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At high energies, the properties of hadronic and nuclear interactions
are determined by the dynamics of strong color fields. The physics of
strong color fields is responsible for many of the phenomena observed at
RHIC and is expected to describe both pp and AA collisions at the LHC.
These lectures are intended as an elementary introduction into QCD and
its behavior in the strong field limit.
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1. Introduction

The Standard Model is a remarkably successful physical theory, but it
leaves many questions unanswered. Many of them (e.g. the origin of fermion
generations) concern the physics above the electroweak scale ∼ MW ,MZ ∼
100 GeV and will soon be addressed experimentally at the LHC — a new
high energy outpost of particle physics. Other, and no less important, open
questions deal with the physics at the QCD scale, ∼ 1 GeV: what binds
quarks and gluons together? what is the origin of hadron masses? In the
decades following the advent of QCD it has become clear that the answers
to these questions are buried deep and can be uncovered only through a
detailed understanding of non-linear dynamics of gauge fields in this theory.
Such an understanding can be gained through the study of gauge fields of
varying intensity. Strong color fields, as will be discussed in these lectures,
can be achieved in hadron and nuclear collisions at high energies.

In nuclear interactions, RHIC at BNL currently provides the highest
available collision energy, up to 200 GeV per nucleon in the c.m.s. In hadron–
hadron interactions, the record c.m.s. energy of about 2 TeV has been
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achieved at the Tevatron at Fermilab. Both of these records will soon fall
with the emergence of the LHC at CERN, which will push the c.m.s. energy
to 14 TeV in pp collisions and to 5.5 TeV per nucleon in nuclear collisions.
We have every reason to expect a great improvement in our understanding
of the foundations of our physical World!

Having a working theory of strong interactions is important for one sim-
ple reason — strong interaction is indeed the strongest force of Nature. It
is responsible for over 80% of the baryon masses, and thus for most of the
mass of everything on Earth and in the visible Universe. Strong interactions
bind nucleons in nuclei which, being then dressed with electrons and bound
into molecules by the much weaker electro-magnetic force, give rise to the
entire variety of our world.

Quantum Chromodynamics (QCD) is the theory of strong interactions.
The fundamental degrees of freedom of QCD, quarks and gluons, are already
well established even though they cannot be observed as free particles, but
only in color neutral bound states (confinement). Today, QCD has firmly
occupied its place as part of the Standard Model. However, understand-
ing the physical world does not only mean understanding its fundamental
constituents; it means mostly understanding how these constituents interact
and bring into existence the entire variety of physical objects composing the
universe. In these lectures, we try to explain why high energy experiments
with protons and nuclei offer us unique tools to study QCD.

I would like to emphasize that these lectures are intended as an ele-
mentary introduction for students just entering the field; the references are
scarce, and I refer the interested reader to several reviews on the subject [1–4]
as well as to the other lectures in this volume.

2. The theory of strong interactions: QCD

2.1. The foundations

So what is Quantum Chromo-Dynamics? QCD emerges when the naïve
quark model is combined with local SU(3) gauge invariance. Quark model
classifies the large number of hadrons in terms of a few, currently believed to
be fundamental, constituents. Baryons consist of three quarks, while mesons
are made of a quark and an antiquark. For example, the proton is made of
two up-quarks and one down quark, |p〉 = |uud〉, and the π+-meson contains
one up and one anti-down quark, |π+〉 = |ud̄〉. However, the quark model
in this naïve form is not complete, because the Pauli exclusion principle
would not allow for a particle like the ∆ isobar |∆++〉 = |uuu〉 with spin
3/2. The only way to construct a completely antisymmetric wavefunction
for the ∆++ is to postulate an additional quantum number, which may be
called “color”. Quarks can then exist in three different color states; one may
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choose calling them red, green and blue. Correspondingly, we can define a
quark-state “vector” with three components,

q(x) =




qred(x)
qgreen(x)
qblue(x)


 . (1)

The transition from quark model to QCD is made when one decides to treat
color similarly to the electric charge in electrodynamics. As is well known,
the entire structure of electrodynamics emerges from the requirement of
local gauge invariance, i.e. invariance with respect to the phase rotation
of electron field, exp(iα(x)), where the phase α depends on the space-time
coordinate. One can demand similar invariance for the quark fields, keeping
in mind that while there is only one electric charge in QED, there are three
color charges in QCD.

To implement this program, let us require the free quark Lagrangian,

Lfree =
∑

q=u,d,s...

∑

colors

q̄(x)

(
iγµ

∂

∂xµ
− mq

)
q(x) , (2)

to be invariant under rotations of the quark fields in color space,

U : qj(x) → Ujk(x)qk(x) , (3)

with j, k ∈ {1 . . . 3} (we always sum over repeated indices). Since the theory
we build in this way is invariant with respect to these “gauge” transforma-
tions, all physically meaningful quantities must be gauge invariant.

In electrodynamics, there is only one electric charge, and gauge trans-
formation involves a single phase factor, U = exp(iα(x)). In QCD, we
have three different colors, and U becomes a (complex valued) unitary 3× 3
matrix, i.e. U †U = UU † = 1, with determinant Det U = 1. These ma-
trices form the fundamental representation of the group SU(3) where 3 is
the number of colors, Nc = 3. The matrix U has N 2

c − 1 = 8 independent
elements and can therefore be parameterized in terms of the 8 generators
T a

kj, a ∈ {1 . . . 8} of the fundamental representation of SU(3),

U(x) = exp (−iφa(x)T a) . (4)

By considering a transformation U that is infinitesimally close to the 1

element of the group, it is easy to see that the matrices T a must be Hermitian
(T a = T a†) and traceless (tr T a = 0). The T a’s do not commute; instead
one defines the SU(3) structure constants fabc by the commutator

[
T a, T b

]
= ifabcT

c. (5)
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These commutator terms have no analog in QED which is based on the
abelian gauge group U(1). QCD is based on a non-abelian gauge group
SU(3) and is thus called a non-abelian gauge theory.

The generators T a are normalized to

tr T aT b = 1
2 δab , (6)

where δab is the Kronecker symbol. Useful information about the algebra
of color matrices, and their explicit representations, can be found in many
textbooks (see, e.g., [5]).

Since U is x-dependent, the free quark Lagrangian (2) is not invariant
under the transformation (3). In order to preserve gauge invariance, one
has to introduce, following the familiar case of electrodynamics, the gauge
(or “gluon”) field Aµ

kj(x) and replace the derivative in (2) with the so-called
covariant derivative,

∂µqj(x) → Dµ
kjq

j(x) ≡
{
δkj∂

µ − iAµ
kj(x)

}
qj(x) . (7)

Note that the gauge field Aµ
kj(x) = Aµ

aT a
kj(x) as well as the covariant deriva-

tive are 3 × 3 matrices in color space. Note also that Eq. (7) differs from
the definition often given in textbooks, because we have absorbed the strong
coupling constant in the field Aµ. With the replacement given by Eq. (7),
all changes to the Lagrangian under gauge transformations cancel, provided
Aµ transforms as

U : Aµ(x) → U(x)Aµ(x)U †(x) + iU(x)∂µU †(x) . (8)

(From now on, we will often not write the color indices explicitly.)
The QCD Lagrangian then reads

LQCD =
∑

q

q̄(x) (iγµDµ − mq) q(x) − 1

4g2
tr Gµν(x)Gµν(x) , (9)

where the first term describes the dynamics of quarks and their couplings
to gluons, while the second term describes the dynamics of the gluon field.
The strong coupling constant g is the QCD analog of the elementary electric
charge e in QED. The gluon field strength tensor is given by

Gµν(x) ≡ i [Dµ, Dν ] = ∂µAν(x) − ∂νAµ(x) − i [Aµ(x), Aν(x)] . (10)

This can also be written in terms of the color components Aµ
a of the gauge

field,
Gµν

a (x) = ∂µAν
a(x) − ∂νAµ

a(x) + fabcA
µ
b (x)Aν

c (x) . (11)

For a more complete presentation, see modern textbooks [5–7].
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The crucial, as will become clear soon, difference between electrodynam-
ics and QCD is the presence of the commutator on the r.h.s. of Eq. (10).
This commutator gives rise to the gluon–gluon interactions that make the
QCD field equations non-linear: the color fields do not simply add like in
electrodynamics. These non-linearities give rise to rich and non-trivial dy-
namics of strong interactions.

2.2. Asymptotic freedom

Let us now turn to the discussion of the dynamical properties of QCD. To
understand the dynamics of a field theory, one necessarily has to understand
how the coupling constant behaves as a function of distance. This behavior,
in turn, is determined by the response of the vacuum to the presence of
external charge. The vacuum is the ground state of the theory; however,
quantum mechanics tells us that the “vacuum” is far from being empty — the
uncertainty principle allows particle–antiparticle pairs to be present in the
vacuum for a period time inversely proportional to their energy. In QED, the
electron–positron pairs have the effect of screening the electric charge. Thus,
the electromagnetic coupling constant increases toward shorter distances.
The dependence of the charge on distance is given by

e2(r) =
e2(r0)

1 + 2e2(r0)
3π ln r

r0

, (12)

which can be obtained by resumming (logarithmically divergent, and regu-
larized at the distance r0) electron–positron loops dressing the virtual photon
propagator.

The formula (12) has two surprising properties: first, at large distances r
away from the charge which is localized at r0, r � r0, where one can neglect
unity in the denominator, the “dressed” charge e(r) becomes independent of
the value of the “bare” charge e(r0) — it does not matter what the value
of the charge at short distances is. Second, in the local limit r0 → 0, if we
require the bare charge e(r0) be finite, the effective charge vanishes at any
finite distance away from the bare charge! This is the celebrated Landau’s
zero charge problem [8]: the screening of the charge in QED does not allow
to reconcile the presence of interactions with the local limit of the theory.
This is a fundamental problem of QED, which shows that (i) either it is not
a truly fundamental theory, or (ii) Eq. (12), based on perturbation theory,
in the strong coupling regime gets replaced by some other expression with
a more acceptable behavior. The latter possibility is quite likely since at
short distances the electric charge becomes very large and its interactions
with electron–positron vacuum cannot be treated perturbatively. A solution
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of the zero charge problem, based on considering the rearrangement of the
vacuum in the presence of “super-critical”, at short distances, charge was
suggested by Gribov [9].

Fortunately, because of the smallness of the physical coupling αem(r) =
e2(r)/(4π) = 1/137, this fundamental problem of the theory manifests itself
only at very short distances ∼ exp(−3/[8αem]). Such short distances will
probably always remain beyond the reach of experiment, and one can safely
apply QED as a truly effective theory.

In QCD, as we are now going to discuss, the situation is qualitatively
different, and corresponds to anti-screening — the charge is small at short
distances and grows at larger distances. This property of the theory, discov-
ered by Gross, Wilczek, and Politzer [11], is called asymptotic freedom.

While the derivation of the running coupling is conventionally performed
by using field theoretical perturbation theory, it is instructive to see how
these results can be illustrated by using the methods of condensed matter
physics. Indeed, let us consider the vacuum as a continuous medium with
a dielectric constant ε. The dielectric constant is linked to the magnetic
permeability µ and the speed of light c by the relation

ε µ =
1

c2
= 1 . (13)

Thus, a screening medium (ε > 1) will be diamagnetic (µ < 1), and con-
versely a paramagnetic medium (µ > 1) will exhibit anti-screening which
leads to asymptotic freedom. In order to calculate the running coupling
constant, one has to calculate the magnetic permeability of the vacuum. We
follow [12] in our discussion, where this has been done in a framework very
similar to Landau’s theory of the diamagnetic properties of a free electron
gas. In QED one has

εQED = 1 +
2e2(r0)

3π
ln

r

r0
> 1 . (14)

So why is the QCD vacuum paramagnetic while the QED vacuum is dia-
magnetic? The energy density of a medium in the presence of an external
magnetic field ~B is given by

u = −1

2
4πχ ~B2 , (15)

where the magnetic susceptibility χ is defined by the relation

µ = 1 + 4πχ . (16)

When electrons move in an external magnetic field, two competing effects
determine the sign of magnetic susceptibility:
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• The electrons in magnetic field move along quantized orbits, so-called
Landau levels. The current originating from this movement produces
a magnetic field with opposite direction to the external field. This is
the diamagnetic response, χ < 0.

• The electron spins align along the direction of the external ~B-field,
leading to a paramagnetic response (χ > 0).

In QED, the diamagnetic effect is stronger, so the vacuum is screening the
bare charges. In QCD, however, gluons carry color charge. Since they have
a larger spin (spin 1) than quarks (or electrons), the paramagnetic effect
dominates and the vacuum is anti-screening.

Let us explain this in more detail. Basing on the considerations given
above, the energy density of the QCD vacuum in the presence of an external
color-magnetic field can be calculated by using the standard formulas of
quantum mechanics, see e.g. [13], by summing over Landau levels and taking
account of the fact that gluons and quarks give contributions of different
sign. Note that a summation over all Landau levels would lead to an infinite
result for the energy density. In order to avoid this divergence, one has
to introduce a cutoff Λ with dimension of mass. Only field modes with
wavelength λ ∼> 1/Λ are taken into account. The upper limit for λ is given

by the radius of the largest Landau orbit, r0 ∼ 1/
√

gB, which is the only
dimensionful scale in the problem; the summation thus is made over the
wave lengths satisfying

1√
|gB| ∼> λ ∼>

1

Λ
, (17)

The result is [12]

uQCD
vac = −1

2
B2 11Nc − 2Nf

48π2
g2 ln

Λ2

|gB| , (18)

where Nf is the number of quark flavors, and Nc = 3 is the number of flavors.
Comparing this with Eqs. (15) and (16), one can read off the magnetic
permeability of the QCD vacuum,

µQCD
vac (B) = 1 +

11Nc − 2Nf

48π2
g2 ln

Λ2

|gB| > 1 . (19)

The first term in the denominator (11Nc) is the gluon contribution to the
magnetic permeability. This term dominates over the quark contribution
(2Nf) as long as the number of flavors Nf is less than 17 and is responsible
for asymptotic freedom.
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The dielectric constant as a function of distance r is then given by

εQCD
vac (r) =

1

µQCD
vac (B)

∣∣∣∣∣√
|gB|→1/r

. (20)

The replacement
√
|gB| → 1/r follows from the fact that ε and µ in Eq. (20)

should be calculated from the same field modes: the dielectric constant ε(r)
could be calculated by computing the vacuum energy in the presence of two
static colored test particles located at a distance r from each other. In this
case, the maximum wavelength of field modes that can contribute is of order
r so that

r ∼> λ ∼>
1

Λ
. (21)

Combining Eqs. (17) and (21), we identify r = 1/
√

|gB| and find

εQCD
vac (r) =

1

1 + 11Nc−2Nf

24π2 g2 ln(rΛ)
< 1 . (22)
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Fig. 1. The running coupling constant αs(Q
2) as a function of momentum transfer

Q2 determined from a variety of processes. The figure is from [14], courtesy of

S. Bethke.



The Physics of Strong Color Fields: New Frontier of QCD 3213

With αs(r1)/αs(r2) = εQCD
vac (r2)/ε

QCD
vac (r1) one finds to lowest order in αs

αs(r1) =
αs(r2)

1 + 11Nc−2Nf

6π αs(r2) ln
(

r2

r1

) . (23)

Apparently, if r1 < r2 then αs(r1) < αs(r2). The running of the coupling
constant is shown in Fig. 1, Q ∼ 1/r. The intuitive derivation given above
illustrates the original field-theoretical result of [11].

At high momentum transfer, corresponding to short distances, the cou-
pling constant thus becomes small and one can apply perturbation the-
ory, see Fig. 1. There is a variety of processes that involve high momen-
tum scales, e.g. deep inelastic scattering, Drell–Yan dilepton production,
e+e−-annihilation into hadrons, production of heavy quarks/quarkonia, high
pT hadron production . . . . QCD correctly predicts the Q2 dependence of
these, so-called “hard” processes, which is a great success of the theory.

2.3. Confinement

While asymptotic freedom implies that the theory becomes simple and
treatable at short distances, it also tells us that at large distances the cou-
pling becomes very strong. In this regime we have no reason to believe
in perturbation theory. In QED, as we have discussed above, the strong
coupling regime starts at extremely short distances beyond the reach of cur-
rent experiments — and this makes the “zero-charge” problem somewhat
academic. In QCD, the entire physical World around us is defined by the
properties of the theory in the strong coupling regime — and we have to con-
struct accelerators to study it in the much more simple, “QED-like”, weak
coupling limit.

We do not have to look far to find the striking differences between the
properties of QCD at short and large distances: the elementary building
blocks of QCD — the “fundamental” fields appearing in the Lagrangian (9),
quarks and gluons, do not exist in the physical spectrum as asymptotic
states. For some, still unknown to us, reason, all physical states with finite
energy appear to be color-singlet combinations of quarks and gluons, which
are thus always “confined” at rather short distances on the order of 1 fm.
This prevents us, at least in principle, from using well-developed formal
S-matrix approaches based on analyticity and unitarity to describe quark
and gluon interactions.

The property of confinement can be explored by looking at the propa-
gation of heavy quark–antiquark pair at a distance R propagating in time
a distance T . An object which describes the behavior of this system is the
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Wilson loop [15]

W (R, T ) = Tr

[
P exp

[
i

∫

C

Aa
µT adxµ

]]
, (24)

where Aa
µ is the gluon field, T a is the generator of SU(3), and the contour

C is chosen as a rectangle with side R in one of the space dimensions and
T in the time direction. It can be shown that at large T the asymptotics of
the Wilson loop is

lim
T→∞

W (R, T ) = exp [−TV (R)] , (25)

where V (R) is the static potential acting between the heavy quarks. At
large distances, this potential grows as

V (R) = σR , (26)

where σ ∼ 1 GeV/fm is the string tension. We thus conclude that at large
T and R the Wilson loop should behave as

W (R, T ) ' exp [−σTR] , (27)

The formula (27) is the celebrated “area law”, which signals confinement.
It should be noted, however, that the introduction of dynamical quarks

leads to the string break-up at large distances, and the potential V (R) sat-
urates at a constant. The presence of light dynamical quarks is most impor-
tant in Gribov’s confinement scenario [9], in which the color charges at large
distances behave similarly to the “supercritical” charge in electrodynamics,
polarizing the vacuum and producing copious quark–antiquark pairs which
screen them. In this scenario, in the physical world with light quarks there is
never a confining force acting on color charges at large distances, just quark–
antiquark pair production (“soft confinement”); for a review of the approach
and recent developments, see [10]. This may explain why the spectra of jets,
for example, computed in perturbative QCD, appear to be consistent with
experiment; this fact would be difficult to reconcile with the existence of
strong confining forces. There exists a special situation, however, when the
law (27) should be appropriate even in the presence of light quarks — the
heavy quarkonium. The sizes of heavy quarkonia are quite small, and their
masses are below the threshold to produce a pair of heavy mesons. This is
why heavy quarkonia are especially useful probes of confinement.

At high temperatures, the long-range interactions responsible for con-
finement become screened away — instead of the growing potential (26), we
expect

V (R) ∼ −g2(T )

R
exp(−mDR) , (28)
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where mD ∼ gT is the Debye mass. Mathematically, this transition to the
deconfined phase can again be studied by looking at the properties of the
Wilson loop. At finite temperature, the theory is defined on a cylinder:
Euclidean time τ varies within 0 ≤ τ ≤ β = 1/T , and the gluon fields
satisfy the periodic boundary conditions:

Aa
µ(~x, 0) = Aa

µ(~x, β) . (29)

Let us now consider the Wilson loop wrapped around this cylinder (the
Polyakov loop), and choose a gauge where Aa

0 is time-independent:

P (~x) = Tr exp [igβAa
0(~x)ta] ; (30)

the correlation function of these objects can be defined as

CT (~x) = 〈P (~x)P ∗(~x)〉T . (31)

Again, it can be shown that this correlation function is related to the free
energy, and thus static potential V (R), of the heavy quark–antiquark pair.
Assuming, as before, that the heavy quarks are separated by the spatial
distance R = |~x|, one finds

CT (R) ∼ exp [−βV (R)] . (32)

Again, if we define the limit value L(T ) of the correlation function,

lim
R→∞

CT (R) ≡ L(T ) (33)

it would have to vanish in the confined phase in the absence of dynamical
quarks, since V (R) tends to infinity in this case: L(T ) = 0. In the decon-
fined phase, on the other hand, because of the screening V (R) should tend
to a constant, and this implies a finite value L(T ) 6= 0. The correlation
function of Polyakov loops therefore can be used as an order parameter of
the deconfinement. The behavior of L(T ) as a function of temperature has
been measured on the lattice; one indeed observes a transition from the con-
fined phase with L(T ) = 0 to the deconfined phase with L(T ) 6= 0 at some
critical temperature Tc. In the presence of light quarks, as we have already
discussed above, the potential would tend to a constant even in the confined
phase, and L(T ) ceases to be a rigorous order parameter.
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2.4. Chiral symmetry breaking

The decades of experience with “soft pion” techniques and current algebra
convinced physicists that the properties of the world with massless pions
are quite close to the properties of our physical World. The existence of
massless particles is always a manifestation of a symmetry of the theory —
photons, for example, appear as a consequence of local gauge invariance of
the electrodynamics. However, unlike photons, pions have zero spin and
cannot be gauge bosons of any symmetry. The other possibility is provided
by the Goldstone theorem, which states that the appearance of massless
modes in the spectrum can also reflect a spontaneously broken symmetry,
i.e. the symmetry of the theory which is broken in the ground state. Because
of the great importance of this theorem, let us briefly sketch its proof.

Suppose that the Hamiltonian H of the theory is invariant under some
symmetry generated by operators Qi, so that

[H,Qi] = 0 . (34)

Spontaneous symmetry breaking in the ground state of theory implies that
for some of the generators Qi

Qi|0〉 6= 0 . (35)

Since Qi commute with the Hamiltonian, this means that this new state
Qi|0〉 has the same energy as the ground state. The vacuum is therefore
degenerate, and in a relativistically invariant theory this implies the exis-
tence of massless particles — Goldstone bosons. A useful example of that
is provided by the phonons in a crystal, where the continuous translational
symmetry of the QED Lagrangian is spontaneously broken by the existence
of the fixed period of the crystal lattice.

Even though all six quark flavors enter the Lagrangian, it is intuitively
clear that at small scales Q � Mc,Mb,Mt, heavy quarks should not have any
influence on the dynamics. In a rigorous way this statement is formulated
in terms of decoupling theorems, which we will discuss in detail later. At
the moment let us just assume that we are interested in the low-energy
behavior, and that only light quarks are relevant for that purpose. Then it
makes sense to consider the approximate symmetry, which becomes exact
when the quarks are massless. In fact, in this limit, the Lagrangian does not
contain any terms which connect the right- and left-handed components of
the quark fields:

qR = 1
2(1 + γ5)q , qL = 1

2 (1 − γ5)q . (36)

The Lagrangian of QCD (9) is therefore invariant under the independent
transformations of right- and left-handed fields (“chiral rotations”). In the
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limit of massless quarks, QCD thus possesses an additional symmetry
UL(Nf) × UR(Nf) with respect to the independent transformation of left-
and right-handed quark fields qL,R = 1

2(1 ± γ5)q:

qL → VLqL , qR → VRqR , VL, VR ∈ U(Nf) , (37)

this means that left- and right-handed quarks are not correlated.
Even a brief look into the Particle Data tables, or simply in the mirror,

can convince anyone that there is no symmetry between left and right in
the physical World. One thus has to assume that the symmetry (37) is
spontaneously broken in the vacuum.

The presence of the “quark condensate” 〈q̄q〉 in QCD vacuum signals
spontaneous breakdown of this symmetry, since

〈q̄q〉 = 〈q̄LqR〉 + 〈q̄RqL〉 , (38)

which means that left- and right-handed quarks and antiquarks can trans-
form into each other. Quark condensate therefore can be used as an order
parameter of chiral symmetry. Lattice calculations show that around the
deconfinement phase transition, quark condensate dramatically decreases,
signaling the onset of the chiral symmetry restoration.

This spontaneous breaking of UL(3)×UR(3) chiral symmetry, by virtue of
the Goldstone theorem presented above, should give rise to 32 = 9 Goldstone
particles. The flavor composition of the existing eight candidates for this role
(3 pions, 4 kaons, and the η) suggests that the UA(1) part of UL(3)×UR(3) =
SUL(3)×SUR(3)×UV(1)×UA(1) does not exist. This constitutes the famous
“UA(1) problem”.

There is yet another problem with the chiral limit in QCD. Indeed, as the
quark masses are put to zero, the Lagrangian (9) does not contain a single
dimensionful scale — the only parameters are pure numbers Nc and Nf . The
theory is thus apparently invariant with respect to scale transformations,
and the corresponding scale current is conserved: ∂µsµ = 0. However, the
absence of a mass scale would imply that all physical states in the theory
should be massless!

2.5. Quantum anomalies

Both apparent problems — the missing UA(1) symmetry and the origin
of hadron masses — are related to quantum anomalies. A symmetry of
a classical theory can be broken when that theory is quantized, due to the
requirements of regularization and renormalization. This is called anomalous
symmetry breaking. Regularization of the theory on the quantum level
brings in a dimensionful parameter — remember the cutoff Λ of Eq. (17) we
had to impose on the wavelength of quarks and gluons.
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Once the theory is quantized, we already know that the coupling constant
is scale dependent and therefore scale invariance is broken (note that the
four-divergence of the scale current in field theory is equal to the trace of
the energy momentum tensor Θ

µ
µ). One finds

∂µsµ = Θ
µ
µ =

∑

q

mqq̄q +
β(g)

2g3
trGµνGµν , (39)

where β(g) is the QCD β-function, which governs the behavior of the running
coupling:

µ
dg(µ)

dµ
= β(g) , (40)

note that as discussed in Section 2.1 we include coupling g in the definition of
the gluon fields. As we already discussed, at small coupling g, the β function
is negative, which means that the theory is asymptotically free. The leading
term in the perturbative expansion is (compare with Eq. (23))

β(g) = −b
g3

(4π)2
+ O(g5), b = 11Nc − 2Nf , (41)

where Nc and Nf are the numbers of colors and flavors, respectively.
Hadron masses are related to the forward matrix element of trace of the

QCD energy-momentum tensor, 2m2
h = 〈h|Θµ

µ|h〉. Apparently, light hadron
masses must receive dominant contributions from the G2-term in Eq. (39).
Note also that the flavor sum in Eq. (39) includes heavy flavors, too. This
would lead to the unphysical picture that e.g. the proton mass is dominated
by heavy quark masses. However, the heavy flavor contribution to the sum
(39) is exactly canceled by a corresponding heavy flavor contribution to the
β-function.

2.6. The strong CP problem and “θ-worlds”

Similar anomaly appears in the divergence of the axial current, j5
µ =

q̄γµγ5q, generated by the UA(1) group. The corresponding axial charge is
not conserved because of the contribution of the triangle graph and the
four-divergence of the axial current is given by [16]

∂µj5
µ =

∑

q

2imq q̄γ
5q +

Nf

8π2
TrGµνG̃µν , (42)

where G̃µν = εµνκλGκλ/2 is the dual field strength tensor. Since the gluonic
part on the r.h.s. of this equation is a surface term (a full divergence), there
would be no physical effect, if the QCD vacuum were “empty”.
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However, it appears that due to non-trivial topology of the SU(3) gauge
group, QCD equations of motion allow classical solutions even in the absence
of external color source, i.e. in the vacuum. The well-known example of a
classical solution is the instanton, corresponding to the mapping of a three-
dimensional sphere S3 onto the SU(2) subgroup of color SU(3) (for reviews,
see [17,18]). As a result, the ground state of classical Chromodynamics is not
unique. There is an enumerable infinite number of gauge field configurations
with different topologies (corresponding to different winding number in the
S3 → SU(2) mapping), and the ground state looks like a periodic potential.

In a quantum theory, however, the system will not stay in one of the
minima, like the classical system would. Instead, there will be tunneling pro-
cesses between different minima. These tunneling processes, in Minkowski
space, correspond to instantons. Since tunneling, in general, lowers the
ground state energy of the system, one expects the QCD vacuum to have a
complicated structure.

Instantons, through the anomaly relation (42), lead to the explicit vi-
olation of the UA(1) symmetry and thus solve the mystery of the missing
ninth Goldstone boson — the η′. Physically, axial symmetry UA(1) is bro-
ken because the tunneling processes between topologically different vacua
are accompanied by the change in quark helicity — even in the vacuum,
left-handed quarks periodically turn into right-handed and vice versa.

The periodic vacuum structure immediately leads to a puzzle known as
the strong CP problem: When one calculates the expectation value of an
observable in the vacuum, one has to average over all topological sectors of
the vacuum. This is equivalent to adding an additional term to the QCD-
Lagrangian,

LQCD → LQCD − θ

16π2
Tr GµνG̃µν , (43)

where θ ∈ [0, 2π] is a parameter of the theory which has to be determined
from experiment. Since the θ-term in Eq. (43) is CP violating, a non-zero
value of θ would have immediate phenomenological consequences, e.g. an
electric dipole moment of the neutron. However, precision measurements of
this dipole moment constrain θ to θ < 10−9. The fact that θ is so unnaturally
small constitutes the strong CP problem. The most likely solution to this
problem [19] implies the existence of a light pseudoscalar meson, the axion.
However, despite many efforts, axions remain unobserved in experiment.

2.7. The phase structure of QCD

As was repeatedly stated above, the most important problem facing us
in the study of all aspects of QCD is understanding the structure of the
vacuum, which, in a manner of saying, does not at all behave as an empty
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space, but as a physical entity with a complicated structure. As such, the
vacuum can be excited, altered and modified in physical processes [20]. For
a comprehensive review of the phase structure of QCD, see [21].

Collisions of heavy ions are the best way to create high energy den-
sity in a “macroscopic” (on the scale of a single hadron) volume. It thus
could be possible to create and to study a new state of matter, the Quark–
Gluon Plasma (QGP), in which quarks and gluons are no longer confined in
hadrons, but can propagate freely. The search for QGP is one of the main
motivations for the heavy ion research.

Lattice calculations predict that QCD at high temperatures undergoes
phase transitions in which confinement property is lost and chiral symmetry
is restored. The critical temperature for the chiral phase transition is about
equal to the critical temperature for deconfinement; for a recent overview,
see [22].

Heavy ion collisions at RHIC may also give us the possibility to study
the θ angle dependence of the QCD phase diagram. In a heavy ion collision,
bubbles containing a metastable vacuum with θ 6= 0 may be produced,
and may reveal themselves through their unusual decay pattern [23]; the
first preliminary experimental results regarding the charge asymmetry of the
produced pions with respect to reaction plane have become available [24].

3. The strong field limit of QCD

3.1. QCD in the classical regime

Most of the applications of QCD so far have been limited to the short dis-
tance regime of high momentum transfer, where the theory becomes weakly
coupled. While this is the only domain where our theoretical tools based
on perturbation theory are adequate, this is also the domain in which the
beautiful non-linear structure of QCD does not yet reveal itself fully. On
the other hand, as soon as we decrease the momentum transfer in a process,
the dynamics rapidly becomes non-linear, but our understanding is hindered
by the large coupling. Being perplexed by this problem, one is tempted to
dream about an environment in which the coupling is weak, allowing a sys-
tematic theoretical treatment, but the fields are strong, revealing the full
non-linear nature of QCD. We are going to argue now that this environment
is realized in high energy collisions. Hadron and especially heavy ion colli-
sions at very high energies allow to probe QCD in the non-linear regime of
high parton density and high color field strength, see Fig. 2.

It has been conjectured long time ago that the dynamics of QCD in the
high density domain may become qualitatively different: in parton language,
this is best described in terms of parton saturation [26–28], and in the lan-
guage of color fields — in terms of the classical Chromo-Dynamics [29]; see
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LHC

ln Q

A B

ln(1/x)
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"soft",
Regge

formfactors

"hard" QCD

Deep Inelastic Scattering

"traditional"
nuclear
physics

RHIC,

Fig. 2. The place of relativistic heavy ion physics in the study of QCD; the vertical

axis is the product of atomic numbers of projectile and target, and the horizontal

axes are the momentum transfer Q2 and rapidity y = ln(1/x) (x is the Bjorken

scaling variable).

the lectures [30] and [31] and references therein. In this high density regime,
the transition amplitudes are dominated not by quantum fluctuations, but
by the configurations of classical field containing large, ∼ 1/αs, numbers of
gluons. One thus uncovers new non–linear features of QCD, which cannot
be investigated in the more traditional applications based on the perturba-
tive approach. The classical color fields in the initial nuclei (the “color glass
condensate” [30]) can be thought of as either perturbatively generated, or as
being a topologically non-trivial superposition of the Weizsäcker–Williams
radiation and the quasi-classical vacuum fields [32–34].

3.2. Geometrical arguments

Let us consider an external probe J interacting with the nuclear target
of atomic number A. At small values of Bjorken x, by uncertainty principle
the interaction develops over large longitudinal distances z ∼ 1/mx, where
m is the nucleon mass. As soon as z becomes larger than the nuclear diame-
ter, the probe cannot distinguish between the nucleons located on the front
and back edges of the nucleus, and all partons within the transverse area
∼ 1/Q2 determined by the momentum transfer Q participate in the interac-
tion coherently. The density of partons in the transverse plane is given by

ρA ' xGA(x,Q2)

πR2
A

∼ A1/3, (44)
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where we have assumed that the nuclear gluon distribution scales with the
number of nucleons A. The probe interacts with partons with cross section
σ ∼ αs/Q

2; therefore, depending on the magnitude of momentum transfer
Q, atomic number A, and the value of Bjorken x, one may encounter two
regimes:

• σρA � 1 — this is a familiar “dilute” regime of incoherent interactions,
which is well described by the methods of perturbative QCD;

• σρA � 1 — in this regime, we deal with a dense parton system. Not
only do the “leading twist” expressions become inadequate, but also
the expansion in higher twists, i.e. in multi-parton correlations, breaks
down here.
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Fig. 3. Hard probe interacting with the nuclear target resolves the transverse dis-

tance ∼ 1/
√

Q (Q2 is the square of the momentum transfer) and, in the target

rest frame, the longitudinal distance ∼ 1/(mx) (m is the nucleon mass and x the

Bjorken variable).

The border between the two regimes can be found from the condition
σρA ' 1; it determines the critical value of the momentum transfer (“satu-
ration scale” [26]) at which the parton system becomes to look dense to the
probe1:

Q2
s ∼ αs

xGA(x,Q2
s )

πR2
A

. (45)

1 Note that since Q2
s ∼ A1/3, which is the length of the target, this expression in the

target rest frame can also be understood as describing a broadening of the transverse

momentum resulting from the multiple re-scattering of the probe.
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In this regime, the number of gluons from (45) is given by

xGA(x,Q2
s ) ∼

π

αs(Q2
s )

Q2
sR

2
A , (46)

where Q2
sR

2
A ∼ A. One can see that the number of gluons is proportional

to the inverse of αs(Q
2
s ), and becomes large in the weak coupling regime.

In this regime, as we shall now discuss, the dynamics is likely to become
essentially classical.

3.3. Saturation as the classical limit of QCD

Indeed, the condition (45) can be derived in the following, rather gen-
eral, way. As a first step, let us note that the dependence of the action
corresponding to the Lagrangian (9) on the coupling constant is given by

S ∼
∫

1

g2
Ga

µνGa
µν d4x . (47)

Let us now consider a classical configuration of gluon fields; by definition,
Ga

µν in such a configuration does not depend on the coupling, and the action
is large, S � ~. The number of quanta in such a configuration is then

Ng ∼ S

~
∼ 1

~ g2
ρ4V4 , (48)

where we re-wrote (47) as a product of four-dimensional action density ρ4

and the four-dimensional volume V4.
Note that since (48) depends only on the product of the Planck constant

~ and the coupling g2, the classical limit ~ → 0 is indistinguishable from the
weak coupling limit g2 → 0. The weak coupling limit of small g2 = 4παs

therefore corresponds to the semi-classical regime.
The effects of non-linear interactions among the gluons become impor-

tant when ∂µAµ ∼ A2
µ (this condition can be made explicitly gauge invariant

if we derive it from the expansion of a correlation function of gauge-invariant
gluon operators, e.g., G2). In momentum space, this equality corresponds
to

Q2
s ∼ (Aµ)2 ∼ (G2)1/2 =

√
ρ4 . (49)

Qs is the typical value of the gluon momentum below which the interactions
become essentially non-linear.

Consider now a nucleus A boosted to a high momentum. By uncertainty
principle, the gluons with transverse momentum Qs are extended in the
longitudinal and proper time directions by ∼ 1/Qs; since the transverse
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area is πR2
A, the four-volume is V4 ∼ πR2

A/Q2
s . The resulting four-density

from (48) is then

ρ4 ∼ αs
Ng

V4
∼ αs

Ng Q2
s

πR2
A

∼ Q4
s , (50)

where at the last stage we have used the non-linearity condition (49),
ρ4 ∼ Q4

s . It is easy to see that (50) coincides with the saturation con-
dition (45), since the number of gluons in the infinite momentum frame
Ng ∼ xG(x,Q2

s ).
In view of the significance of saturation criterion for the rest of the ma-

terial in these lectures, let us present yet another argument, traditionally
followed in the discussion of classical limit in electrodynamics [35]. The en-

ergy of the gluon field per unit volume is ∼ ~Ea2. The number of elementary
“oscillators of the field”, also per unit volume, is ∼ ω3. To get the number
of the quanta in the field we have to divide the energy of the field by the
product of the number of the oscillators ∼ ω3 and the average energy ~ω of
the gluon:

N~k
∼

~Ea2

~ω4
. (51)

The classical approximation holds when N~k
� 1. Since the energy ω

of the oscillators is related to the time ∆t over which the average energy is
computed by ω ∼ 1/∆t, we get

~Ea2 � ~

(∆t)4
. (52)

Note that the quantum mechanical uncertainty principle for the energy of
the field reads

~Ea2 ω4 ∼ ~ , (53)

so the condition (52) indeed defines the quasi-classical limit.

Since ~Ea2 is proportional to the action density ρ4, and the typical time
is ∆t ∼ 1/k⊥, using (50) we finally get that the classical description applies
when

k2
⊥ < αs

Ng

πR2
A

≡ Q2
s . (54)

3.4. Saturation and gluon correlations

When the occupation numbers of the field become large, the matrix
elements of the creation and annihilation operators of the gluon field defined
by

Âµ =
∑

~k,α

(
ĉ~kα

Aµ
~kα

+ ĉ†~kα
Aµ∗

~kα

)
(55)
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become very large,

N~kα
= 〈ĉ†~kα

ĉ~kα
〉 � 1 , (56)

so that one can neglect the unity on the r.h.s. of the commutation relation

ĉ~kα
ĉ†~kα

− ĉ†~kα
ĉ~kα

= 1 (57)

and treat these operators as classical c-numbers.
This observation, often used in condensed matter physics, especially in

the theoretical treatment of superfluidity, has important consequences for
gluon production — in particular, it implies that the correlations among the
gluons in the saturation region can be neglected:

〈A(k1)A(k2) . . . A(kn)〉 ' 〈A(k1)〉〈A(k2)〉 . . . 〈A(kn)〉 . (58)

Thus, in contrast to the perturbative picture, where the produced mini-jets
have strong back-to-back correlations, the gluons resulting from the decay
of the classical saturated field are uncorrelated at k⊥ ∼< Qs. The traces of
this phenomenon are expected to extend even to larger transverse momenta,
especially when the produced gluons are separated by a significant rapidity
window [36].

Note that the amplitude with the factorization property (58) is called
point-like. However, the relation (58) cannot be exact if we consider the
correlations of final-state hadrons — the gluon mini-jets cannot transform
into hadrons independently. These correlations caused by color confinement
however affect mainly hadrons with close three-momenta, as opposed to the
perturbative correlations among mini-jets with the opposite three-momenta.

It will be interesting to explore the consequences of the factorization
property of the classical gluon field (58) for the HBT correlations of final–
state hadrons. It is likely that the HBT radii in this case reflect the universal
color correlations in the hadronization process.

Another interesting property of classical fields follows from the relation
〈(

ĉ†~kα
ĉ~kα

)2
〉
−
〈
ĉ†~kα

ĉ~kα

〉2
=
〈
ĉ†~kα

ĉ~kα

〉
, (59)

which determines the fluctuations in the number of produced gluons. We
will discuss the implications of Eq. (59) for the multiplicity fluctuations in
heavy ion collisions later.

3.5. Renormalization group and the effective action

Above we gave arguments in favor of the applicability of classical ap-
proach to the description of QCD in the regime of strong color fields. How-
ever, the dynamics of strong color fields cannot be entirely classical because
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of the asymptotic freedom of QCD (see Section 2.2) and the related scale
anomaly discussed in section 2.5. Moreover, as we shall see, the applicability
of the classical approach to the description of strong color fields hinges upon
the asymptotic freedom.

The QCD renormalization group constraints can be described by an ef-
fective action of the following form [37] (see also [38–40]):

Leff = − 1

4ḡ2(t)
G2, t ≡ ln

(
G2

Λ4

)
, (60)

where G2 ≡ Tr Gµν(x)Gµν(x); since we are interested in the dynamics of
gauge fields, we kept only the gluon part of Eq. (9). The coupling ḡ(t) in
Eq. (60) is defined implicitly by renormalization group through the relation

t =

ḡ(t)∫

g

dg

β(g)
, (61)

where β(g) is the β function of QCD, Eq. (41). At large t (the limit of strong
color field), Eq. (61) yields the following behavior:

1

ḡ2(t)
∼ t + . . . . (62)

Therefore, in the regime of strong color fields the effective action behaves as

Leff ∼ G2 ln

(
G2

Λ4

)
, (63)

which shows that in the limit of strong field the dynamics in QCD is con-
trolled by small coupling ∼ ln−1(G2/Λ2). According to the arguments given
in Section 3.3 and equations Eq. (48) and Eq. (49), this translates into the
following expectation [41] for the number of gluons in a nucleus A on the
saturation momentum Qs:

Ng ∼ πR2
A Q2

s ln

(
Q2

s

Λ2

)
. (64)

Before we proceed to the test of Eq. (64) in high energy collisions, a few
more words about the implications of the effective action Eq. (60). In
Minkowski space, G2 = 2(H2 −E2) where E and H are the chromo-electric
and chromo-magnetic fields, respectively. The effective action Eq. (60) is real
only if H2 ≥ E2, which may serve as a hint of magnetic condensation in the
ground state of QCD. For strong predominantly chromo-electric fields when
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E2 > H2 the action Eq. (60) acquires an imaginary part ImLeff ∼ E2, which
signals an instability — such a field after being created will decay by the
production of pairs of gluons and quarks. The corresponding scenario for
high-energy collisions has been considered in Ref. [42]; the chromo-electric
fields formed in this case are predominantly longitudinal [42–44].

The renormalization properties of QCD encoded in the effective action
thus imply both the logarithmic correction to the number of gluons in a
classical field configuration Eq. (64) and the quantum contribution to the
decay of such a configuration through pair production.

4. Classical QCD and high energy collisions

4.1. Centrality dependence of hadron production

In nuclear collisions, the saturation scale becomes a function of centrality;
a generic feature of the quasi-classical approach — the proportionality of the
number of gluons to the inverse of the coupling constant (48) — thus leads
to definite predictions [41] on the centrality dependence of multiplicity.

Let us first present the argument on a qualitative level. At different cen-
tralities (determined by the impact parameter of the collision), the average
density of partons (in the transverse plane) participating in the collision is
very different. This density ρ is proportional to the average length of nuclear
material involved in the collision, which in turn approximately scales with

the power of the number Npart of participating nucleons, ρ ∼ N
1/3
part. The

density of partons defines the value of the saturation scale, and so we expect

Q2
s ∼ N

1/3
part . (65)

The gluon multiplicity is then, as we discussed above

dNg

dη
∼ SA Q2

s

αs(Q2
s )

, (66)

where SA is the nuclear overlap area, determined by atomic number and the
centrality of collision. Since SA Q2

s ∼ Npart by definitions of the transverse
density and area, from (66) we get

dNg

dη
∼ Npart lnNpart , (67)

which shows that the gluon multiplicity shows a logarithmic deviation from
the scaling in the number of participants.

To quantify the argument, we need to explicitly evaluate the average
density of partons at a given centrality. This can be done by using Glauber
theory, see [41, 45] for details.
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4.2. Energy dependence

Let us now turn to the discussion of energy dependence of hadron pro-
duction. In semi-classical scenario, it is determined by the variation of
saturation scale Qs with Bjorken x = Qs/

√
s. This variation, in turn, is

determined by the x-dependence of the gluon structure function. In the
saturation approach, the gluon distribution is related to the saturation scale
by Eq. (45). A good description of HERA data is obtained with saturation
scale Q2

s = 1 ÷ 2 GeV2 with W -dependence (W ≡ √
s is the center-of-mass

energy available in the photon–nucleon system) [54]

Q2
s ∝ W λ , (68)

where λ ' 0.25 ÷ 0.3. In spite of significant uncertainties in the deter-
mination of the gluon structure functions, perhaps even more important is
the observation [54] that the HERA data exhibit scaling when plotted as a
function of variable

τ =
Q2

Q2
0

(
x

x0

)λ

, (69)

where the value of λ is again within the limits λ ' 0.25 ÷ 0.3. In high
density QCD, this scaling is a consequence of the existence of dimensionful
scale [26, 29]

Q2
s (x) = Q2

0

(x0

x

)λ
. (70)

Using the value of Q2
s ' 2.05 GeV2 extracted [41] at

√
s = 130 GeV and

λ = 0.25 [54] used in [47], equation (80) leads to the following approximate
formula for the energy dependence of charged multiplicity in central Au–Au
collisions:

〈
2

Npart

dNch

dη

〉

η<1

≈ 0.87

(√
s (GeV)

130

)0.25

×
[
3.93 + 0.25 ln

(√
s (GeV)

130

)]
. (71)

At
√

s = 130 GeV, we estimate from Eq.(71) 2/Npart dNch/dη |η<1= 3.42±
0.15, to be compared to the average experimental value of 3.37±0.12 [50–53].
At

√
s = 200 GeV, one gets 3.91 ± 0.15, to be compared to the PHOBOS

value [52] of 3.78 ± 0.25. Finally, at
√

s = 56 GeV, we find 2.62 ± 0.15,
to be compared to [52] 2.47 ± 0.25. It is interesting to note that formula
(71), when extrapolated to very high energies, predicts for the LHC energy
a value substantially smaller than found in other approaches:

〈
2

Npart

dNch

dη

〉

η<1

= 10.8 ± 0.5 ,
√

s = 5500 GeV, (72)
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corresponding only to a factor of 2.8 increase in multiplicity between the
RHIC energy of

√
s = 200 GeV and the LHC energy of

√
s = 5500 GeV

(numerical calculations show that when normalized to the number of par-
ticipants, the multiplicity in central Au–Au and Pb–Pb systems is almost
identical).

4.3. Radiating the glue

Let us now proceed to the quantitative calculation of the (pseudo-) ra-
pidity and centrality dependences [55]. We need to evaluate the leading tree
diagram describing emission of gluons on the classical level. Let us introduce
the unintegrated gluon distribution ϕA(x, k2

t ) which describes the probabil-
ity to find a gluon with a given x and transverse momentum kt inside the
nucleus A. As follows from this definition, the unintegrated distribution is
related to the gluon structure function by

xGA(x, p2
t ) =

p2
t∫
dk2

t ϕA(x, k2
t ) , (73)

when p2
t > Q2

s , the unintegrated distribution corresponding to the brems-
strahlung radiation spectrum is

ϕA(x, k2
t ) ∼

αs

π

1

k2
t

. (74)

In the saturation region, the gluon structure function is given by (46); the
corresponding unintegrated gluon distribution has only logarithmic depen-
dence on the transverse momentum:

ϕA(x, k2
t ) ∼

SA

αs
, k2

t ≤ Q2
s , (75)

where SA is the nuclear overlap area, determined by the atomic numbers of
the colliding nuclei and by centrality of the collision.

The differential cross section of gluon production in a AA collision can
now be written down as [26, 48]

E
dσ

d3p
=

4πNc

N2
c − 1

1

p2
t

∫
dk2

t αs ϕA(x1, k
2
t ) ϕA(x2, (p − k)2t ) , (76)

where x1,2 = (pt/
√

s) exp(±η), with η the (pseudo)rapidity of the pro-
duced gluon; the running coupling αs has to be evaluated at the scale
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Q2 = max{k2
t , (p − k)2t}. The rapidity density is then evaluated from (76)

according to
dN

dy
=

1

σAA

∫
d2pt

(
E

dσ

d3p

)
, (77)

where σAA is the inelastic cross section of nucleus–nucleus interaction.
Since the rapidity y and Bjorken variable are related by ln 1/x = y, the

x-dependence of the gluon structure function translates into the following
dependence of the saturation scale Q2

s on rapidity:

Q2
s (s;±y) = Q2

s (s; y = 0) exp(±λy) . (78)

As it follows from (78), the increase of rapidity at a fixed W ≡ √
s moves

the wave function of one of the colliding nuclei deeper into the saturation
region, while leading to a smaller gluon density in the other, which as a result
can be pushed out of the saturation domain. Therefore, depending on the
value of rapidity, the integration over the transverse momentum in Eqs. (76),
(77) can be split in two regions: (i) the region ΛQCD < kt < Qs,min in which
the wave functions are both in the saturation domain; and (ii) the region
Λ � Qs,min < kt < Qs,max in which the wave function of one of the nuclei is
in the saturation region and the other one is not. Of course, there is also the
region of kt > Qs,max, which is governed by the usual perturbative dynamics,
but our assumption here is that the rôle of these genuine hard processes in the
bulk of gluon production is relatively small; in the saturation scenario, these
processes represent quantum fluctuations above the classical background. It
is worth commenting that in the conventional mini-jet picture, this classical
background is absent, and the multi-particle production is dominated by
perturbative processes. This is the main physical difference between the
two approaches; for the production of particles with pt � Qs they lead to
identical results.

To perform the calculation according to (77), (76) away from y = 0 we
need also to specify the behavior of the gluon structure function at large
Bjorken x (and out of the saturation region). At x → 1, this behavior is
governed by the QCD counting rules, xG(x) ∼ (1 − x)4, so we adopt the
following conventional form: xG(x) ∼ x−λ (1 − x)4.

We have now everything at hand to perform the integration over trans-
verse momentum in (77), (76); the result is the following [55]:

dN

dy
= const. SA Q2

s,min ln

(
Q2

s,min

Λ2
QCD

)

×
[
1 +

1

2
ln

(
Q2

s,max

Q2
s,min

) (
1 − Qs,max√

s
e|y|
)4
]

, (79)
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where the constant is energy–independent, SA is the nuclear overlap area,
Q2

s ≡ Q2
s (s; y = 0), and Qs,min(max) are defined as the smaller (larger) values

of (78); at y = 0, Q2
s,min = Q2

s,max = Q2
s (s) = Q2

s (s0) × (s/s0)
λ/2. The first

term in the brackets in (79) originates from the region in which both nuclear
wave functions are in the saturation regime; this corresponds to the familiar
∼ (1/αs) Q2

sR
2
A term in the gluon multiplicity. The second term comes from

the region in which only one of the wave functions is in the saturation region.
The coefficient 1/2 in front of the second term in square brackets comes from
kt ordering of gluon momenta in evaluation of the integral of Eq. (76).

The formula (79) has been derived using the form (75) for the uninte-
grated gluon distributions. We have checked numerically that the use of
more sophisticated functional form of ϕA taken from the saturation model
of Golec-Biernat and Wüsthoff [54] in Eq. (76) affects the results only at the
level of about 3%.

Since SAQ2
s ∼ Npart (recall that Q2

s � Λ2
QCD is defined as the density

of partons in the transverse plane, which is proportional to the density of
participants), we can re-write (79) in the following final form [55]

dN

dy
= c Npart

(
s

s0

)λ
2

e−λ|y|

[
ln

(
Q2

s

Λ2
QCD

)
− λ|y|

]

×
[
1 + λ|y|

(
1 − Qs√

s
e(1+λ/2)|y|

)4
]

, (80)

with Q2
s (s) = Q2

s (s0) (s/s0)
λ/2. This formula expresses the predictions of

high density QCD for the energy, centrality, rapidity, and atomic number
dependences of hadron multiplicities in nuclear collisions in terms of a single
scaling function. Once the energy-independent constant c ∼ 1 and Q2

s (s0)
are determined at some energy s0, Eq. (80) contains no free parameters. At
y = 0 the expression (79) coincides exactly with the one derived in [41], and
extends it to describe the rapidity and energy dependences.

4.4. Converting gluons into hadrons

The distribution (80) refers to the radiated gluons, while what is mea-
sured in experiment is, of course, the distribution of final hadrons. We
thus have to make an assumption about the transformation of gluons into
hadrons. The gluon mini-jets are produced with a certain virtuality, which
changes as the system evolves; the distribution in rapidity is thus not pre-
served. However, in the analysis of jet structure it has been found that the
angle of the produced gluon is remembered by the resulting hadrons; this
property of “local parton–hadron duality” (see [49] and references therein) is
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natural if one assumes that the hadronization is a soft process which cannot
change the direction of the emitted radiation. Instead of the distribution in
the angle θ, it is more convenient to use the distribution in pseudo–rapidity
η = − ln tan(θ/2). Therefore, before we can compare (79) to the data, we
have to convert the rapidity distribution (80) into the gluon distribution in
pseudo-rapidity. We will then assume that the gluon and hadron distribu-
tions are dual to each other in the pseudo-rapidity space; the conversion
from the rapidity y to pseudo-rapidity η is accomplished with the help of
Jacobian, see [47] for details.

The results for the Au–Au collisions at
√

s = 130 GeV are presented in
Figs 4 and 5. One can see that both the centrality dependence and the ra-
pidity dependence of the

√
s = 130 GeV PHOBOS data are well reproduced

below η ' ±4. The predictions of this approach were also successful at other
RHIC energies, from

√
s = 20 GeV to

√
s = 200 GeV.

2( dNch/dη)/Npart
W = 130 GeV  η

 < 1
2 - 2.4

3 - 3.4

4 - 4.4

Npart

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450

Fig. 4. Centrality dependence of charged hadron production per participant at

different pseudo-rapidity η intervals in Au–Au collisions at
√

s = 130 GeV; from

[55], the data are from [52].
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dNch/dη W = 130 GeV

 0 - 6 %

15 - 25 %

35 - 45 %

η
0
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200
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Fig. 5. Pseudo-rapidity dependence of charged hadron production at different cuts

on centrality in Au–Au collisions at
√

s = 130 GeV; from [55], the data are from [52].

5. Summary and outlook

In these lectures, we have discussed the general ideas underlying the
semi-classical approach to high energy interactions in QCD. We have also
considered in detail just one application of these ideas: namely, the evalu-
ation of the multiplicity distributions in high energy nuclear collisions. Be-
cause of the lack of space, many other directions in this rapidly developing
field have not been covered. Among them are such important developments
as the first-principle numerical lattice approach to the evolution of classical
gauge fields, the recent work on the non-linear evolution equation at small x,
and the manifestations of non-linear evolution in hard processed at small x;
I refer the reader to review articles [1–4] as well as to the other lectures in
this volume for gaining a broader prospective.

I am grateful to Michał Praszałowicz and his colleagues for inviting
me to this excellent School. I also wish to thank my collaborators —
Yu. Kovchegov, E. Levin, L. McLerran, M. Nardi, K. Tuchin and R. Venu-
gopalan for sharing their insights with me. The work was supported by the
U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
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