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In this paper, we try to answer the question, whether for bivariate
elliptic random variable X = (X1, X2) the marginal random variables X1

and X2 are asymptotically dependent. We show, that for some special form
of the characteristic generator of X the answer is positive.
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1. Motivation

In order to give an answer to the question, “What is the origin of the
interest of the asymptotic dependence of elliptic random variables?” one has
to go back several dozen years.

Already in the years 1950’s and 1960’s researchers discovered the non-
normal behaviour of financial market data. In the early 1990’s an under-
standing of the methodology underlying financial or insurance extremes be-
came very important. Traditional statistics mostly concern the laws govern-
ing averages. But when we look at the largest, (respectively the smallest),
elements in a sample, the assumption of normality seems not to be reason-
able in the number of applications, particularly in finance and insurance.
And heavy-tailed distributions have a chance to be more appropriate.

Why? Let X1, X2 be insurance claims due to flood disasters (X1) and
wind storms (X2). Last year events taught us that very often the extreme
values of X1 are accompanied by extreme values of X2. In mathematical
language it means, that X1 and X2 are asymptotically dependent. Tradi-
tional models based on multidimensional normal probability law give rise to
quite opposite conclusion. Therefore, in modelling of extreme events more
and more often the researchers use the wider class of distributions, which
includes the normal distribution as a special case.
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Let us now consider a simple example from finance market. In the figure
below you see daily log-returns of stock indices DAX and CAC ( horizontal
axis X1-DAX, vertical axis X2-CAC). The data cover the period from 1990
to 2004 (about 4000 data). The scatter plot assumes a shape of “elliptic
cloud”. And the level sets of the probability density of the random vector
(X1, X2) are ellipses. This empirical observation suggests, that the family
of elliptic distributions should be taken under consideration. Furthermore,
we can ask how often we observe the situation, when the daily log-returns
of the both indices take the extreme values.

Fig. 1. Log-returns of stock indices DAX and CAC.

LetW (j) be the quantity of observations (x1,k,x2,k) such that (x1,k>x1,j,
x2,k > x2,j) , where xi,j is the j-th order statistics of the random variable
Xi, i = 1, 2.

Fig. 2. Graph of W (j).
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The graph of the functionW (j) shows us, thatX1 andX2 are asymptotically
dependent. So the joint random variable (X1, X2) could not be normally
distributed.

2. Preliminaries

To begin with, we recall the basic definitions.
Let F be an univariate distribution function and F −1 its generalised inverse

F−1(u) = inf{x ∈ R : F (x) ≥ u} for all u ∈ (0, 1) .

Definition 2.1. Let (X1, X2) be a random vector with marginal distribu-
tion functions F1 and F2.
The coefficient of upper tail dependence of (X1, X2) is defined to be

λU(X1, X2) = lim
u→1

P (X1 > F−1
1 (u)|X2 > F−1

2 (u)) ,

provided that the limit λU ∈ [0, 1] exists.
If λU = 0 , then we say that X1 and X2 are asymptotically independent.
Otherwise (that is λU > 0 or λU does not exists), we say that they are
asymptotically dependent.

For a pair of random variables upper tail dependence is a measure of
joint extremes. That is they measure the probability that one component is
at an extreme of size given that the other is at the same extreme, relative
to the marginal distributions.

Lemma 2.1. If two continuously distributed random variables X1, X2 are
independent, then they are asymptotically independent.

Proof.

lim
u→1

P
(

X1 > F−1
1 (u)|X2 > F−1

2 (u)
)

= lim
u→1

P
(

X1 > F−1
1 (u)

)

= 0 .

Note that the bivariate normal distribution has the same property.
The tail behaviour can be also described in a “symmetric way”.

Definition 2.2. The bivariate random variable X = (X1, X2) is said to
be regularly varying with index β > 0, if for all y > 0 and for every angle
[α0, α1]

lim
t→∞

P (|X| > ty, argX ∈ [α0, α1])

P (|X| > t)
= y−βM(α0, α1) .

where M(α0, α1) is a certain measure on the interval [0, 2π).
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Definition 2.3. If X is a bivariate random variable and, for some µ ∈ R
2,

some 2 × 2 nonnegative definite symmetric matrix Σ and some function
ψ : [0,∞) → R, the characteristic function is of the form

ϕ(t) = exp(it∗µ)ψ(t∗Σt) ,

then we say thatX has an elliptical distribution with parameters µ,Σ and ψ,
and we write X ∼ E2(µ,Σ, ψ).

The function ψ is referred to as the characteristic generator of X.

Remark 2.1. The following widespread used distributions prove to be
elliptic:

1. the normal distribution

ψ(t2) = exp

(−t2
2

)

,

2. some α-stable with characteristic generator of the form

ψ(t2) = exp

(−|t|α
2

)

, 0 < α < 2 ,

3. T -Student distribution.

3. Result

Theorem 3.1. Let
φ(t) = ψ(t∗Σt) , t ∈ R

2 ,

be a characteristic function of a bivariate elliptically distributed random vari-
able X = (X1, X2).

1. Σ is a positive definite symmetric matrix,
2. ψ : R+ −→ R is such that:
ψ(r2) = ψ0(r

2) + rβψ1(r
γ) , 0 < γ ≤ 2 ,

β ∈ R+ \ 2N ,
ψ0, ψ1 ∈ C

∞(R+) ∧ ψ1(0) 6= 0 ∧ ψ0(0) = 1 ,

∀ 0 ≤ k ≤ 4 + [β] limt→∞ tk+ 1
2 ψ(k)(t2) = 0 ,

then the marginal random variables X1 and X2 are asymptotically dependent.

4. Concluding remarks

1. For all α ∈ (0, 2) , if X = (X1, X2) is elliptic and α- stable, then X1

and X2 are asymptotically dependent.

2. The result is also valid for the characteristic generator of the form
ψ(r2) = ψ0(r

2)+rβ1ψ1(r
γ1)+ . . .+rβmψm(rγm), where 0 < β1 < β2 <

. . . < βm .
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5. Proof of the Theorem

Lemma 5.1. Let us have the same assumptions as in Theorem 3.1.
Then the asymptotics of the probability density of bivariate random variable
X = (X1, X2) formulates as follows

g(x) = c||x||−2−β +O(||x||−3−β) , ||x|| → ∞ , c = const > 0 ,

||x|| =
√
x∗Σx , x = (x1, x2) . (1)

Proof.

λ(u) = P
(

X1 > F−1
1 (u)|X2 > F−1

2 (u)
)

=
P

(

X1 > F−1
1 (u) ∧X2 > F−1

2 (u)
)

P
(

X2 > F−1
2 (u)

) .

Let us denote F−1
j (u) = asj , j = 1, 2 , s1, s2 = const > 0 , a� 0 ,

P
(

X1>F
−1
1 (u) ∧X2>F

−1
2 (u)

)

= P (X1 > as1 ∧X2 > as2)

=

+∞
∫

as1

dx1

+∞
∫

as2

dx2

∫

R2

e−ix∗tψ(t∗Σt) dt .

We calculate the asymptotics of the integral above, for a −→ +∞.
Σ > 0 and symmetric =⇒ Σ = A∗A

g(x) =

∫

R2

e−ix∗tψ(t∗Σt)dt =

∫

R2

e−ix∗A−1wψ(w∗w)(detΣ)−
−1
2 dw ,

after the change of the variables t = A−1w.
Next we substitute x = A∗y and obtain

g(A∗y) =

∫

R2

e−iy∗wψ(w∗w)(detΣ)−
−1
2 dw = (detΣ)

−1
2 G(y) .

We change the variables a second time w1 = r cosϕ ,w2 = r sinϕ , and let
us express y1, y2 in the form y1 = ||y|| sinα, y2 = ||y|| cosα. Then

G(y) =

+∞
∫

0

rψ(r2) dr

2π
∫

0

e−ir||y|| sin(ϕ+α)dϕ

=

+∞
∫

0

rψ(r2) dr

2π+α
∫

α

e−ir||y|| sin ϕdϕ = 2π

+∞
∫

0

rψ(r2)J0(r||y||) dr ,
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where J0 is Bessel function

J0(r||y||) =
1

√

πr||y||

[

cos
(

r||y|| − π

4

)

+O
(

(r||y||)−1
)

]

,

for r||y|| −→ ∞ i | arg r||y||| ≤ π − ε < π, cf. [4]

+∞
∫

0

rψ(r2)
√

πr||y||
cos

(

r||y|| − π

4

)

dr =
1

√

π||y||
Re e

−iπ
4

+∞
∫

0

eir||y||r
1
2ψ(r2) dr .

Now we compute the first term of asymptotics of the integral

F (||y||) =

+∞
∫

0

eir||y|| r
1
2ψ(r2) dr , for ||y|| −→ ∞ .

We assumed that the function ψ(r2) and its derivatives tend quickly to 0,
as r → ∞. Therefore, with the help of localisation rule and Erdelyi Lemma
cf. [4] we obtain

a) Re[e
−iπ
4

b
∫

0

eir||y|| r
1
2ψ0(r

2) dr] = 0 , the asymptotics is trivial,

b) e
−iπ
4

b
∫

0

eir||y|| r
1
2
+βψ1(r

γ) dr

= e
−iπ
4 ψ1(0)Γ

(

3

2
+ β

)

e
iπ( 3

2+β)

2 ||y||−3
2
−β + +O

(

||y||−5
2
−β

)

= ie
iπβ

2 ψ1(0)Γ

(

3

2
+ β

)

e
iπ( 3

2 +β)

2 ||y||−3
2
−β +O

(

||y||−5
2
−β

)

,

Re

[

ie
iπβ

2 ψ1(0)Γ

(

3

2
+ β

)

e
iπ( 3

2+β)

2 ||y||−3
2
−β

]

= − sin
πβ

2
ψ1(0)Γ

(

3

2
+ β

)

||y||−3
2
−β.

The expression above is not trivial, when β is not a natural even number.
Hence the first term of the asymptotics of the integral G(y) is given by
a formula:

G(y) = 2
√
π

(

− sin
πβ

2

)

ψ1(0)Γ

(

3

2
+ β

)

||y||−2−β +O
(

||y||−3−β
)

= c1||y||−2−β +O(||y||−3−β) for ||y|| −→ ∞ .
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Thus

g(x) = c1(detΣ)
−1
2 ||(A−1)∗||−2−β ||x||−2−β +O(||x||−3−β) .

Lemma 5.2. Under the assumptions of Theorem 3.1 the bivariate random
variable X = (X1, X2) is regularly varying with the index β.

Proof.

P (|X| > ty , argX ∈ [α0, α1])

P (|X| > t)
=

+∞
∫

ty

α1
∫

α0

rg(r, θ) dθ dr

+∞
∫

t

2π
∫

0

rg(r, θ) dθ dr

=

=

(α1 − α0)
+∞
∫

ty

[r−1−β +O(r−2−β)] dr

2π
+∞
∫

t

[r−1−β +O(r−2−β)] dr

=
α1 − α0

2π
y−β .

Lemma 5.2 implies the thesis of Theorem 3.1 cf. [5].
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