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The financial market is non predictable, as according to the Bachelier,
the mathematical expectation of the speculator is zero. Nevertheless, we
observe in the price fluctuations the two distinct scales, short and long time.
Behaviour of a market in long terms, such as year intervals, is different from
that in short terms. A diffusion equation with a time dependent diffusion
coefficient that describes the fluctuations of the financial market, is subject
to a two-scale homogenisation, and long term characteristics of the market
such as mean behaviour of price and variance, are obtained. We indicate
also that introduction of convolution into diffusion equation permits to
obtain L-stable behaviour of finance.

PACS numbers: 89.65.Gh, 66.10.Cb

1. Introduction

The prices on stock market are formed as a result of superposition of
large number of different reasons and can be assumed to be governed by
probability laws. The fluctuations of prices on stock market resemble an
errating walk, as it was indicated yet in 1900 by Bachelier [1], when he
derived the diffusion equation from a condition that speculators should re-
ceive no information from the past prices. The difference of action prices
x = x(t) ≡ p(t+∆t)−p(t), observed at two time moments t and t+∆t, plays
in this diffusion equation role of independent spatial variable. Hence, the mo-
tion of prices on the financial market is similar to the Brownian movement,
discovered by the biologist Robert Brown [2] and analysed by Einstein [3,4]
and Smoluchowski [5–7], cf. also [8]. Bachelier’s observation did not find
large recognition at his life, but now is a basis of greater part of models of
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prices, especially the Black–Scholes model [9], cf. also [10]. Later Samuel-
son [11] indicated that instead of a simple difference (1) it is more proper to
consider differences of the respective logarithms x = ln p(t + ∆t) − ln p(t).

However, as it was indicated by Mandelbrot [12], despite the fundamen-
tal importance of Bachelier’s random walk of the price changes (one cannot
imagine an advanced textbook on finances without the Brownian motion
description as its starting point), the empirical samples of successive dif-
ferences of stock price changes gathered from 1890 year, are not normally
distributed: they are usually too peaked to be Gaussian and do not have
finite variance. The distribution of price changes is leptokurtic, since the
sample kurtosis is much greater than 3, the value for a normal distribution.
Mandelbrot regarded that the price changes belong to the stable family of
distributions, known as L-stable or Lévy–Pareto distributions. Mandelbrot
and Wallis [13] distinguished two non-Gaussian kinds of events observed
in the economic world: isolated catastrophic events, the Noah effect which
refers to abrupt and discontinuous changes in speculative time series and
regular alternations of good and bad series, termed the Joseph effect.

Besides those effects with stochastic non-Gaussian origin, another type
of departure from normal distribution is observed when the irregular random
behaviour of stock price changes is superposed on another regular periodic
pattern. There is a definite evidence of periodic behaviour of price changes
corresponding to intervals of a day, week, quarter and year, according to
the rhythm of human activity. Osborne [14] indicates, for example, that
there is a reproducible burst of trading at the beginning and the end of
trading day. While diurnal cycle is almost obvious, a somewhat more subtle
statistical analysis (χ2 test) reveals a week periodicity in the daily across-
the-market dispersion of stock price changes. This price dispersion is a
maximum at middle of week, what can be interpreted that traders tend to
forget the market business over a long week-end and make up their minds
at the beginning of new week.

At the beginning of the present paper, we outline some properties of
diffusion equation with nonhomogeneous coefficient (dependent on time t or
price changes x) and describe its solutions as the Gauss and Lévy types.
We also propose to use a two scale homogenisation method to describe an
average behaviour of a financial market in a long time or in averaged market
in the case in which the diffusion coefficient depends on stock price change.
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2. Diffusion in 1 dimension

Movement of Brownian particle is described by a distribution function
f = f(x, t) satisfying the diffusion equation

∂f

∂t
=

∂

∂x

(

D
∂f

∂x

)

. (1)

Function f gives the probability density of finding Brownian particle at
position x at time t, and D denotes the coefficient of diffusion. According
to the Einstein fluctuational dissipative relation D ∼ T/η, the coefficient D
is proportional to a quotient of the absolute temperature T and viscosity η,
and if η does not depend on T , it is simply proportional to T .

The form of Eq. (1) admits dependence of the coefficient D on x which
may be realized e.g. by dependence of T on x. If D is a function of time
D = D(t) only, or if it is constant, the following form is obtained

∂f

∂t
= D

∂2f

∂x2
. (2)

Depending on interpretation, the coefficient D denotes either the thermal
diffusivity (quotient of the heat conductivity and proper heat) or the diffu-
sion coefficient. The last meaning is used below.

According to Bachelier’s observation, the time independent variable t in
diffusion equation is measured by successive number of stock transactions
and the independent variable x, denotes stock action price change. The
coefficient D varies according to a market temperature, cf. [15].

2.1. Fick’s equations

Let f = f(x, t) be the probability density of finding a Brownian (B)
particle at point x and at time t, and let j = j(x, t) be a stream of B
particles. The continuity (or balance) equation describes conservation of
the number of B particles

∂f

∂t
+

∂j

∂x
= 0 . (3)

The transport relation, known as the first law of Fick reads

j = −D
∂f

∂x
, (4)

where D denotes the diffusion coefficient, and we admit in general D =
D(x, t). The first Fick’s law extended for the case of presence of external
forces F has the form

j = −D

(

∂f

∂x
−

F

T
f

)

, (5)
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where T is a temperature. From the mass balance and the first Fick law,
the second Fick law — it is the diffusion equation (1) — can be derived.

2.2. Steady diffusion in temperature gradient

Let a diffusion in a slab 0 ≤ x ≤ ` be stationary j = J0 = constant. In
presence of an external force F , when the concentration within the diffusion
volume does not change with respect to time (j = constant), the Fick first
law has a form

−D

(

∂f

∂x
−

F

T
f

)

= J0 .

In special case, when J0 = 0 and the ends of the slab are kept at different
temperatures T (x = 0) = T0, T (x = `) = T`, what gives a linear temperature
distribution T = Ax + B, we obtain

f = C(Ax + B)F/A. (6)

Here A = (T` − T0)/` and B = T0, while the constant C normalises the

distribution
∫ `
0 fdx = 1. We observe that even in such simple case the

distribution f in slab is no longer gibbsian.

3. Time dependent coefficient of diffusion

In this case the diffusion equation has the form (2). If f(x, 0) = δ(x),
the solution of (2) is, cf. [16],

f(x, t) =
1

2
√

π
∫ t
0 Ddt

exp

{

−
x2

4
∫ t
0 Ddt

}

. (7)

The variance of this distribution is

σ2 = σ2(t) ≡ 2

t
∫

0

D(τ)dτ . (8)

Hence

f(x, t) =
1

√
2π σ

e−x2/2σ2

. (9)

If the diffusion coefficient D does not depend on t and is constant, we have
for the dispersion (standard deviation)

σ =
√

2Dt (10)

the classical result for the Gaussian distribution in one-dimensional process.
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3.1. Periodic time dependence of the diffusion coefficient

As it was said it is observed a periodic oscillation of the across-the-market
dispersion of price change for time intervals (day, week, and so on). As the
dispersion is proportional to the diffusion coefficient D, it means that D is
a periodic function of time.

Therefore, let D(t) be a function of time with period T . For t = nT ,
with a whole number n, we have

t
∫

0

Ddt =

T
∫

0

Ddt +

2T
∫

T

Ddt + · · · +
nT
∫

(n−1)T

Ddt = n

T
∫

0

Ddt . (11)

Hence, according to (8)

1

2
σ2 =

t
∫

0

Ddt = nT
1

T

T
∫

0

Ddt . (12)

Denoting the mean value of D over the period T by

D =
1

T

T
∫

0

Ddt (13)

and introducing time t′ = nT counted in new units [T ] we obtain

f(x, t′) =
1

2
√

π Dt′
e−x2/4Dt′ . (14)

We observe in more coarse time units the classical Brownian movement
formula is recovered.

3.2. 2 scale time homogenisation of the Brownian motion of stock prices

To the analogous result we arrive applying more general method of
asymptotic homogenisation, cf. [17, 18]. We introduce two time variables
t and τ measured in different scales, it is in different units of time. The time
t is measured by a slow clock and time τ by a fast (more accurate) clock.
We have

τ =
t

ε
, (15)

where the scale parameter ε is positive (ε > 0) and small. For example,
if [t] = day (the duration of a session ≡ 6 hours) and [τ ]= hour, then
ε = hour/day ≈ 1/6.



3182 R. Wojnar

Instead of f(x, t) we write f(x, t, τ) and observe that

∂f(x, t, τ)

∂t
=

∂f(x, t, τ)

∂t
+

∂f(x, t, τ)

∂τ

1

ε
.

We assume an Ansatz

f ε = f (0)(x, t, τ) + εf (1)(x, t, τ) + ε2f (2)(x, t, τ) + · · · .

Then the diffusion equation (2) can be written in the form
(

∂

∂t
+

1

ε

∂

∂τ

)

(

f (0)(x, t, τ) + εf (1)(x, t, τ) + ε2f (2)(x, t, τ) + · · ·
)

= D(τ)
∂2

∂x2

(

f (0)(x, t, τ) + εf (1)(x, t, τ) + ε2f (2)(x, t, τ) + · · ·
)

. (16)

We compare expressions at the same powers of ε, and find consecutively:
At ε−1

∂f (0)(x, t, τ)

∂τ
= 0

what means that f (0) does not depend on the quick variable τ

f (0) = f (0)(x, t) . (17)

At ε0 we have
∂f (0)

∂t
+

∂f (1)

∂τ
= D(τ)

∂2

∂x2
f (0)(x, t) . (18)

We put

f (1) = χ(τ)
∂f (0)

∂t
, (19)

where χ(τ) is a periodic function such that

T
∫

0

χ(τ)dτ = 0 . (20)

After substitution (19) into (18) we get

∂f (0)

∂t
(1 + χ(τ)) = D(τ)

∂2f (0)

∂x2
. (21)

Taking of mean with respect to variable τ over period T gives

∂f (0)

∂t
=





1

T

T
∫

0

D(τ)dτ





∂2f (0)

∂x2
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or
∂f (0)

∂t
= D

∂2f (0)

∂x2
, (22)

where definition (13) of the mean diffusion coefficient was used. The solution
of the last equation with the initial condition f(x, 0) = δ(x) is again given
by (14), if only introduce t instead of t′, according to the present meaning
of time t as a slow variable.

4. Coefficient of diffusion dependent on price change

Consider Fick’s first law with convolution, a more general than (4),

j(x, t) = −
∞
∫

−∞

D(x − ξ)
∂f(ξ, t)

∂ξ
dξ . (23)

Then instead of (1) we have the following equation of diffusion

∂f

∂t
=

∂

∂x





∞
∫

−∞

D(x − ξ)
∂f(ξ, t)

∂ξ
dξ



 . (24)

To both sides of the equation we apply the Fourier transformation and get

∂f̃(k, t)

∂t
= (ik)2D̃(k)f̃(k, t) , (25)

where

f̃(k, t) =

∞
∫

−∞

f(x, t)eiktdx and D̃(k) =

∞
∫

−∞

D(x)eiktdx . (26)

Solution of (25) reads

f̃(k, t) = e−(ik)2D̃(k)t (27)

or
f̃(k, t) = e−γk2

, (28)

where
γ ≡ D̃(k)t . (29)

The function f̃(k, t) in form (28) is known as the characteristic function of
Gauss stochastic process, cf. [19].
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Assume that the random of diffusion coefficient D̃ is such that

γ = γ0k
−µ , (30)

where γ0 depends linearly on t but does not depend on k while µ is a positive
constant. If

α ≡ 2 − µ (31)

satisfies inequalities
0 < α ≤ 2 (32)

we deal with the L-stable process, cf. [19].

5. Conclusions

Above we tried to find a compromise between the classical view on finance
as a gaussian process and the modern view insisting on Lévy form of stock
price changes. We have shown that:

1. In the case of periodically varying standard deviation of prices, the
averaging over time period restitutes gaussian character of the process.

2. Introduction of convolution in the diffusion equation may lead to the
Lévy distribution.
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