian motion model the calibration methodology is
not very complicated. We analyze the returns of future prices of instrument
and µ is its mean, σ2 is its variance and correlation parameter is simply the
correlation between returns of two instruments. But for interest rate model
the calibration is quite complicated, especially for multidimensional HJM
model [7]. Calibration for discussed Vasicek model is presented below.

Let us consider the following process

ηi(t, Tj) =
p̂i(t, Tj)

p̂i(t, Tj+1)
=

Pi(t, Tj)

Pi(t, Tj+1)
.

From Itô Lemma we know that

dηi(t, Tj) = ηi(t, Tj)
[

(

n2
i (t, Tj+1) − ni(t, Tj+1)ni(t, Tj)

)

dt

+ (ni(t, Tj) − ni(t, Tj+1)) dWt,i

]

.
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We could write that ni(t, T ) = ni(T − t) because this function depends only
on the difference between the maturity time T and the time point t. If we
then consider the process

si(T − t) =
dηi(t, T )

ηi(t, T )
,

we know that si(T − t) is normally distributed with mean

αi(T − t) =
(

n2
i (T + ∆T − t) − ni(T + ∆T − t)ni(T − t)

)

dt

and variance

β2
i (T − t) = (ni(T − t) − ni(T + ∆T − t))2dt .

Knowing the form of functions ni(T − t) (1), (3) we see that

β2
i (T − t) =

(

σi

bi

e−bi(T−t)[1 − e−bi∆T ]

)2

dt (7)

and
β2

i (T − t)

β2
i (T − t + dt)

= e2bidt . (8)

After discretization and for assumption that dt = ∆T = 1, T − t = p∆T
and j = 1, . . . ,m we could say that the estimator of β has the form

β̂i
2
(p∆T ) =

1

m

m
∑

j=1

(

s2
i,j(p∆T ) − si,j(p∆T )s̄i

)

,

where

s̄i =
1

m

m
∑

j=1

si,j(p∆T )

and we put

si,j(p∆T ) =

Pi(Tj−p∆T,Tj)
Pi(Tj−p∆T,Tj+∆T ) −

Pi(Tj−(p+1)∆T,Tj)
Pi(Tj−(p+1)∆T,Tj+∆T )

Pi(Tj−p∆T,Tj)
Pi(Tj−p∆T,Tj+∆T )

.

So using (7), (8) we have

b̂i =
1

2∆T
ln

β̂i
2
(p∆T )

β̂i
2
((p + 1)∆T )

,
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σ̂i =
β̂i

2
(p∆T )b̂i

e−b̂i(p∆T )[1 − e−b̂i∆T ]
.

It is easy to notice that the correlation parameter between processes s1(T−t)
and s2(T − t) is ρ, so we have

ρ̂ =

∑m
j=1(s1,j(p∆T ) − s̄1)(s2,j(p∆T ) − s̄2)

√

∑m
j=1(s1,j(p∆T ) − s̄1)2

√

∑m
j=1(s2,j(p∆T ) − s̄2)2

.

At the end we should calculate also parameters connected with process Nt.
From equation (6) we know that for i = 1, 2

ξi(t, T ) =
p̂i(t, T )

N̂t

= e−rtPi(t, T ) .

Using Itô Lemma and formulas (5), (4), (2) we could calculate following
dynamic

dξ2(t, T ) = ξ2(t, T )
[

v2 − vn2(t, T )ρ1

]

dt

+ ξ2(t, T )

[

(n2(t, T ) − vρ1)dWt,2 − v
√

1 − ρ2
1 dW ′′

t,2

]

.

We know that the process

y(T − t) =
dξ2(t, T )

ξ2(t, T )

is normally distributed with mean (v2−vn2(t, T )ρ1)dt and variance (n2
2(t, T )

−2vn2(t, T )ρ1 + v2)dt so we have that for dt = 1

v̂2 = n̂2
2(p∆T ) + 2ȳ −

∑m
j=1(yj(p∆T ) − ȳ)2

m −
∑m

j=1(yj(p∆T ) − ȳ)
,

and

ρ̂1 =
v̂2 − ȳ

v̂n̂2(p∆T )
,

where

yj(p∆T ) =
e−r∆T Pi(Tj − p∆T, Tj) − Pi(Tj − (p + 1)∆T, Tj)

Pi(Tj − (p + 1)∆T, Tj)∆T
,

and

ȳ =
1

m

m
∑

j=1

yj(p∆T ) .
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6. Simulation and conclusion

For simulation I used the data from New York Mercantile Exchange
(NYMEX). I considered historical quotation of future natural gas (Henry
Hub) and electricity (PJM) contracts since January 2004 until March 2006.
The parameters were calculated using calibration methods described be-
fore. All estimated parameters are presented in Table I. I assumed that
the constant interest rate is r = 0.05. For valuation of gas fired power
plant I assumed that the life-time of the power plant is T = 15 years and
PE,0 = 55.750 USD, PF,0 = 6.3080 USD.

TABLE I

Estimated parameters for GBM model and for interest rate model using historical
data from New York Mercantile Exchange.

Geometric Brownian Motion Interest Rate Model

σe 1.0945 σe 0.0678

σg 1.2943 σg 0.0042

µe 4.4098 be 3.7515

µg 4.8145 bg 1.8205

ρ 0.8688 ρ 0.1892

ρ1 0.7266

v 0.0668

In Fig. 1 we see the value of power plant for the heat rate ranging from 5
to 15 for both presented models. We could notice that there is difference in
changes dynamic for analyzed models. The value of power plant for interest
rate model is much more smaller than for GBM model and it tends to zero
when the heat rate goes up. It is a very good feature, because in reality
the value of power plant for heat rate greater than PE,0/PF,0 ≈ 9 should
be close to zero. Looking at work of Deng we could say, that the value of
power plant under GBM model is usually too high, so also in this aspect the
interest rate model gives better results.
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Fig. 1. Top panel: Future prices of natural gas and electricity for contract maturing

in March, 2006. Bottom panel: Simulated unit value of gas fired power plant, with

life length 15 years, for both models.
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