Vol. 37 (2006) ACTA PHYSICA POLONICA B No 11

COMPLEXITY CHARACTERISTICS
OF CURRENCY NETWORKS*

A.Z. GORskI®, S. Drozpz*P, J. KWAPIEN?®, P. OSWIECIMKA®

aH. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences
Radzikowskiego 152, Krakow, 31-342, Poland
PInstitute of Physics, University of Rzeszow
Al Rejtana 16¢, Rzeszow, 35-310, Poland

(Received August 16, 2006)

A large set of daily FOREX time series is analyzed. The corresponding
correlation matrices (CM) are constructed for USD, EUR and PLN used
as the base currencies. The triangle rule is interpreted as constraints re-
ducing the number of independent returns. The CM spectrum is computed
and compared with the cases of shuffled currencies and a fictitious random
currency taken as a base currency. The Minimal Spanning Tree (MST)
graphs are calculated and the clustering effects for strong currencies are
found. It is shown that for MSTs the node rank has power like, scale free
behavior. Finally, the scaling exponents are evaluated and found in the
range analogous to those identified recently for various complex networks.
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1. Introduction

Analysis of correlations among financial assets is of great interest for
practical, as well as for fundamental reasons. Practical aspects are mainly
related to the theory of optimal portfolios [1]. The theoretical interest results
from the fact that such study may shed more light on the universal aspects
of complex systems organization. The world currency network can definitely
be considered as complex.

In this paper we analyze daily FOREX (FX) time series of 60 currencies
(including gold, silver and platinum) from the period December 1998-May
2005, provided by University of British Columbia [2]. The 50 filter was
applied to avoid spikes due to errors.
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For a value z;(t) of the ith asset (i = 1,...,N) at time ¢, one defines its
return G;(t) as

xi(t+ 1) — x;(t)

.’El(t)
where the return time 7 is also called the time lag. The normalized returns,
gi(t) are defined as
[Gi(t) — (Gi(t))7]
i(t) = , 2
() = S )

Gi(t) =Inz;(t+7) —Inz;(t) ~ , (1)

where (...)7 denotes averaging over variable ¢ with the averaging window T
and o(G;) is the standard deviation (volatility) of G;.

The stock market time series z;(t) are always expressed in terms of the
local currency. However, for the FX data we have exchange rates, instead.
Denoting currencies by n consecutive capital Latin letters A, B,C,... the
corresponding FX data x;(t) can be expressed as their quotients: x4p(t) =
A(t)/B(t). Neglecting friction caused by fees (this is usually negligible in
open market transactions) one obtains two types of constraints among n
currencies

Al) B() _, Al BM) C() _, )
B(t) A(t) ’ B(t) C(t) A(t) ’

where the second constraint is called the triangle rule [3]. Egs. (3) can be
rewritten in terms of returns that gives the following identities

Gap(t) = =Gpal(t),
Gap(t)+ Gpeo(t) + Geoa(t) = 0. (4)

For n currencies there are in principle n(n — 1) possible exchange rates
x(t) and corresponding returns G(t). Due to the first of Eqgs. (3) half of
them are simply related to the remaining values. The triangle effect can
be shown to give additional (n — 1)(n — 2)/2 independent constraints. This
leaves us with (n — 1) independent exchange rates and returns for n curren-
cies, 7 = 1,...,n — 1. One currency can be chosen as a reference currency
(denominators) and we shell call it the base currency. Taking different cur-
rencies as the base currency one can obtain a different “picture” of the market
though in principle all these pictures should contain the same information.

In this paper we construct correlation matrices (CMs) for the FX time
series and the corresponding Minimal Spanning Trees (MSTs). Finally, the
scale free distribution of node multiplicity is found and the corresponding
scaling exponents are estimated. The complex network approach seems to be
one of the most promising do deal with such extremely complicated systems,
as was suggested recently [4, 5].
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2. Correlation matrices
The correlation matrix (CM) Cj; is defined in terms of returns (1) as

(Gi()G; ()T — (Gi(1))r (G ()T (5)
o(Gi)o(G)) '

Cij =

The (symmetric) correlation matrix can also be computed in terms of the
normalized returns. To this end one has to form N time series {g;(to),
gi(to+7),..., gi(to+ (T'—1)7)} of length T'. Hence, we can built an N x T
rectangular matrix M. The correlation matrix (5) can be written in matrix
notation as )

C=[Cly=7MM, (6)
where tilde, M stands for the matrix transposition. To avoid artificial re-
duction of the rank of this matrix, one should have sufficiently large time
window for averaging: T > N.

By construction the trace of a correlation matrix equals to the number
of time series

Tt C=N. (7)

When some of the time series become strongly dependent, zero eigenvalues
emerge (zero modes).

The eigenspectrum of CM for USD, EUR and PLN as the base currency
is plotted in Fig. 1. For comparison, two additional sets of time series were
generated. As the first one, the USD based time series were taken and all
of them were randomly and independently shuffled. This set is denoted as
(rnd). As all time correlations are destroyed the case (rnd) is clearly different
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Fig. 1. Eigenspectra of correlation matrices for USD, EUR, PLN, shuffled USD and
a random fictitious currency taken as the base currency, respectively.
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than all other cases. In particular, it is very close to the random matrix
spectrum, where the theoretical upper and lower limit for the spectrum is
given by [6]
1 2 1 2
>\m1n 1+ q \/a ) q \/a ;
where ¢ = T/N. In our case Eq. (8) gives Apin = 0.67 and Apax = 1.41, in
perfect agreement with the plot.

In the second case, a fictitious currency was generated with returns iden-
tical to Gaussian uncorrelated noise and it was used as the base currency
for our time series. In this case time correlations of all other real currencies
were preserved and it is denoted as “fictitious” (fict). The CM spectrum here
is qualitatively similar to real currencies.

For the real currencies the maximal eigenvalue is smallest for USD, larger
for EUR, much larger for PLN and the largest for a fictitious random cur-
rency taken as the base currency, respectively. The magnitude of separation
of the largest eigenvalue from A .« can be considered a measure of collectiv-
ity of the underlying dynamics [7]. Similar effects are observed for the stock
market correlations [8].

(8)

3. Minimal Spanning Tree graphs

Looking at large numerical matrices is not very enlightening. Instead,
there are useful visualizations that can be used for their analysis. In par-
ticular, the Minimal Spanning Trees that were introduced in graph theory
long ago [9,10] and later rediscovered several times [11,12]. Recently they
were applied to analyze the stock correlations [13]. Here, to draw the MST
graph the following metric has been proposed

d(i, j) = 4/2(1 = Cyj) . 9)

Nodes corresponding to assets with the closest correlation coefficients are
successively linked with a line. As a result one obtains a tree-like connected
graph. The corresponding MST graphs for USD, EUR and PLN are shown
in Figs. 24, respectively. In Fig. 2 USD is absent and one can see nodes
with relatively small degree (small number of links). On the other hand,
for EUR taken as the base currency (Fig. 3) we have two large clusters —
USD and SAR cluster, both with high degree. The SAR cluster is present
because of the strong coupling of both currencies, USD and SAR. The latter
currency is artificially fixed to USD. In Fig. 4 PLN is taken as the base
currency. Here, we have a larger USD cluster and smaller clusters, including
the EUR cluster. The picture here is in a sense intermediate.
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Fig.2. Minimal Spanning Tree for USD as the base currency. In absence of USD
only moderate size clusters are visible.

Fig. 3. Minimal Spanning Tree for EUR as the base currency. USD and SAR are

in central positions of two large clusters.
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Fig.4. Minimal Spanning Tree for PLN as the base currency with large USD
cluster. Modest EUR cluster in the left part of the graph.

Fig.5. Minimal Spanning Tree for shuffled time series.
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We have also plotted MST for the correlation matrix with the USD as
the base currency, but all the corresponding currency return time series
are shuffled independently (Fig. 5). In this case all time correlations are
killed. This corresponds to the (rnd) spectrum in Fig. 1. In this case larger
clusters are absent, as one can expect. Finally, for a fictitious (fict) randomly
generated currency (a prototype of a currency whose dynamics is completely
disconnected from the rest) as the base currency one obtains MST graph as
in Fig. 6. Here, its structure is qualitatively similar as for PLN taken as the
base currency. This similarity even on a more quantitative level can be seen
from Fig. 1.

Fig. 6. Minimal Spanning Tree for a fictitious Gaussian currency as the base cur-
rency.

4. Power like scaling and conclusions

Because we have used considerably large number of currencies it is possi-
ble to estimate the integrated distribution of the nodes’ degree for all plots.
The most interesting question is the type of this distribution. For complex
networks it has been found that these distributions usually have scale free
power like scaling. Indeed, we have found good power like scaling in all cases
except for the shuffled case, where all time correlations are wiped out. The



2994 A.7Z. GORSKI ET AL.

log—log plot of the integrated probability distribution for the nodes’ degree
(multiplicity) is plotted in Fig. 7. The corresponding dashed lines represent
the power like fits. The numerical data are listed in Table I. In addition
to the scaling exponent, «, its standard error, relative error and Pearsons
r-coefficient are given. Except the shuffled case, standard error is of order
of a few percent and the r-coefficient is > 0.97. This suggests a good power
like scaling. The largest error is for USD. In this case, power like fit seems to
be not so good. For the shuffled case, where time correlations are wiped out,
one cannot see a power like scaling at all. The case of currencies expressed
in terms of the USD seems to interpolate between the scale free and the
shuffled cases. This may reflect the strong independence of the US currency.
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Fig. 7. Integrated probability distribution of nodes’ multiplicity for the Minimal
Spanning Tree graphs (Figs. 2-6). The linear fits are represented by corresponding
dashed lines.

Numerical results for all fits can be found in Table I. It is worth to notice,
that, except the shuffled case, for all cases we have obtained the scaling ex-
ponent in the range 1 < o < 2 (with average close to 1.6), the same range as
for the finite average Lévy stable distributions [14]. What is more important,
with rare exceptions, these exponents are similar to those found in differ-
ent complex networks, such as WWW pages (o = 1.4), physical internet
networks with nodes representing hosts (1.38), routers (1.18) and peer-to-
peer networks (1.19), protein—protein interaction network in the yeast (1.4),
metabolic reactions network (1.15), movie actor collaboration network (1.3),
phone calls (1.1), words co-occurence (1.7) — for references see [4,5].



Complexity Characteristics of Currency Networks 2995

TABLE 1

Numerical results for Minimal Spanning Trees represented by Figs. 2-6.
«, its standard and relative error and Pearson’s r are given.

(1
2]
3]

4]
[5]
[6]
7]
18]

19]

[10]
[11]

[12]

[13]
[14]

base currency a std. error % r-coefl.

USD 1.913 +0.183 +9.6%  0.998

EUR 1.335 +0.086 +6.4%  0.970

PLN 1.488 +0.084 +5.7% 0.975

rnd 2.327 +0.627 +27 %  0.906

fictitious 1.546 +0.083 +54%  0.979
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