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Student-t GARCH process with unknown degrees of freedom parameter.
By introducing skewness into Student-t family and incorporating the re-
sulting class as a conditional distribution we generated various GARCH
models, which compete in explaining possible asymmetry of both condi-
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cently proposed in the literature. In particular, we apply the hidden trun-
cation mechanism, an approach based on the inverse scale factors in the
positive and the negative orthant, order statistics concept, Beta distribu-
tion transformation and Bernstein density transformation. Additionally,
we consider GARCH process with conditional α-Stable distribution. Based
on the daily returns of hypothetical financial time series, we discuss the re-
sults of Bayesian comparison of alternative skewing mechanisms applied in
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daily returns in all competing specifications on the basis of the skewness
measure defined by Arnold and Groenveld.
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1. Introduction

The presence of both, conditional and unconditional skewness (asymme-
try) of the distributions of the financial time series returns has been rec-
ognized for decades. But, as suggest [19], only a few attempts to specify
formally this feature have been made. A proper modeling of skewness in
the distribution of financial returns is important for at least two reasons.
Firstly, uncaptured skewness clearly affects inference about all parameters
of the sampling model. As a consequence the final conclusions, drawn from
the sampling model which does not allow for asymmetry, can be misleading.
Lanne and Saikkonnen present in [19] the impact of the conditional skew-
ness assumption on the results of making inference about the volatility and
expected return. They presented empirical analysis, which showed, that a
positive and significant relation between return and risk can be uncovered,
once an appropriate probability distribution is employed to allow for condi-
tional asymmetry. Motivating the importance of asset pricing model that
incorporates conditional asymmetry, [16] emphasize that systematic skew-
ness is economically important and commands a risk premium. Investigating
the influence of the assumption of asymmetric distributions in portfolio se-
lection, [18] concluded that if investors prefer right-skewed portfolios, then
for equal variance one should expect a “skew premium” to reward investors
willing to invest in left-skewed portfolios. Secondly, in pricing the deriva-
tives and in risk management, the accurate models, which describe the return
process are particularly desired. The importance of the assumption of con-
ditional skewness in models used for option pricing was presented [17, 31]
and [8]. Additionally, conditional skewness clearly influences the results
of risk assessment built on the basis of the Value at Risk (VaR) concept.
Application of time varying volatility models with conditional asymmetric
distributions in Value at Risk prediction present [9]; for a Bayesian approach
to VaR calculation see [29].

Within GARCH (Generalised Autoregressive Conditionally Hetero-
scedastic) framework, initially proposed by [6] as a conditionally normal
stochastic process, fat tailed and possibly asymmetric distributions have
been also proposed and applied. Osiewalski and Pipień in [26] defined
GARCH process with conditional skewed Student-t distribution, which is an
asymmetric generalization of Student-t family proposed by [10]. In [20, 21]
and [30] GARCH process with conditional α-Stable distribution was consid-
ered. Some other processes with asymmetric conditional distribution were
applied in [16, 30, 32], and [9]. Despite of the fact, that many researchers
found the conditionally skewed volatility models better than those, which
do not allow for asymmetry, there is very hard to find the result of the for-
mal comparison of explanatory power of such specifications. Many authors
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conclude the superiority of conditional skewed models on the basis either
of the asymptotically based statistical significance of the skewness excess
(see e.g. [32], or [19]) or of informal likelihood inference (see e.g. [30], [32]).
Hence more formal approach to investigating the explanatory power of con-
ditionally skewed models seems to be necessary. Additionally, the results of
formal comparison of competing untested specifications of conditional skew-
ness could be very valuable in selection of the best skewing mechanism.

On the other hand, in recent years in statistics there can be noticed
a peculiar interest in the theory and applications of distributions that can
account for skewness. This resurgent field of research yields new families
of possibly asymmetric sampling models, as well as more general methods
of measuring skewness phenomenon. The most common approach to the
creation of the family of skewed distributions is to introduce skewness into
an originally symmetric family of distributions. This approach underlies the
general classes of skewed probability distributions generated for example by
hidden truncation mechanism (see [1,3]), inverse scale factors applied to the
positive and the negative orthant (see [10]), order statistics concept [14],
Beta distribution transformation [15], Bernstein density transformation (see
[28]) and the constructive method recently proposed by [11].

The main goal of this paper is to define a set of competing GARCH speci-
fications, all with asymmetric conditional distributions, which also allow for
heavy tails. As an initial specification we consider GARCH model with
conditional Student-t distribution with unknown degrees of freedom param-
eter, proposed by [7]. By introducing skewness, according to the methods
mentioned above, and by incorporating the resulting family as a conditional
distribution, we generate GARCH models which compete in explaining pos-
sible asymmetry of the conditional and unconditional distribution of the
financial data. We also consider GARCH process with conditional α-Stable
distribution, which, from the definition, also allows for skewness, see [25].

By application of Bayesian approach to model comparison, based on
the posterior probabilities and posteriori odds ratios, we test formally the
explanatory power of competing, conditionally fat tailed and asymmetric
GARCH processes. Based on the daily returns of hypothetical financial time
series, we discuss the results of Bayesian comparison of alternative skewing
mechanisms and also check the sensitivity of model ranking with respect to
the changes in prior distribution of model specific parameters. Additionally
we present formal Bayesian inference about conditional asymmetry in all
competing specifications on the basis of the skewness measure defined in [2].
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2. Creating asymmetric distributions

Let us consider parametric family of absolute continuous real random
variables I = {εf ; εf : Ω → R}, parameterized by the vector θ. For each
value of θ ∈ Θ , by f(.|θ) and F (.|θ) we denote the density and cumulative
distribution function (cdf) of εf . Let us assume, that for each θ ∈ Θ the
density f(.|θ) is unimodal and symmetric around the mode. Consider an-
other parametric family P of absolute continuous random variables, which
distributions are defined over the unit interval, P = {εf ; εf : Ω → (0, 1)},
with density p(.|ηp) parameterized by vector ηp ∈ H. The unified represen-
tation of univariate skewed distributions that we study in this paper is based
on the inverse probability integral transformation. In our approach the class
I is the initial family of symmetric distributions, while the class P defines
formally skewing mechanism. The family of absolute continuous random
variables IP = {εs, εs : Ω → R}, with general form of density s(.|θ, ηp) is
said to be the skewed version of the symmetric family I, if the density s is
given by the form:

s(x|θ, ηp) = f(x|θ) · p
(

F (x|θ)|ηp

)

, for x ∈ R . (1)

A number of simple but very powerful results can be obtained from decom-
position (1); see [11]. The most important and rather intuitive fact is that
the distributions s and f are identical if and only if p(.|ηp) is the density of
the uniform distribution over the unit interval; i.e. if p(y|ηp) = 1, for each
y ∈ (0, 1). Hence if we want to create the family of distributions IP such
that I ⊂ IP , we must assure, that the uniform distribution over (0, 1) can
be obtained in family P for some specific value η∗p ∈ H.

Within the general form (1) several classes of distributions P have been
considered and incorporated into some specific families of symmetric random
variables in order to obtain skewness. The first approach of making distri-
bution F (.|θ) skewed applied hidden truncation ideas. The skew-Normal
distribution in [3] constitutes the first explicit formulation of such a mecha-
nism. In general this approach assumes, that:

s(x|θ, γ2) = 2 · f(x|θ)F (γ2 · x|θ), for x ∈ R , (2)

where γ2 ∈ R is the only one parameter which governs the skewing mecha-
nism; ηp =(γ2). In this case, it can be shown, that p(y|γ2)=2F (γ2F

−1(y)|θ),
for y ∈ (0, 1). In (2) positive and negative values of γ2 define right and left
skewed distributions. Since, for each y ∈ (0, 1), it is true that p(y|0) =
2F (0F−1(y)|γ2) = 1, the case γ2 = 0 retrieves symmetry. As an alternative
it was proposed in [14] to apply the family of Beta distributions in order to
define p(.|ηp). In particular, s(x|θ, γ3) can be defined as follows:

s(x|θ, γ3) = f(x|θ)Be
(

F (x|θ)|γ3, γ
−1
3

)

, for x ∈ R , (3)
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where Be(y|a, b) is the value of the density function of the Beta distribution
with parameters a > 0 and b > 0, calculated at y ∈ (0, 1). Since Be(.|1, 1)
defines the density of the uniform distribution, we obtain, that for γ3 =
γ−1
3 = 1 the density s is symmetric. In (3) there is still only one parameter
γ3 > 0, which defines the type of asymmetry. If γ3 > 1, then s is right
asymmetric, while γ3 < 1 constitutes left asymmetric density.

The family IP of skewed distributions proposed in (3) can be generalized,
by imposing Beta distribution transformation with two free parameters a > 0
and b > 0. This leads to the following form for s:

s(x|θ, ηp) = f(x|θ)Be(F (x|θ)|a, b), for x ∈ R . (4)

In this case the vector ηp = (a, b) contains two parameters, which govern
skewness. As a consequence such a mechanism enables to vary tail weight. If
a = b = 1 we go back to symmetry, while a < b or a > b defines left or right
skewness. It can be shown that the skewing mechanism (4), in case when
I is the family of Student-t distributions, yields skewed Student-t family of
distributions proposed in advance in [15].

Another method for introducing skewness into an unimodal distribution
is based on the inverse scale factors on the left and on the right side of the
mode of the density f(.|θ). Investigating this concept Fernández and Steel
proposed in [10] skewed Student-t family of distributions with the density
fsks(.|ν, 0, 1, γ1) defined as follows:

fsks(x|ν, 0, 1, γ1) =
2

γ1 + γ−1
1

{ft(xγ1|ν, 1, 0)I(−∞,0)+ft(xγ
−1
1 |ν, 1, 0)I(0,+∞)},

where ft(z|ν, 1, 0) is the value of the density function of the Student-t dis-
tribution with ν degrees of freedom, zero mode and unit inverse precision,
calculated at z ∈ R. The approach studied in [10] can be applied to any
family I of symmetric distributions by defining in (1) the following skewing
mechanism for each y ∈ (0, 1):

p(y|γ1) =
2

γ1 + γ−1
1

{f(γ1F
−1(y))I(0;0.5) + f(γ−1

1 F−1(y))I(0.5;1)}
f(F−1(y))

, (5)

where γ1 > 0. The resulting density s(.|θ, γ1) is symmetric if γ1 = 1, while
γ1 > 1 or γ1 < 1 make distribution right or left skewed.

As pointed in [11] the general form of density s in (1) seems to be the
good starting point in completely nonparametric treatment of the skewing
mechanism p. As εp : Ω → (0, 1) can be in general any random variable
with probability distribution defined over the unit interval, the possibility
to model it in an unrestricted fashion is tempting. The next approach of
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constructing p is a compromise between totally flexible skewing mechanism
and one obtained in parametric fashion. It uses Bernstein densities (see
e.g. [28]), which are convex discrete mixtures of appropriate densities of
Beta distributions. The following form on p constitutes another skewing
mechanism:

p(y|w1, . . . , wm) =

m
∑

j=1

wjBe(y|j,m− j + 1) , y ∈ (0, 1) ,

where m > 0, wj ≥ 0, w1 + . . . + wm = 1. The resulting s(.|θ, ηp) takes the
form:

s(x|θ, ηp) = f(x|θ) ·
m

∑

j=1

wjBe(F (x|θ)|j,m− j + 1) for x ∈ R , (6)

where ηp = (w1, . . . , wm−1), wj ∈ (0, 1) for j = 1, . . . ,m − 1, and in (6)
wm = 1 − w1 − . . . − wm−1. For any m > 0, if wj = m−1, for each j =
1, . . . ,m−1, then Bernstein density reduces to the uniform distribution case.
Hence equal weights wj lead to the symmetry in (6).

In the next section we present basic model framework, which is a start-
ing point in generating conditionally heteroscedastic models for daily re-
turns. In order to create the set of competing specifications, we make use of
all presented skewing mechanisms. We also consider GARCH process with
conditional α-Stable distribution.

3. Basic model framework and competing skewed

conditional distributions

Let us denote by xj the value of a currency at time j. Following [4,5,27]
let consider an AR(2) process for lnxj with asymmetric GARCH(1, 1) error.
In terms of logarithmic growth rates yj = 100 ln(xj/xj−1) our basic model
framework is defined by the following equation:

yj − δ = ρ(yj−1 − δ) + δ1 lnxj−1 + εj j = 1, 2, . . . (7)

The AR(2) formulation adopted from [5] enables us to make inference on
the presence of a unit root in lnxj . If δ1 = 0, then (7) reduces to the AR(1)
process for yj, i.e. an I(1) process for lnxj. In an initial specification M0

we assume, that the error term εj = zj(hj)
0.5, where zj are independent,

Student-t random variables, with ν > 0 degrees of freedom parameter, mode
ζ1 ∈ (−∞,+∞), and unit inverse precision; i.e. zj ∼ iiSt(ν, ζ1, 1). The
density of the distribution of the random variable zj is given as follows:

p(z|M0) = ft(z|0, 1, ν) =
Γ (0.5(ν + 1))

Γ (0.5ν)
√
πν

[

1 +
(z − ζ1)

2

ν

]

−(ν+1)/2

(8)
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Defining hj we follow GJR-GARCH(1, 1) specification proposed in [12]:

hj = a0 + a1ε
2
j−1I(εj−1 < 0) + a+

1 ε
2
j−1I(εj−1 ≥ 0) + b1hj−1, j = 1, 2, . . .

(9)
which allows to model asymmetric reaction of conditional dispersion measure
hj to positive and negative sign of shock εj−1.

As a consequence, in model M0, the conditional distribution of εj (with
respect to the whole past of the process, ψj−1 = (. . . , εj−2, εj−1)) is a
Student-t distribution with ν > 0 degrees of freedom parameter, mode
ζ1 ∈ (−∞,+∞), and inverse precision hj ; i.e. εj |ψj−1,M0 ∼ iiSt(ν, ζ1, hj).
In specification M0 the conditional distribution of yj is the Student-t distri-
bution with ν > 0 degrees of freedom parameter, mode µj = δ + ρ(yj−1 −
δ) + δ1 lnxj−1 + ζ1h

0.5
j and inverse precision hj (given by the equation (9)):

p(yj|ψj−1,M0, θ, ν) = ft(yj |µj, hj , ν), j = 1, 2, . . . ,

where θ = (δ, ρ, δ1, a0, a1, a
+
1 , b1, h0) is the vector of all parameters defined

in sampling model M0 except the degrees of freedom parameter ν.
Now we want to construct a set of competing GARCH specifications

{Mi, i = 1, . . . , k} by introducing skewness into conditional distribution of
yj in M0. The resulting asymmetric distributions are obtained by skewing
the distribution of the random variable zj , (8), according to methods pre-
sented in the previous section. The resulting skewed density of zj is of the
general form given by (1):

p(z|Mi) = ft(z|0, 1, ν)p[Ft(z − ζ1)|ηi,Mi], for zj ∈ R, i = 1, 2, . . . , k ,

where p(.|ηi,Mi) defines the skewing mechanism parameterized by the vector
ηi, and Ft(.) is the cumulative distribution function of the Student-t random
variable with ν > 0 degrees of freedom parameter, zero mode and unit inverse
precision. The resulting conditional distribution of εj in model Mi takes the
form:

p(εj |ψj−1,Mi) = ft(h
−0.5
j (εj − ζ1)|0, 1, ν)h−0.5

j p[Ft(h
−0.5
j (εj − ζ1))|ηi,Mi] ,

where ft(.|0, 1, ν) is defined by the formula (8). This leads to the general
form of the conditional distribution of daily return yj in model Mi:

p(yj |ψj−1, θ, ν, ηi,Mi) = ft(z
∗

j |ν, 0, 1)h−0.5
j p[Ft(z

∗

j |ηi,Mi] , (10)

where z∗j = h−0.5
j (εj − µj). As the first specification, namely M1, we con-

sider GARCH model with skewed Student-t distribution obtained by the
method proposed in [10]. The skewing mechanism p[.|η1,M1] is given by
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the formula (5), where η1 = γ1 > 0 , and γ1 = 1 defines symmetry (i.e.
M1 reduces to the model M0 under the restriction γ1 = 1). The model M2

is the result of skewing conditional distribution p(yj|ψj−1,M0, θ) according
to the hidden truncation method. In this case p[.|η2,M2] is defined by (2),
η2 = γ2 ∈ R, while γ2 = 0 defines symmetric Student-t conditional distri-
bution for yj. In model M3 we apply [14] Beta skewing mechanism with
one asymmetry parameter. The skewing distribution p[.|η3,M3] is defined
by (3), where η3 = γ3 > 0, and γ3 = 1 reduces our model to the case of M0.
Specification M4 is based on the Skewed Student-t distribution proposed
by [15]. In this case p[.|η4,M4] is defined by the formula (4), η4 = (a, b), for
a > 0 and b > 0 and a = b = 1 reduces M4 to M0. In model M5 we apply
Bernstein density based skewing mechanism with m = 2 free parameters.
It means that the skewing mechanism p[.|η5,M5] is defined by the formula
(6) and η5 = (w1, w2). The case w1 = w2 = 1/3 defines symmetry of the
conditional distribution of yj, given M5.

As an alternative for all methods of making family of Student-t random
variables skewed, it is possible to consider in a GARCH framework a class
of distributions, which directly, from the definition, enables for fat tails and
skewness. The next GARCH specification is based on the assumption of
conditional α-stability. In GARCH model M6, as a specification which is
not a direct generalization of model M0, we considered in (7) conditional
α-Stable distribution. In particular we put εj = zj(hj)

0.5, where zj are
independent α-Stable random variables with α ∈ (0, 2], location parameter
ζ1 ∈ (−∞,+∞), unit scale and skewness parameter β ∈ [−1, 1]; i.e. zj ∼
iiSta(ζ1, 1, β, α). For a report of Bayesian inference in model M6 see [29].

We denote by y(t) = (y1, . . . , yt) the vector of observed up to day t (used

in estimation in day t) daily growth rates and by y
(t)
f = (yt+1, . . . , yt+n) the

vector of forecasted observables at time t. The following density represents
the i-th sampling model (i = 1, 2, 3, 4, 5, 6) at time t:

p(y(t), y
(t)
f |θ, ωi, ηi,Mi) =

t+n
∏

j=1

p(yj|ψj−1, θ, ωi, ηi,Mi) i = 1, . . . , 6 ,

where ωi is the vector of additional parameters of the sampling model, which
are not included in θ and ηi; for each i = 1, 2, 3, 4, 5 ωi = ν, while ω6 = α.
The sampling model Mi is based on the product of the appropriate densities
p(yj|ψj−1, θi, ωi,Mi), which are generally specified in the formula (10) for
i = 1, 2, 3, 4, 5, while in case i = 6 p(yj |ψj−1, θ, ω6, η6,M6) is defined by the
appropriate density of α-Stable distribution (see [29]).
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Constructed at time t Bayesian model Mi, i.e. the joint distribution of

the observables (y(t), y
(t)
f ) and the vector of parameters (θ, ωi, ηi) takes the

form:

p(y(t), y
(t)
f , θ, ωi, ηi|Mi) = p(y(t), y

(t)
f |θ, ωi, ηi,Mi)p(θ, ωi, ηi|Mi) (11)

and requires formulation of the prior distribution p(θ, ωi, ηi|Mi), for each
specification Mi, for i = 1, 2, 3, 4, 5, 6. In general we assumed the following
prior independence:

p(θ, ωi, ηi|Mi) = p(θ|Mi)p(ωi|Mi)p(ηi|Mi) i = 1, 2, . . . , 6 . (12)

The prior information about the common parameters θ was initially for-
mulated by [27]. For i = 1, 2, 3, 4, 5 the prior density p(ωi|Mi) = p(ν|Mi)
defines exponential distribution with mean 10 for the degrees of freedom
parameter ν. In case of conditionally α-Stable GARCH model (i = 6) the
density p(ω6|M6) = p(α|M6) defines the uniform prior distribution over the
interval (0, 2] for the index of stability α. For i = 1, η1 = γ1 > 0, and
p(η1|M1) is the density of the standardized lognormal distribution trun-
cated to the interval γ1 ∈ (0.5; 2). For i = 2, η2 = γ2 ∈ R, and p(η2|M2)
is the density of the normal distribution with zero mean and variance equal
to 3. For i = 3, η3 = γ3 > 0, and p(η3|M3) is the density of the standard-
ized lognormal distribution. In case of i = 4, η4 = (a, b), and p(η4|M4) is
the product of the densities of the standardized lognormal distribution. For
i = 5, η5 = (w1, w2) and p(η5|M5) is the product of the normal densities,
both with mean 0.33 and variance 36, truncated by the following set of re-
strictions: w1 > 0, w2 > 0, w1 + w2 < 1. For i = 6 η6 = β , and p(η6|M6) is
the density of the uniform distribution over the interval [−1, 1].

4. Empirical results

In this part we present an empirical example of Bayesian comparison of
all competing specifications. As a basic dataset we considered T = 1398 ob-
servations of daily growth rates, yj, of the WIBOR one month zloty interest
rate from 20.03.97 till 05.09.02. The variability of daily returns yj as well as
some descriptive statistics are presented in Fig. 1. It is clear, that dynamics
of daily returns of the WIBOR1m instrument is very anomalous. Huge out-
liers, caused by changes in the monetary policy, together with the regions of
almost no variability, depicts very volatile behavior of rates of daily changes
of the Polish zloty middle term interest rate. In spite of the fact, that in
five years from March 1997 to September 2002, the Polish money market
was changing, our first attempt to compare all models was based on the
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whole dataset. As seen in Fig. 1, negative value of the skewness statistics
clearly shows substantial asymmetry of the empirical distribution. It also
may indicate skewness of the conditional distribution of yj.
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18.03.97 23.12.97 02.10.98 15.07.99 26.04.00 12.02.01 21.11.01 05.09.02

mean=-0,07; std. dev.=1,09; skewness=-3,74; kurtosis=48,50

Fig. 1. Daily returns yj of the WIBOR 1-month zloty interest rate from 20.03.1997

to 05.09.2002, T = 1398 observations.

In Table I we present the results of Bayesian comparison of explanatory
power of all competing specifications. In rows we put the decimal logarithm
of marginal data densities p(y(t)|Mi) (i = 0, 1, . . . , 6), posterior probabili-
ties of all models including M0, posterior probabilities of all conditionally
asymmetric GARCH specifications (Mi, i = 1, . . . , 6) and Bayes factors of
M0 (representing the case of conditional symmetry) against Mi, i = 1, . . . , 6
(as an alternative; i.e. conditional asymmetry). Both sets of P (Mi|y(t)), for
i = 0, 1, . . . , 6 and i = 1, . . . , 6 were obtained by imposing equal prior model
probabilities.

It is clear, that the modeled dataset of daily returns of WIBOR1m inter-
est rates do not support decisively superiority of any of competing skewing
mechanisms. The mass of posterior probabilities is rather substantially dis-
persed among models. However, the greatest value of P (Mi|y(t)) receives
conditionally skewed Student-t GARCH model built on the basis of the
hidden truncation idea. In this case the value of posterior probability is
greater than 44%. The dataset also supports conditionally skewed Student-t
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GARCH model with Beta distribution transformation (M3) and condition-
ally α-Stable GARCH specification (M6). Those three models cumulate
about 85% of the posterior probability mass, making all remained speci-
fications (including conditionally symmetric M0) rather improbable in the
view of the data. Very small value of posterior probability is received by
model M4, which, just like M3, is built on the basis of the Beta distribu-
tion transformation, but with two free parameters governing the type of
skewness. The observed time series support parsimony of Beta distribution
transformation with one free skewness parameter (in M3) and rejects gen-
eralization proposed by [15]. Finally, model M4 receives less than 9% of
posterior probability mass. Also the Bernstein density transformation (with
2 free parameters) leads to very doubtful explanatory power of the result-
ing conditionally skewed GARCH specification. The model M5 is strongly
rejected by the data, as the value of posterior probability is more than 10
times smaller than posterior probability of symmetric GARCH model (M0).
It leads to the similar conclusion, as it was pointed by [11], that Bernstein
densities do not yield flexible skewing mechanism for small values of m;
see (6).

On the basis of posterior odds ratios B0i (for i = 1, . . . , 6) we carried
out Bayesian testing of conditional asymmetry within presented GARCH
framework, according to the Jeffreys scale, see [13]. Except for M5, posterior
odds P0i reject conditional symmetry in favor of skewness of the conditional
distribution of yj in model Mi. In case of model M2 and M3, the data
strongly support conditional asymmetry, because P02 and P03 reach the third
grade of Jeffreys scale. The data substantially (grade 2) support M4 and
weakly (grade 1) support M1, both against symmetric M0. Additionally,
poor explanatory power of specification M5 is confirmed. The data strongly
support (grade 3) symmetry against skewing mechanism built on the basis
of Bernstein density transformation.

In Table II we put the results of Bayesian inference about tails and
skewness of the conditional distribution of daily returns in all competing
specifications. The tails of p(yj|ψj−1, θ, ωi, ηi,Mi) is modeled by the de-
grees of freedom parameter ν > 0 in Mi, for i = 0, 1, . . . , 5, while for i = 6
they are captured by the index of stability α ∈ (0, 2]. The report of the re-
sults of Bayesian estimation contain expectations and standard deviations of
marginal posterior distributions of parameters. Apart from making inference
about model specific skewness parameters in all models, we also calculated
posterior means and standard deviations of skewness measure γM , proposed
by [2]. Additionally, we put the value of posterior probability of left asym-
metry of the density p(yj |ψj−1, θ, ωi, ηi,Mi) (i.e. P (γM < 0|y(t),Mi).
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TABLE I

Logarithms of marginal data densities, posterior probabilities of all competing models (including M0) and Bayes factors of

M0 against Mi, for i = 1, 2, 3, 4, 5, 6.

M2 M3 M4 M5 M1 M6 M0

Azzalini Beta distribution Beta distribution Berstein densities Fernández and (α-Stable Symmetric

(1985) with 1 parameter, with 2 parameters, 2 parameters, Steel (1998) GARCH) Student-t

γ2 ∈ R Jones (2004) Jones and Faddy w1 ∼ N(0.33; 36), γ1 ∈ (0.5; 2) β ∈ (−1, 1) GARCH
γ2 ∼ N(0, 3) γ3 ∈ (0, +∞) (2003) w2 ∼ N(0.33; 36) ln γ1 ∼ N(0, 1) β ∼ U(−1, 1)

ln γ3 ∼ N(0, 1) a ∈ (0, +∞) w1 > 0, w2 > 0,
b ∈ (0, +∞) w1 + w2 < 1

ln a ∼ N(0, 1)
ln b ∼ N(0, 1)

log p(y(t)|Mi) −356.40 −356.62 −357.11 −358.78 −357.42 −356.87 −357.69

P (Mi|y
(t)),

i = 0, . . . , 6 0.437 0.262 0.086 0.002 0.041 0.150 0.023

P (Mi|y
(t)),

i = 0, . . . , 6 0.447 0.268 0.088 0.002 0.042 0.153 —

P0i 0.052 0.086 0.263 12.5 0.549 0.151 1

Strong (3)
Jeffreys Strong (3) Strong (3) Substantial Substantial
grade (2) against M5 in Weak (1) (2) —

favor of M0
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TABLE II

Posterior means and standard deviations of tails and asymmetry parameters in all models as well as posterior probability of

left skewness of p(yj |ψj−1, θ, ω1, ηi,Mi).

M2 M3 M4 M5 M1 M6 M0

Azzalini Beta distribution Beta distribution Berstein densities Fernández and (α-Stable Symmetric

(1985) with 1 parameter, with 2 parameters, 2 parameters, Steel (1998) GARCH) Student-t

γ2 ∈ R Jones (2004) Jones and Faddy w1 ∼ N(0.33; 36), γ1 ∈ (0.5; 2) β ∈ (−1, 1) GARCH
γ2 ∼ N(0, 3) γ3 ∈ (0, +∞) (2003) w2 ∼ N(0.33; 36) ln γ1 ∼ N(0, 1) β ∼ U(−1, 1)

ln γ3 ∼ N(0, 1) a ∈ (0, +∞) w1 > 0, w2 > 0,
b ∈ (0, +∞) w1 + w2 < 1

ln a ∼ N(0, 1)
ln b ∼ N(0, 1)

Symmetry γ2 = 0 γ3 = 1 a = b = 1 w1 = w2 = 1/3 γ1 = 1 β = 0 always

Tail ν 1.55 ν 1.59 ν 2.07 ν 1.54 ν 1.58 α 1.21 ν 1.55
Parameters 0.10 0.10 0.55 0.20 0.10 0.04 0.10

Asymmetry γ2 : −0.046 γ3 : 0.942 a : 0.951 w1 : 0.493 γ1 : 0.939 β : −0.017 —
Parameters 0.018 0.020 0.100 0.191 0.031 0.011 —
ηi b : 1.070 w2 : 0.255 —

0.091 0.276 —

γM −0.027 −0.041 −0.035 −0.060 −0.063 −0.015
Symmetry 0.018 0.030 0.040 0.075 0.033 0.010 —
γM = 0

P (γM 〈0|y(t), Mi) 0.9348 0.9184 0.8610 0.7872 0.9756 0.9446 —

P (γM 〈0|y(t)) 0.9263 —
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In case of conditional symmetry (model M0) the dataset clearly re-
jects the hypothesis of existence of the variance of the distribution
p(yj|ψj−1, θ, ν,M0), because the whole density of the posterior distribution
of the degrees of freedom parameter ν is located on the left side of the value
ν = 2. Also, very tight location of p(ν|y(t),M0) around the value ν = 1.55,
assures that the conditional distribution of daily returns possesses the first
moment. Those properties of the posterior distribution p(ν|y(t),M0) remains
practically unchanged after imposing skewness mechanisms. Only in model
M4, Beta distribution transformation with 2 free parameters substantially
changes both, location and scale of the posterior density of the degrees of
freedom parameter. In spite of the fact that p(ν|y(t),M4) is located on the
right side of the value ν = 2, the posterior standard deviation (equal to
0.55) leaves great uncertainty about existence of the second moment of the
conditional distribution p(yj|ψj−1, θ, ν, η4,M4).

The similar conclusions can be drawn in case of model M6, i.e. within
conditionally α-Stable GARCH specification. Since the posterior mean of
the index of stability α locates the density p(α|y(t),M6) around the value
α = 1.21 (with posterior standard deviation 0.04), the dataset decisively re-
jects conditional normality in model M6 (corresponding to α = 2). From the
definition of the family of the α-Stable distributions the resulting conditional
distribution p(yj |ψj−1, θ, α, η6,M6) does not have variance (just like in Mi,
i = 0, 1, . . . , 4). Also, posterior distribution of α is located on the right side
of the value α = 1. It clearly assures the existence of conditional mean of the
distribution of modeled daily returns (again just like in Mi, i = 0, 1, . . . , 5).
The posterior means and standard deviations of both, asymmetry param-
eters ηi and skewness measure γM indicate, that in all specifications Mi,
i = 1, . . . , 6 there is a quite strong evidence in favor of left skewness of the
conditional distribution of modeled daily returns. The posterior distribu-
tions of γM are located on the left side of the value γM = 0, confirming
left asymmetry of p(yj|ψj−1, θ, ωi, ηi,Mi). However, relatively great values
of posterior standard deviations of γM reduces potential strength of condi-
tional skewness effect. As measured by posterior mean of p(γM |y(t),Mi),
the greatest intensification of skewness of p(yj|ψj−1, θ, ωi, ηi,Mi) is obtained
in model M1. In this case of GARCH model the posterior expectation of
asymmetry measure is equal to M = −0.063, with posterior standard de-
viation equal to about 0.033. All remained conditionally skewed GARCH
specifications generated posterior distributions of γM , localized much closer
to the value γM = 0 and also much more dispersed. As a consequence,
model M1 yields the greatest value of posterior probability of left asymme-
try of p(yj |ψj−1, θ, ωi, ηi,Mi). In case of models M1,M2,M3,M6 the pos-

terior probabilities P (γM < 0|y(t),Mi) are greater than 91%. The condi-
tionally skewed GARCH specification based on the Berstein density trans-
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formation (M5) generates relatively low value of posterior probability of
left asymmetry, making symmetry, as well as skewness to the right not
strongly rejected by the data. Given Beta distribution transformation with
two free parameters, posterior probability of γM < 0 is much lower than
in case of model M3. Again we may conclude, that generalization, based
on two free parameters in Beta distribution, substantially changes infer-
ence about the properties of p(yj|ψj−1, θ, ωi, ηi,Mi). Finally, on the basis
of the Bayesian model pooling technique, we obtained posterior probability
of left asymmetry calculated considering the whole class of specifications
Mi, i = 1, . . . , 6. The modeled dataset clearly supports left asymmetry, as
P (γM < 0|y(t)) = 0.9263, but it also leaves some uncertainty about true
intensification of this phenomenon. Posterior probability of symmetry and
right skewness of p(yj|ψj−1, θ, ωi, ηi,Mi) (equal to 0.0737) does not totally
reject those cases.

5. Concluding remarks

The main goal of this paper was an application of Bayesian model com-
parison in testing the explanatory power of the set of competing GARCH
(Generalized Autoregressive Conditionally Heteroscedastic) specifications,
all with asymmetric and heavy tailed conditional distributions. As an ini-
tial specification we considered GARCH process with conditional Student-t
distribution with unknown degrees of freedom parameter, proposed by [7].
By introducing skewness into Student-t family and by incorporating the
resulting class as a conditional distribution we generated various GARCH
models, which compete in explaining possible asymmetry of both condi-
tional and unconditional distribution of financial returns. In order to make
Student-t family skewed we considered various alternative methods recently
proposed in the literature. In particular, we applied the hidden truncation
mechanism (see [1,3]), an approach based on the inverse scale factors in the
positive and the negative orthant (see [10]), order statistics concept [14], two
different settings of the Beta distribution transformation [15] and Bernstein
density transformation (see [28]). Additionally, we presented the results of
Bayesian inference within GARCH process with conditional α-Stable distri-
bution, (see [29, 30]).

Analysis of posterior probabilities of competing specifications did not
lead to decisive conclusion about superiority of any of the considered spec-
ifications. The greatest value of P (Mi|y(t)) received conditionally skewed
Student-t conditional distribution built on the basis of the hidden truncation
mechanism (see [3]). The data also supported Beta distribution transforma-
tion with single free parameter and conditionally α-Stable GARCH process.
Those three models cumulated more than 85% of the posterior probability
mass.



3120 M. Pipień

The results of Bayesian estimation showed, that in each competing spec-
ification the modeled data set confirmed left asymmetry of the conditional
distribution p(yj|ψj−1, θ, ωi, ηi,Mi). In all models Mi (i = 1, . . . , 6) the pos-
terior distribution of skewness measure γM was situated on the left side of
the value γM = 0 (representing symmetry). However, substantial dispersion
of p(M |y(t),Mi), as measured by the posterior standard deviation of γM , did
not preclude symmetry or right skewness of p(yj|ψj−1, θ, ωi, ηi,Mi). As a re-
sult, the posterior probability of left asymmetry (equal to 0.9263), obtained
by application of Bayesian model pooling approach, left some uncertainty
about the true strength of conditional skewness phenomenon.

The author would like to thank Małgorzata Snarska for help in manuscript
preparation in LaTeX format.
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