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In the paper we compare the modelling ability of discrete-time multi-
variate Stochastic Volatility (SV) models to describe the conditional cor-
relations between stock index returns. We consider four tri-variate SV
models, which differ in the structure of the conditional covariance matrix.
Specifications with zero, constant and time-varying conditional correlations
are taken into account. As an example we study tri-variate volatility mod-
els for the daily log returns on the WIG, S&P 500, and FTSE 100 indexes.
In order to formally compare the relative explanatory power of SV specifi-
cations we use the Bayesian principles of comparing statistic models. Our
results are based on the Bayes factors and implemented through Markov
Chain Monte Carlo techniques. The results indicate that the most adequate
specifications are those that allow for time-varying conditional correlations
and that have as many latent processes as there are conditional variances
and covariances. The empirical results clearly show that the data strongly
reject the assumption of constant conditional correlations.

PACS numbers: 89.65.Gh, 05.10.Gg

1. Introduction

There are a lot of theoretical and empirical reasons to study multivari-
ate volatility models. Analysis of financial market volatility and correlations
among markets play a crucial role in financial decision making (e.g. hedging
strategies, portfolio allocations, Value-at-Risk calculations). The correla-
tions among markets are very important in the global portfolio diversifica-
tion.

* Presented at the 2nd Polish Symposium on Econo- and Sociophysics, Krakow,
Poland, April 21-22, 2006.
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(3093)



3094 A. PaJOR

The main aim of the paper is to compare the modelling ability of discrete-
time Multivariate Stochastic Volatility (MSV) models to describe the condi-
tional correlations and volatilities of stock index returns. The MSV models
offer powerful alternatives to multivariate GARCH models in accounting for
properties of the conditional variances and correlations. Superior perfor-
mance of bivariate SV models over GARCH models (in term of the Bayes
factor) are documented in [8]. But the MSV models are not as often used
in empirical applications as the GARCH models. The main reason is that
the SV models are more difficult to estimate. In this paper we consider four
multivariate Stochastic Volatility models, including the specification with
zero, constant and time-varying conditional correlations. These MSV speci-
fications are used to model volatilities and conditional correlations between
stock index returns. We study tri-variate volatility models for the daily log
returns on the WIG index, the Standard & Poor’s 500 index, and the FTSE
100 index for the period January 4, 1999 to December 30, 2005. In the next
section the Bayesian statistical methodology is briefly presented. In Sec. 3
the model framework is introduced. Sec. 4 is devoted to the description of
tri-variate SV specifications. In Sec. 5 we present and discuss the empirical
results.

2. Bayesian statistical methodology

Let y be the observation matrix and 6; be the vector of unknown pa-
rameters and w; the latent variable vector in model M; (i = 1,2,...,n).
The i-th Bayesian model is characterised by the joint probability density
function, which can be written as the product of three densities:

p(y,wi, 0:ly o). Mi) = p(ylwi, 0i, yoy, Mi)p(wilbs, M;)p(0i|M;) ,

i = 1,2,....n, (1)
where ypy denotes initial conditions, p(y|ws,8;,y(), M;) is the conditional
density of y when w; € (2;,0; € ©; are given, p(w;|0;, M;) is the density of
the latent variables conditioned on 6;, p(6;|M;) is the prior density function
under M;. The joint probability density function can be expressed as the
product of the marginal data density of the observation matrix (given the
initial conditions y o)) in model M;: p(yly(y, M;), and the posterior density
function of the parameter vector #; and the latent variable vector w; in M;:
p(wi, Qi]y, y(o), Mi), 1.e.

(Y, wi, 0ily 0y, Mi) = pwi, 0i |y, yoy, Mi)p(Yly (o), Mi) ,
where

(YY), Mi) = / p(ylwi, 0, Y0y, Mi)p(ws, 0;| M;)dw;db; .
QiXQi
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The statistical inference is based on the posterior distributions, while the

marginal densities p(y|y(o), Mi) (i = 1,2,...,n) are the crucial components
in model comparison.
Assume that My, ..., M, are mutually exclusive (non-nested) and jointly

exhaustive models. From the Bayes’s theorem, it is easy to show that the
posterior probability of M; is given by:

p(M:)p(yly (o), Mi)

i1 (Mi)p(yly(), Mi)’

where p(M;) denotes the prior probability of M;. For the sake of pairwise
comparison, we use the posterior odds ratio, which for any two models M;

and M; is equal to the prior odds ratio times the ratio of the marginal data
densities:

p(Mily,y))  p(M;) P(Yly), Mi)

p(Mjly,y©)  p(Mj) pylyo), M)

The ratio of the marginal data densities is called the Bayes factor:

_ Ply), M)
Y p(ylyo), My)

Thus, assuming equal prior model probabilities (i.e. p(M;) = p(Mj;)), the
Bayes factor is equal to the posterior odds ratio. We see that the values
of the marginal data densities for each model are the main quantities for
Bayesian model comparison. The marginal data density in model M; can be
written as:

-1

-1
p(Yly), Mi)= / [p(ylwi, 05, 90y, Mi)] p(wi, Oy, y(o), Mi)dwid;
QiX@i

Of course, in the case of SV models this integral cannot be evaluated an-
alytically and thus must be computed by numerical methods. We use the
method proposed by [6], which approximates the marginal data density by
the harmonic mean of the values p(y|ws, 0, y(), M;), calculated for the ob-

served matrix y and for the vector (wgq),GZ(Q))’ drawn from the posterior
distribution. That is:

-1

1 m
Py, M) = | = >

m = p(ylw®, 09, Y(0)s M)

1

The estimator ﬁ(y]y(o), M;) is very easy to calculate and gives results that
are precise enough for our model comparison.
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3. Model framework

Let z;; denote the price of asset j (or index quotations as in our applica-
tion) at time ¢ for j =1,2,3 and ¢t = 1,2,...,T. The vector of growth rates
Yt = (Y1,6,Y2.t,y3+) , each defined by the formula y;,; = 100In (z¢;/zj-1),
is modelled using the VAR(1) framework

yt_(S:R(yt—l_(S)+§t7 t:1727"'7T7

where {&} is a tri-variate SV process, T' denotes the number of the obser-
vations used in estimation. More specifically:

Y1t 01 i1 T2 T13 Y1,t-1 01 §1,t
Y2t |—| 02 | =] ro1 ro2 723 Y2.-1 | — | 02 +| o
Y3t 03 r31 T32 7133 Y3.t—1 03 3.t

We assume that, conditionally on the latent variable vector {2;;) and on the
parameter vector 0;, & follows a tri-variate Gaussian distribution with mean
vector O3, 1) and covariance matrix X, i.e.

&l 24y, 0i ~ N(Opzser), 24), t=1,2,...,T.

Competing tri-variate SV models are defined by imposing different structures
on M.

For all elements of § and R we assume the multivariate standardised
Normal prior N(0, I;5), truncated by the restriction that all eigenvalues
of R lie inside the unit circle. We assume that the matrix [, R] and the
remaining (model-specific) parameters are prior independent.

4. Tri-variate VAR(1)—SV models
4.1. Stochastic discount factor model (SDF)

The first specification considered here is the stochastic discount factor
model (SDF) proposed, but not applied, by [4]. The SDF process is defined
as follows:

& = v, er ~ 1iN(O3x1), X)
Inhy = ¢lnhy 1 +opne, ne ~ 11N (0,1),
Ejit J~7787 t,sGZ,j:1,2,3,
where Z = {...,-2,-1,0,1,2,...}, L denotes independence, and the sym-

bol ; ~ N (0, 1) denotes a series of independently and normally distributed
random variables with mean vector O3, and covariance matrix X. In this
case, we have

é.t’gt(l)a 2~ (O[3><1}7 htE) )
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where (2;;) = ht. The conditional covariance matrix of & is time varying
and stochastic, but all its elements have the same dynamics governed by
hy. Consequently, the conditional correlation coefficients are constant over
time. Our model specification is completed by assuming the following prior
structure:

p(¢,04,Inhg, £) = p(¢) p(o) pIln ho) p(X) ,

where we use proper prior densities of the following distributions:

¢ ~ N(0,100)I(_1,1)(¢), o ~1IG(1,0.005),
In hyg ~ N(0,100), X ~1W(31,3,3). (2)

The symbol N (a,b) denotes the normal distribution with mean a and vari-
ance b, I(_y 1y(.) is the indicator function of the interval (—1,1). IG(vp, s0)
denotes the inverse Gamma distribution with mean s¢/(vp — 1) and variance
s2/[(vo—1)%*(19—2)]. The symbol IW(B, d, 3) denotes the three-dimensional
inverse Wishart distribution with d degrees of freedom and parameter ma-
trix B. The initial condition for In h; (i.e. Inhg) is treated as an additional
parameter and estimated jointly with other parameters.

4.2. Basic Stochastic Volatility model (BSV)

Next, we consider the basic stochastic volatility process (BSV), where
el 2) ~ N(O3x1]; Xt), and Xy = Diag(hyt, hayt, hst) (similar to the idea
of [2]). The conditional variance equations are:

Wk — 5 = (I hje—1 —v55) + 0jmts

for j = 1,2,3, where n; ~ N (Oigx1],13), ne = (M,6,M2,6,M3,0)" 5 w2y =
(h1,t,hat, hayt). For the parameters we use the same specification of prior
distribution as in the univariate SV model (see [9]), i.e. (7;;, ¢j;)'~ N (0,1001)
I_11y(55), o7 ~1G(1,0.005), Inhjo~ N(0,100), j=1,2,3.

4.8. JSV Model

Both previous specifications (SDF and BSV) are very restrictive. Now,
we propose a SV process based on the spectral decomposition of the ma-
trix X;. That is

X, =PAPTL,

where A; is the diagonal matrix consisting of all eigenvalues of X}, and
P is the matrix consisting of the eigenvectors of X;. For series {In\;;}
(j = 1,2,3), similarly as in the univariate SV process, we assume standard
univariate autoregressive processes of order one, namely

;e =55 = (I Aj i1 — vj5) + 055t
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for j =1,2,3 , where ny ~ iiN(O3x1), I3), e = (145 M2, M3.6) , and 2y3) =
(A1t, A2t, Az ). This reparametrization of Xy does not require any parame-
ter constraints to ensure positive definiteness of ;. If [¢;;| <1 (j =1,2,3)
then {In A}, {InX2;+} and {In 3.} are stationary and the JSV process
is a white noise. In addition, P is an orthogonal matrix, i.e. P'P = I,
thus P is parametrised by three parameters (Euler angles) x; € (—m, ),
je{1,2,3}:
P(k1, k2, k3) = Pi(k1)Pa(k2) P3(k3)

where for [ = 1,3

cosk; —sink; O 1 0 0
P(k;)=| sink; cosk; 0 |, Py(ka)=| 0 cosky —sinkg
0 0 1 0 sinkg COSKg

In this case the conditional correlation coefficients are time-varying and
stochastic if k; # 0 for some j € {1,2,3}. For the model-specific parameters
we take the following prior distributions: (7v;;, $;;) ~N(0,1001)I(_y 1)(j;) ,
szj ~ IG(1,0.005), InAjo~ N(0,100), kj ~ U(—m,m) (i.e. uniform over
(—=m,m)), 7 =1,2,3. The BSV model can be obtained by imposing the pa-
rameter restrictions k1 = k9 = k3 = 0 in the P definition of the JSV model
(but we formally exclude this value).

4.4. TSV Model

The next specification (proposed by [13], thus called TSV) uses six sepa-
rate latent processes (the number of the latent processes is now equal to the
number of distinct elements of the conditional covariance matrix). Following
the definition in [13], we propose to use the Cholesky decomposition:

5, = LG, L},

where L; is a lower triangular matrix with unitary diagonal elements, Gy is
a diagonal matrix with positive diagonal elements:

1 0 0 gt 0 0
Li=| gu: 1 0], Gy = 0 g2t O ,
@1t gzt 1 0 0 g33¢
that is
q11,t q11,t921,t q11,t931,¢
=] Qaeqit Q11,tqg1,t + g2t q11,6921,t931,¢t + G22,6932,¢

2 2
43169116 q11,6921,6931,¢ + 22,6932t q11,6931 ¢ T G22,¢432 ¢ + 433t
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Series {gij ¢}, and {Ing;;.} (i,7=1,2,3, i>j), analogous to the univariate
SV, are standard univariate autoregressive processes of order one, namely

ngjje =5 = G550 ajj0-1 = 755) + 04inijes I = 12,3,
QGijt — Yij = Gij(Qiji—1 — Vij) + oinije,  Jii €{1,2,3}, i>7,
Me = (M1t 22,6, 33,6, M21,85 31,85 132,6) ~ 19N6 (O x1), ), t€Z,
Quy = (qu1,e, 922,85 433,65 Q21,85 G31,85 G32,¢) -

Note that positive definiteness of X is achieved by modelling In g;; ; instead
of gjj¢+ It is easy to show that if the absolute values of ¢;; are less than
one the TSV process is a white noise (see [10]). We see that the TSV model
is able to model both the time-varying conditional correlation coefficients
and variances of returns. A major drawback of this process is that the
conditional variances and covariances are not modelled in a symmetric way,
thus the explanatory power of model may depend on the ordering of financial
instruments.
We assume the following prior distributions:

(’Yijy ¢ij)/ ~ N(O, 100[)[(,171) ((bij)y Ui2j ~ IG(170005), In qdii,0 ~ N(O, 100)
for 4,5 € {1,2,3} and i > j; ¢;50 ~ N(0,100) for i,j € {1,2,3}, i > j. The
prior distributions used are relatively non-informative. Note that the BSV
model can be obtained as a limiting case, corresponding to 7;; = ¢;; = 0,
agj — 0 for 4,5 € {1,2,3}, i > j.

5. Empirical results

We consider daily stock index returns for three national markets: Poland
(WIG), the United States (S&P 500), and the United Kingdom (FTSE 100),
from January 4, 1999 to December 30, 2005. We consider only index closing
quotations in trading days for all considered national markets, thus our
sample consists of 1701 daily observations!. The first observation is used
to construct initial conditions. Thus T, the length of the modelled vector
time series, is equal to 1700. In Table I we present the decimal logarithms
of the Bayes factors in favour of TSVpgw model. Our posterior results
are obtained using MCMC methods: Metropolis—Hastings within the Gibbs
sampler (see [11], [7] and [3]). The results presented in this paper are based
on 500,000 states of the Markov chain, generated after 100,000 burnt-in
states. The Bayes factors are calculated using the Newton and Raftery’s
method [6]. Because in the TSV specification the conditional variances are
not modelled in a symmetric way, we consider six cases: TSVrsw, TSVrws,

! The data were downloaded from the web-sites http://finance.yahoo.com and
http://wuw.parkiet.com/dane/dane_atxt.jsp, where complete descriptions of the
indices can be found.
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TABLE I
Logs of Bayes factors in favour of TSVpsw model.
Model Number of latent Number of log;q(Bs,1,:) Rank
processes parameters
My (TSVesw) 6 12424 0.00 1
My2 (TSVrws) 6 12+24 7.82 2
My 3 (TSVswr) 6 12424 15.55 3
My,4 (TSVsrw) 6 12424 15.86 4
My 5 (TSVwrs) 6 12424 17.05 5
My (TSVwsr) 6 12+24 22.96 6
Ms (JSV) 3 12+15 63.68 7
M; (SDF) 1 1249 87.39 8
M, (BSV) 3 12+12 181.18 9

TSVswr, TSVsew, TSVwrs and TSVwsr. These models differ in ordering
of elements in y;. For example in the TSVgsw model y; ; denotes the daily
growth rate of the FT'SE 100 index at day ¢, and y2 ; and y3 ; are, respectively,
the daily growth rates of the S&P 500 and the WIG indexes at day ¢.

Our findings show clear superiority of the TSV specifications (which
describe the six distinct elements of the conditional covariance matrix by six
separate latent processes) over all SV models considered here. The TSVpsw
model receives almost all posterior probability mass (assuming equal prior
model probabilities), being about 7.82 orders of magnitude more probable
a posterior than the TSVpwg model and 63.68 orders of magnitude better
than the JSV model. Furthermore, the TSVysr model fits the data about 23
orders of magnitude worse than the best TSV model. It is mainly attributed
to the fact that the growth rates of the FTSE index are less volatile than the
S&P and WIG indexes. When we compare the unconditional variance of §; ;
(Var(&;,) = exp(v;; + 0.50]2]»/(1 - gb?j)), j = 1,2,3) obtained in the BSV
model, we observe a value of 1.448 for the WIG index, 0.955 for the S&P 500
index and 0.943 for the FTSE index. It is in accordance with the ordering
of returns in the best TSV model. Thus, the explanatory power of the SV
model depends not only on the number of latent processes, but also on the
ordering of financial instruments in case of the TSV specifications. The
results indicate that the return rates of the WIG, S&P and FTSE indexes
reject the constant or zero conditional correlation hypothesis, represented
by the SDF and BSV model.
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The main characteristics of the posterior distributions of the conditional
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correlation coeflicients are presented in Fig. 1, where the upper line repre-
sents the posterior mean plus standard deviation the lower one — the poste-
rior mean minus standard deviation. The conditional correlation coefficients

Fig. 1. Conditional correlation coefficients (posterior mean +1 standard deviation).



3102 A. PaJOR

produced by our VAR(1)-SV models with at least three latent processes vary
markedly over time. Surprisingly, the TSV models with different ordering
of the returns lead to different posterior inference on the conditional co-
variances. The differences in the dynamics of conditional correlations are
understandable because of the structure of the conditional covariance ma-
trix. In the TSV models the conditional covariance between &;; and &a
(similarly between &+ and £3+) depends on the variance of &4 (i.e. qi14).
Thus, a large increase in the conditional variance of £; ; leads to an increase
in the conditional covariance. Therefore, the TSVwsr and TSVwprg models
(in which the WIG index is the first component) lead to similar inference
on the dynamics of the conditional correlations. The plots of the posterior
means of pj;;, obtained in the remaining TSV models are different (be-
cause of differences in volatilities of the S&P500, FTSE indexes and WIG
index). Note also that in the JSV model the latent processes that describe
volatilities are included in the conditional correlation coefficient definitions.
Consequently, the conditional correlations depend on the volatilities. Sur-
prisingly, in the SDF model the conditional correlations are estimated very
precisely — the posterior standard deviations of p;;; are relatively small.
The returns on the WIG index are lower correlated with returns on the S&P
500 index (with an average of 0.18) than with returns on the FTSE index
(with an average of 0.24). This low correlation is partially explained by the
non-overlapping trading hours of US market with the European markets.
The US market (represented by the S&P 500 index) has the average corre-
lation of 0.47 with the UK market. Finally, it is important to stress that
our results show that the conditional correlations are not significantly higher
when world markets are down trending, which is in contrast to the results
presented in the papers [1,5,12].

The author would like to thank Matgorzata Snarska for help in prepara-
tion of the manuscript in LaTeX format.
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