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Portfolio theory is a very powerful tool in the modern investment the-
ory. It is helpful in estimating risk of an investor’s portfolio, arosen from
lack of information, uncertainty and incomplete knowledge of reality, which
forbids a perfect prediction of future price changes. Despite of many ad-
vantages this tool is not known and not widely used among investors on
Warsaw Stock Exchange. The main reason for abandoning this method is
a high level of complexity and immense calculations. The aim of this paper
is to introduce an automatic decision-making system, which allows a single
investor to use complex methods of Modern Portfolio Theory (MPT). The
key tool in MPT is an analysis of an empirical covariance matrix. This
matrix, obtained from historical data, biased by such a high amount of
statistical uncertainty, that it can be seen as random. By bringing into
practice the ideas of Random Matrix Theory (RMT), the noise is removed
or significantly reduced, so the future risk and return are better estimated
and controlled. These concepts are applied to the Warsaw Stock Exchange
Simulator http://gra.onet.pl. The result of the simulation is 18% level
of gains in comparison with respective 10% loss of the Warsaw Stock Ex-
change main index WIG.

PACS numbers:

1. Portfolio theory — setting the stage

Investments in stock securities like shares, currencies or different types
of derivatives are generally treated as very risky. Ability to predict future
movements in prices (price changes) allows one to minimize the risk.

∗ Presented at the 2nd Polish Symposium on Econo- and Sociophysics, Kraków,
Poland, April 21–22, 2006.

(3145)



3146 M. Snarska, J. Krzych

Modern Portfolio Theory (MPT) refers to an investment strategy that
seeks to construct an optimal portfolio by considering the relationship be-
tween risk and return. MPT suggests that the fundamental issue of capital
investment should no longer be to pick out dominant stocks but to diversify
the wealth among many different assets. The success of investment does not
purely depend on return, but also on the risk, which has to be taken into
account. Risk itself is influenced by the correlations between different as-
sets, thus the portfolio selection process represents a complex optimization
problem. Let us briefly remind several key tools and concepts, that MPT
uses, i.e. the Markowitz’s Model, which is crucial in further analysis.

1.1. Elementary definitions and the Markowitz’s Model

The efficient portfolio theory was first introduced by Markowitz in 1952
[8]. He decided not to analyze the return, risk and volatility of single stocks
in a portfolio, but considering portfolio (groups of shares) as a whole. In
order to manage this problem, he introduced a simple statistical measure —
correlation, which links up the changes in prices of an individual assets with
all other changes in price of assets in a given portfolio.

1.1.1. Construction of an efficient portfolio of multiple assets

Consider T quotations of the i-th stock and introduce a vector of re-
turns ri,t, where ri,t, t = 1, . . . , T is the observed realization of a random
variable ri. Denote Si(t) time series of prices for a certain stock i. Then

ri,t = lnSi(t + 1) − lnSi(t) , (1)

Then the expected return of a single asset is given by

Ri = E(ri) = r̂i = r̄i =
1

T

T
∑

t=1

ri,t . (2)

If additionally N denotes the number of assets in a portfolio, then w is
a vector of weights (ratio of different stocks in a portfolio). then we have to
impose a budget constraint

N
∑

i=1

wi = wT · 1 = 1 , (3)

where 1 is a vector of ones. If additionally ∀i wi ≥ 0 the short sell is
excluded. Denoting R as a vector of expected returns of single stocks, we
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see, that an expected return of a whole portfolio is a linear combination of
returns of assets in a portfolio

Rp =
N

∑

i=1

wi Ri = wT · R .

To calculate the risk of a given portfolio we introduce a certain metric of
interdependence between different random variables. The most natural one
is the statistic measure — covariance covi,j , which expresses the interdepen-
dence of variables ri,t and rj,t in all observed discrete times t = 1, . . . , T

covi,j =
1

T

T
∑

t=1

(ri,t − Ri) (rj,t − Rj) ⇔
1

T
MT · M = Cov . (4)

Now we are ready to define the variance of a portfolio as

σ2
p = wT Cov w . (5)

1.1.2. Optimization of a portfolio

We can calculate the return and risk of any given portfolio. Now we
have to find and choose the effective portfolios. Since it is the quadratic
programming problem, it will be done in two steps:

1. First the portfolio with minimal risk of all possible portfolios will be
selected (the return rate is equal to zero, i.e. Rp = 0);

2. Secondly we will find the minimum variance portfolio among portfolios
of arbitrary chosen return rate (Rp = µ) and then find the efficient
frontier iteratively.

Minimal risk portfolio

We have to find the vector of weights w. In order to do it, we need to know
perfectly the covariance matrix1. Let f is the function of risk, depending of
portfolio composition

f(p) = σ2
p = wT Cov w , (6)

with linear constraint (3)

wT · 1 = 1 . (7)

1 This is a very strong assumption, since as we shall see later, covariance matrix derived
from empirical data contains a high amount of noise and statistical uncertainty.
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Our task is to minimize the function f under the linear constraint (3). This
can be done in a convenient way by using the method of Lagrange multipliers.
We get the Lagrange function in a form:

F (w, λ) = wT Cov w + λ(wT · 1− 1) . (8)

Standard methods of finding the minimum of a multivariate function with
a boundary condition lead to the system of N + 1 equations with N + 1
unknown quantities

{

2Cov w + λ · 1 = 0 ,

wT · 1 = 1 .
(9)

Minimal variance portfolio

Second task contains one more restriction, that the expected return of a port-
folio p have to obey:

Rp = wT · R = µ . (10)

Then the Lagrange function reads:

F (w, λ, γ) = wT Cov w + λ(wT · 1 − 1) + γ(wT · R − µ) , (11)

which gives us










2Cov w + λ · 1 + γ · R = 0 ,

wT · 1 = 1 ,

wT · R = µ .

(12)

In this case we have to deal with the system of N + 2 equations with N + 2
unknown quantities, which is solvable in general case.

2. Covariance matrix and portfolio construction

Covariance matrix plays an important role in the risk measurement and
portfolio optimization. Modern portfolio theories assume, that covariances
or equivalently correlations between different stocks are perfectly known and
can exactly be derived from the past data. In practice it is quite opposite.
Empirical Covariance Matrices, built from historical data enclose such a high
amount of noise, that at first look they can be treated as random. This
means, that future risk and return of a portfolio are not well estimated and
controlled. Only after the proper denoising procedure is involved, one can
construct an efficient portfolio using Markowitz’s result.

In this section we will briefly explain how using the RMT one can reduce
the bias of the empirical covariance matrix.
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2.1. Gaussian correlated variables

Suppose now, that the returns from different stocks are Gaussian random
variables. The joint probability distribution function can be then written as:

PG(M1,M2, . . . ,MN )=
1

√

(2π)N det Cov
exp



−
1

2

∑

i,j

Mi (Cov−1

ij )Mj



 ,

where (Cov−1

ij ) is the element of the inverse covariance matrix.
It is well known result, that any set of correlated Gaussian random vari-

ables can always be decomposed into a linear combination of independent
Gaussian random variables. The converse is also true, since the sum of
Gaussian random variables is also a Gaussian random variable. In other
words, correlated Gaussian random variables are fully characterized by their
covariance (or correlation) matrix2.

2.1.1. Covariance estimator

The simplest way to construct the covariance matrix estimator for Gaus-
sian random variables is to deal with historical time series of returns. The
empirical covariance matrix of returns ri,t can be then expressed through
the Eq. (4).

2.2. RMT based data filtering and denoising procedure

— the shrinkage method

For any practical use of Modern Portfolio Theory, it would be necessary
to obtain reliable estimates for covariance matrices of real-life financial re-
turns (based on historical data). Thus a reliable empirical determination
of a covariance matrix turns out to be difficult. If one considers N assets,
the covariance matrix need to be determined from N time series of length
T � N . Typically T is not very large compared to N and one should ex-
pect that the determination of the covariances is noisy. This noise cannot
be removed by simply increasing the number of independent measurements
of the investigated financial market, because economic events that affect the
market are unique and cannot be repeated. Therefore, the structure of the
matrix estimator is dominated by “measurement” noise. From our point of
view it is interesting to compare the properties of an empirical covariance
matrix Cov to a purely random matrix, well defined in the sense of Ran-
dom Matrix Theory [5]. Deviations from the RMT might then suggest the
presence of true information.

2 This is not true in general case, when one needs to describe the interdependence of
non Gaussian correlated variables.
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2.2.1. Gaussian filtering

We will assume here that the only randomness in the model comes from
the Gaussian probability distribution. In order to describe the filtering pro-
cedure we will first summarize some well known universal properties of the
random matrices.

2.2.2. RMT predictions for behaviour of eigenvalues

Let M denotes N × T matrix, whose entries are i.i.d. random vari-
ables, which are normally distributed with zero mean and unit variance. As
N,T → ∞ and while Q = T/N is kept fixed, the probability density func-

tion for the eigenvalues of the Wishart matrix C̃ov = (1/T )M̃ · M̃T is given
by (Marčenko, Pastur [7])

ρ(λ) =
Q

2πσ2

√

(λmax − λ) (λ − λmin)

λ
, (13)

for λ such that λmin ≤ λ ≤ λmax where λmin and λmax satisfy

λmax
min = σ2

(

1 +
1

Q
± 2

√

1

Q

)

. (14)

2.2.3. Standard denoising procedure and the shrinkage method

To remove noise we need first to compare the empirical distribution of
the eigenvalues of the covariance matrix (4) of stocks (in our case for Warsaw
Stock Exchange shares) with theoretical prediction given by (13) (Wishart

Fit), based on the assumption that the covariance matrix C̃ov = (1/T )M̃M̃T

is random.
If we look closely at Fig. 1 we can observe, that there are several large

eigenvalues (the largest one is labeled as “the market” one, since it consists
the information about all the stocks in the market i.e. is closely related
to the WIG index), however, the greater part of the spectrum is concen-
trated between 0 and 0.002 (i.e. Wishart Fit). We believe, that behind
this “random” part of the spectrum there exists single eigenvalue, which car-
ries nontrivial and useful information. Exploiting the knowledge from linear
algebra, we may rewrite our covariance matrix Cov as:

Cov = U · D · UT . (15)

Here D is a diagonal matrix of eigenvalues of the original matrix Cov and U

is a matrix whose columns are normalized eigenvectors corresponding with
proper eigenvalues. Furthermore, U fulfills the equation:

U · UT = 1 = U · U−1 . (16)
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Fig. 1. Histogram of eigenvalues for the WIG stocks from 29. 01. 1999 till 17. 01.

2003 with Wishart Fit.

The trace is conserved, so we write:

Tr (Cov) = Tr (U · D · UT ) . (17)

Using (16) and cyclic properties of the trace we get

Tr (D) = Tr (Cov) . (18)

Following the fact, D is a diagonal matrix of eigenvalues one can decompose
its trace in the following way:

Tr (Cov) = Tr (D) =
∑

i

λi +
∑

j

λj , (19)

where λi ∈ [λmin, λmax] is a set of eigenvalues that are predicted by (13)
λj ∈ [λ1, λmin) ∪ (λmax, λN ] is set of these eigenvalues, which do not obey
the RMT conditions. If we now replace

∑

i λi by one eigenvalue ζ, we get

ζ = Tr (Cov) −
∑

j

λj . (20)

This results in squeezing the “random” part of the spectrum to a single de-
generated eigenvalue. The diagonalized matrix has now only several eigen-
values.
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2.3. Covariance matrix reconstruction

Due to noise-removing procedures we know exactly the eigenvalues of
the real covariance matrix. But since we have no knowledge of the original
covariance matrix, we do not have enough knowledge of its eigenvectors.
The familiarity with of eigenvalues is not sufficient to find the covariance
matrix.

After applying the denoising procedure we will reconstruct the covariance
matrix using the diagonalized matrix with some eigenvalues shrinked and
matrices of eigenvectors calculated for “non-shrinked” covariance matrix.

This reconstructed and unbiased covariance matrix is used as an initial
covariance matrix in Markowitz Model described above. The new model
itself is a part of automatic investing algorithm described in the next section.
The results are presented in the last section.

3. An overview of the system — automatic investing algorithm

The Automatic Trading Agent is a client–server application for manag-
ing stock portfolios without involving user interference. It consists of three
main parts: Virtual Agent, Data Collector and User Interface. Clients run-
ning the system on their workstations are able to monitor a stream of data
(information about the state of a portfolio) from the ATA server using their
web browsers. This part of application is controlled by the user interface. In
addition to different standard portfolio management tools ATA system in-
cludes several RMT-based techniques for building an optimal portfolio with
the noise effect minimized. The system is designed not only to help a sin-
gle client choose the right, optimal portfolio with a user-defined level of risk
and expected return, but also to diminish user engagement in stock data and
information analysis. Once the strategy is fixed, client is able to monitor
the future changes in the portfolio; the rest including portfolio optimization,
data picking, sending requests and buy/sell orders is done by a decision
system — Virtual Agent.

Fig. 2. The architecture of the system.
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3.1. Database module and data collector

This part of the program is responsible for assembling and managing
the stock data. It also verifies the database in accordance with the assets
available for the transaction platform.

3.1.1. Database

The data are stored on the server as files with daily quotations in a sep-
arate folder. Any company is represented by a text file, whose name is the
company’s ISIN number. Each file consist of two columns — one represent-
ing the dates and the second corresponding daily closing prices.

3.1.2. Data collection

Data collector is a separate program run by the server each trading day,
one hour after the daily quotations are closed. It downloads the current
quotationfrom stock exchange data vendors (http://www.parkiet.com) and
writes it down into the database.

The matrix of stocks, which will be used in further portfolio analysis, is
then filled with the data from the database. The algorithm loads all prices
of securities for a certain time window from the previously defined folder.

3.1.3. Corrections module

Data are sometimes corrupted during the transfer or from “measurement”
reasons (i.e. there is no quotation for the certain stock and the Stock Ex-
change is unable to state the closing price). This result in imperfect and
incomplete information and “zeros” in initial time series. The number of
files may also vary, because it reflects the list of assets, which are currently
available for trading.

This part of the program watches and controls the correctness of the
files, the entries in the database and the number of files.

3.2. Virtual agent

Virtual agent is a specific decision-making system. Its input are current
and historical stock exchange information and data form the database. On
output it generates specific requests and orders to transaction platform. In
our case it is the Stock Exchange Game structure, based on the WARSET
trading system.

Information conversion and data analysis is done one hour after WSE
the session is closed. All new daily data are incorporated in the database
and then optimal decision is taken and the sell/buy request, which will be
accomplished the next day, is sent.
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The virtual agents build its resolutions on the Effective Portfolio Theory
and Random Matrix Theory.

3.2.1. Covariance Matrix Module

This part of the systems offers various types of covariance matrix es-
timators, which are used in solution of Markowitz’s problem. The mod-
ule’s default setting is the simplest Gaussian estimator (4), but this can be
modified by the user. The Covariance Matrix Module is responsible for
building a raw matrix from the data and also for reconstructing it after the
denoising procedure.

3.2.2. Denoising and Filtering Module

The Module controls the diagonalization process, which uses the LU
decomposition, i.e. calculation of eigenvalues and eigenvectors. The eigen-
vectors are stored in the system and the eigenvalues are used to reduce the
degrees of freedom of the covariance matrix, as it is predicted by RMT.
Default denoising procedure is the standard one, introduced by [1].

3.2.3. Portfolio optimization

This module is a separate program, which solves the Markowitz’s prob-
lem and finds the optimal portfolio and then sends buy/sell order. Before
any request is sent, Virtual Agent verifies its own decisions using several
criteria. The simplest one is to check, whether the costs of the predicted
transaction are not higher, than the realized portfolio. If they are, then
Agent sends hold request on the whole portfolio.

Such a portfolio correction is usually done once a month3. The correc-
tion means to find once again the portfolio with fixed level of return and
risk accepted, regarding all the new quotations since the last accomplished
correction.

3.2.4. Corrected portfolio

We have to compare two separate portfolios: the “old” one, which pattern
is stored on the remote transaction platform with the “new” one, created
using the incorporated quotations. The next step is to determine an abstract
portfolio as a result of subtractions between the examined portfolios.

Let n is the vector of weights of the new portfolio, and s denotes the
same vector for the old portfolio, then the weights of a correction one are:

w = n − s . (21)

3 The frequency of correction, like all other key parameters can be increased by the
user.
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If a component of w is < 0 the sell request is sent, and obviously for wi > 0
system performs a buy order. wi = 0 means system holds that certain asset
and its share in a portfolio does not change.

3.2.5. Transaction costs

Each change in a portfolio is charged with brockerages (see Table I). To
compensate this effect we need to sell slightly more individual stocks, than it
arises from our analysis. The reverse effect has to be applied to buy request.

TABLE I

Costs and commission (source: http://gra.onet.pl/nowa/prowizje.asp).

Value of order Height of brockerage

≤ 500 PLN 10 PLN

500–2500 PLN 10 PLN +1,5% over 500 PLN

2500–10000 PLN 40 PLN +1% over 2500 PLN

≥ 10000 PLN 115 PLN +0,75% over 10000 PLN

3.3. Communication and reporting modules — user interface

3.3.1. Communication module

The communication module allows the Virtual Agent to connect to the
Game platform and place appropriate orders. This module is a separate
script, constructed to be independent of the trading platform. This gives
the possibility to replace the Simulator used in the testing period by the real
trading platform.

3.3.2. Reporting module

The User Interface plays the role of the reporting module. Its external
part, accessible for the user is the web page (myricaria.if.uj.edu.pl).
Here the investor can follow present information on accounts, the gains and
losses figures and the history of all changes, investment strategies and de-
cisions taken. The system user has also a possibility to change the key
parameters of the program, such as investment strategy (choice of the level
of risk accepted) and the frequency of portfolio corrections.
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3.4. Implemented technologies

3.4.1. C# language

The ATA is completely written in C# language, chosen because of multi-
platform advantage. The programs may be written in one environment
and then run under any platform i.e. Windows and Linux. the default
environment for the ATA is linux server, but the programming process was
made under Windows, so the multi-platform ability is a must.

Another important advantage of the language is the intuitive construc-
tion of mathematical formulas and the precision of calculations far beyond
the popular C++ language, which in our case is crucial.

3.4.2. Linux tools

The Data Collector is a BASH shell script, run by Cron daemon, every
fixed number of days. The script also uses Wget to efficiently collect the data
via FTP/HTTP. The AWK, SED and GREP allow the script very easily to
explore and analyze high amounts of data.

3.4.3. HTML, PHP, CSS

The user interface is prepared as the website. The PHP scripts run by
the www server Apache, allow the creation of dynamic HTML websites,
where the content changes frequently. The proper view of the website in
any internet viewer is controlled by the CSS.

4. Warsaw Stock Exchange simulator and ATA

implementation results

Here we present the results of the whole procedure described above. For
our research we have chosen the Warsaw Stock Exchange simulator available
via the www url http://gra.onet.pl, as a testground.

4.1. Rules of the game

There are several steps and rules a user must adhere and execute to
properly use the simulator. First of all, the system needs to recognize us as
its users, possessing so called onet_id. Thus the primary step is to register
oneself in the onet system, by filling out a simple form. Using onet_id

one may now log on http://gra.onet.pl to create our first account, with
40000 PLN as an initial sum of money for every account. The number
of accounts a single user may open is not limited and the money can be
arbitrarily invested. Sharing more than one account number, one is able to
check different investment strategies.
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This game act like a real stock exchange and brockerage house. We have
to start with buy order — choose financial instruments, which we want to
buy and specify their quantity and price limits. If there are no constraints
on price, then the order is realized at any price. All quotations are delayed
20 minutes, to give the same chance to the players who cannot follow the
quotations in real time. All orders are cancelable, also with 20 minutes delay.
Each user also has to pay transaction costs as in Table I.

We have constructed a certain portfolio, after our buy order is being
accomplished. Now we need to decide, what shares we need to buy/sell/hold
to minimize the risk and maximize the return.

To win an excellent rank and high gains, one need to be involved and
follow the price changes permanently. Most of the steps one need to execute,
except the choice of the accepted level of risk, can be done automatically by
especially programmed virtual agent.

4.2. Data selection and analysis

The WIG index incorporates about 120 stocks, which make about 80%
of all assets quoted during continuous trading. From our point of view, it
is interesting to examine the connections (i.e. correlations) between these
stocks.

Fig. 3. Changes in WIG index during the period from 1991 till 2004.

In order to conduct further research and improve the effectiveness of
our algorithm, we first need to identify and choose a stable period in the
economy. We have related it with the period of the lowest volatility of the
WIG index. We have started with the conversion of absolute changes of the
WIG time series S(t) to the relative ones according to

G(t) =
S(t + 1) − S(t)

S(t)
. (22)
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Fig. 4. Fluctuations of relative WIG changes.

Then for a fixed time window width T = 990 quotations, the volatility
of the time series G(t) was calculated:

σ(t0) =

√

√

√

√

1

T − 1

T
∑

i=0

(

G(t0 + i) − G(T )
)2

, (23)

where G(T ) is the average G(t) over the whole time window T . This results
can be presented on the diagram (Fig. 5). It is easy to notice, that the first
few years of quotations are determined by a relatively high volatility. That
is why the period from 29. 01. 1999 to 17. 01. 2003 was chosen in further
analysis and tests.

Fig. 5. Volatility changes in time for a fixed window length.

Another problem we have encountered during the analysis of historical
data, was the incomplete information about some of 120 stocks, which may
result in the infinities in relative changes G(t), when the lack of information
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was replaced by zeros in the original S(t) time series4. The separate “zeros”
were extrapolated from the future and previous relative changes of a given
time series. In the case, if more information is lost in the way, one is unable
to predict the further prices then this stock is not very examined in further
research. For the fixed period of 990 days we have chosen then 100 stocks
and we have calculated the average standard deviation of price changes 〈σ〉 =
0, 4767 and average correlation of returns between stocks 〈cor ij〉 = 0, 0657.

Fig. 6. Logarithmic price changes (left) and correlations (right) for WIG companies.

4.3. Simulation on the historical data and its results

The next step in testing our system is to check how it works when the in-
put and output data are historical. The selected time period was divided into
parts. We have assumed, that the initial value of a portfolio is 40000PLN.
We have used here a time window with variable width T . The analysis
started with T = 139 days. Every day, the T -dimension of the matrix M

was increased by one, until the final T = 849 days.
The number of available stocks N = 100 and the average number of

stocks selected was 45. Every 316 days the correction was made. The
portfolio went to the roof on 151 day with 56443.61PLN a a result. (This
is 140% of the initial value.)

The portfolio went to the floor with 35042, 66PLN after first 27 days.
The result of the investment after 849 days yields 47185, 86PLN, which
means the 18% gains compared to the 10% WIG downfall.

5. Conclusions and future work

The aim of this paper was to introduce a simple RMT based mechanism,
acting like a virtual trader in a portfolio selection and optimization process.
Imposing the results from Random Matrix Theory our program reduces the

4 “Zeros” appear when one is unable to settle the price of an individual stocks, see
Ziębiec (2003).
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Fig. 7. The results of the simulation on a portofolio’s balance. Vertical lines indicate

the correction.

statistical noise and gives a better estimation of future risk and return for
a certain portfolio. However, in this paper only the simplest version of the
programme was presented. An improvement of the program, which adopts
its decisions to the all information available will be the part of our future
work. From our point of view, an interesting for further analysis is the
hypothesis, that there exist also time correlations between different shares.
This fact might be useful in the detection of buy/sell signals.
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