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I argue that the physics of the scattering of very high energy strongly
interacting particles is controlled by a new, universal form of matter, the
Color Glass Condensate. This matter is the dominant contribution to the
low x part of a hadron wavefunction. In collisions, this mater almost in-
stantaneously turns into a Glasma. The Glasma initially has strong longi-
tudinal color electric and magnetic fields, with topological charge. These
fields melt into gluons. Due to instabilities, quantum noise is converted into
classical turbulence, which may be responsible for the early thermalization
seen in heavy ion collisions at RHIC.

PACS numbers: 12.38.–t, 12.38.Mh, 25.75.Nq

1. The high energy limit

The high energy limit of QCD is the limit where the energy of collisions
goes to infinity, but the typical momentum transfer is finite. This momen-
tum transfer can be much larger than ΛQCD, but it is to remain fixed. This
is not the short distance limit, where both momentum transfer and energy
go to infinity. The short distance limit is understood using weak coupling
perturbation theory. The high energy limit is that of non-perturbative phe-
nomena such as Pomerons, Reggeons, unitarization etc. One of the purposes
of this lecture is to convince the reader that this non-perturbative limit of
QCD is also a weak coupling limit.
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The Bjorken x variable can be understood as the ratio of the energy of
the constituent of a hadron to that of the hadron itself in the reference frame
where the hadron has large energy. The typical minimal value of x is

xmin ∼
ΛQCD

Ehadron

. (1)

The minimal value decreases as the hadron energy increases.
A hadron wavefunction has many different components. This is illus-

trated in Fig. 1. A nucleon has a Fock space component with three quarks

Fig. 1. The various components of the hadron wavefunction.

and no gluons, with an extra gluon and with many extra gluons. The com-
ponents which control low energy scattering are those with three quarks and
a few gluons. For high energy scattering processes, the typical matrix ele-
ments are those with three quarks, many quark anti-quark pairs, and even
more gluons.

2. What is the color glass condensate?

The original ideas for the Color Glass Condensate were motivated by
the result for the HERA data on the gluon distribution function shown in
Fig. 2(a) [1]. The gluon density is rising rapidly as a function of decreas-
ing x. This was expected in a variety of theoretical works [2–4] and has
the implication that the real physical transverse density of gluons must in-
crease [2, 3, 5]. This follows because total cross sections rise slowly at high
energies but the number of gluons is rising rapidly. The gluons must fit
inside the size of the hadron.
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Fig. 2. (a)The HERA data for the gluon distribution function as a function of x

for various values of Q2. (b) A physical picture of the low x gluon density inside a

hadron as a function of energy.

This is shown in Fig. 2(b). This led to the conjecture that the density
of gluons should become limited, that is, there is gluon saturation [2, 3, 5].
Actually, I argue that as one goes to higher energy, a hadron becomes a
tightly packed system of gluons larger than some size scale. For smaller
gluons there are holes. As one increases the energy, one still adds in more
gluons, but these gluons are small enough that they fit into the holes. Be-
cause in quantum mechanics, we interpret size as wavelength as inversely
proportional to momentum, at high energies, the gluons are tightly packed
for gluons below some momentum, and are filling in above that momentum.
There is therefore a critical momentum, the saturation momentum, which
characterizes the filling. This saturation momentum increases as the energy
increases, so the total number of gluons can increase without bound.

The low x gluons therefore are closely packed together, and become
more closely packed as the energy increases. The strong interaction strength
must become weak, αS � 1. Weakly coupled systems should be possible to
understand from first principles in QCD [5, 6].

This weakly coupled system is called a Color Glass Condensate (CGC)
for reasons we now enumerate [6]:

• Color The gluons which make up this matter are colored.

• Glass The gluons at small x are generated from gluons at larger values
of x. In the infinite momentum frame, these larger momentum gluons
travel very fast and their natural time scales are Lorentz time dilated.
This time dilated scale is transferred to the low x degrees of freedom
which therefore evolve very slowly compared to natural time scales.
This is the property of a glass.
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• Condensate The phase space density

ρ =
1

πR2

dN

dyd2pT

(2)

is generated by a trade off between a negative mass-squared term lin-
ear in the density which generates the instability, −ρ and an interac-
tion term αSρ2 which stabilizes the system at a phase space density
ρ ∼ 1/αS. Because αS � 1, this means that the quantum mechanical
states of the system associated with the condensate are multiply oc-
cupied. They are highly coherent, and share some properties of Bose
condensates. The gluon occupation factor is very high, of order 1/αS,
but it is only slowly (logarithmically) increasing when further increas-
ing the energy, or decreasing the transverse momentum. This provides
saturation and cures the infrared problem of the traditional BFKL
approach [7].

One can understand the high phase space occupancy 1/αS from simple
arguments. The momentum scale in the phase space distribution is the
De Broglie wavelength of the gluons which we can interpret as the size of
the gluons. The gluons of fixed size will densely occupy the system until
there are 1/αS gluons of fixed size closely packing the system. The gluons
interact with strength αS, so that when 1/αS sit on top of one another, they
act coherently like a hard sphere with interaction strength of order 1.

Implicit in this definition is a concept of fast gluons which act as sources
for the colored fields at small x. These degrees of freedom are treated dif-
ferently than the fast gluons which are taken to be sources. The slow ones
are fields. There is an arbitrary X0 which separates these degrees of free-
dom. This arbitrariness is cured by a renormalization group equation which
requires that physics be independent of X0. In fact this equation deter-
mines much of the structure of the resulting theory as its solution flows to
a universal fixed point [6–9].

There is evidence which supports this picture. One piece is the observa-
tion of limiting fragmentation. This phenomena is that if particles collide at
some fixed center of mass energy and the distribution of particles are mea-
sured as a function of their longitudinal momentum from the longitudinal
momentum of one of the colliding particles, then these distributions do not
change as one goes to higher energy, except for the new degrees of freedom
that appear. This is true near zero longitudinal momentum in the center of
mass frame because new degrees of freedom appear as the center of mass en-
ergy is increased. In the analogy with the CGC, the degrees of freedom, save
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the new ones added in at low longitudinal momentum, are the sources. The
fields correspond to the new degrees of freedom. The sources are fixed in ac-
cord with limiting fragmentation. One generates an effective theory for the
low longitudinal momentum degrees of freedom as fixed sources above some
cutoff, and the fields generated by these sources below the cutoff. A recent
measurement of limiting fragmentation comes from the Phobos experiment
at RHIC shown in Fig. 3 [10].
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Fig. 3. Limiting fragmentation as measured in the Phobos experiment at RHIC.

Of course, the perfect scaling of the limiting fragmentation curves is only
an approximation. As shown by Jalilian-Marian, the limiting fragmentation
curves are given by the total quark, antiquark and gluon distribution func-
tions of the fast particle measured at a momentum scale Q2

sat appropriate
for the particle that it collides with [11]. The saturation momentum Qsat

will play a crucial role in our later discussion. It is a momentum scale which
is determined by the density of gluons in the CGC

1

πR2

dN

dy
∼

1

αS

Q2
sat . (3)

The saturation momentum turns out to depend on the total beam energy
because the longitudinal momentum scale of the target particle at fixed x of
the projectile will depend upon the beam energy. It is nevertheless remark-
able how small these violations appear to be.

The CGC may be defined mathematically by a path integral:

Z =

∫

X0

[dA][dj] exp (iS[A, j] − χ[j]) . (4)

What this means is that there is an effective theory defined below some cutoff
in x at X0, and that this effective theory is a gluon field in the presence of
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an external source j. This source arises from the quarks and gluons with
x ≥ X0, and is a variable of integration. The fluctuations in j are controlled
by the weight function χ[j]. It is χ[j] which satisfies renormalization group
equations which make the theory independent of X0 [6, 8, 9, 12–14]. The
equation for χ is called the JIMWLK equation. This equation reduces in
appropriate limits to the BFKL and DGLAP evolution equations [4,15]. The
theory above is mathematically very similar to that of spin glasses.

There are a variety of kinematic regions where one can find solutions of
the renormalization group equations which have different properties. There
is a region where the gluon density is very high, and the physics is controlled
by the CGC. This is when typical momenta are less than a saturation mo-
menta which depends on x,

Q2 ≤ Q2
sat(x) . (5)

The dependence of x has been evaluated by several authors, [2,16–18], and in
the energy range appropriate for current experiments has been determined
by Triantafyllopoulos to be

Q2
sat ∼

(x0

x

)λ

GeV2 , (6)

where λ ∼ 0.3. The value of x0 is not determined from the renormalization
group equations and must be found from experiment.

The kinematic region corresponding to the CGC is shown in Fig. 4.
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Fig. 4. The kinematic regions of the Color Glass Condensate.

There is also a region of very high Q2 at fixed x, where the density
of gluons is small and perturbative QCD is reliable. It turns out there is
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a third region intermediate between high density and low where there are
universal solutions to the renormalization group equations and scaling in
terms of Q2

sat [17]. In this region and in the region of the CGC, distribution
functions are universal functions of only Q2/Q2

sat(x). The extended scaling
region is when

Q2
sat ≤ Q2 ≤ Q4

sat/Λ
2
QCD . (7)

3. What is the form of the color glass fields?

One can simply compute the form of the Color Glass fields. If we work
in a frame where the hadron has a large momentum, the z− t ∼ 0. The only
big component of F µν is F i+ where

x± = (z ± t)/
√

2 . (8)

If we set Fi− = 0, then simple algebra tells us that the big field strengths
are E and B, and that

~E ⊥ ~B ⊥ ~z . (9)

The fields are plane polarized perpendicular to the beam direction. These
are the Lienard–Wiechart potentials which correspond to a Lorentz boosted
Coulomb field. They exist within the Lorentz contracted sheet and have a
longitudinal extent corresponding to the fast moving sources. (The vector
potential corresponding to these field is extended, and the wee gluons corre-
sponding to these fields are extended over a larger longitudinal size scale.)
The fields have random polarizations and colors. This is shown in Fig. 5.

Fig. 5. The color glass field.
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4. What is the CGC good for?

The CGC provides a unified description of deep inelastic structure func-
tions, of deep inelastic diffraction and of hadron–hadron collisions at high
energies. It is the high energy limit of QCD. As such, it has many tests to
pass before being accepted as a correct description. Over the last several
years, there have been many qualitative and semi-quantitative successes of
this description. It also provides an intuitively plausible and mathematically
consistent description of such phenomena.

One can compute the x dependence of the saturation momentum [17,18].
This solutions results from renormalization group equations. The results
agree with Hera phenomenology [19]. In particular, within the same descrip-
tion one can compute both deep inelastic structure functions and diffractive
structure functions.

In addition, the CGC predicts the existence of geometric scaling [20].
Geometric scaling means that the cross section for deep inelastic scattering
of a virtual photon from a hadron depends only upon the scale invariant
ratio Q2/Q2

sat, and not independently Q2 and x. Such scaling is shown in
Fig. 6 for x values of x < 10−2. The total cross section for hadron-hadron
scattering is a slowly varying function of energy as shown in Fig. 7.

The Color Glass Condensate provides a heuristic explanation of this
[21–23]. We assume the distribution of gluons in the transverse plane of a
hadron as a function of energy factorizes,

dN

d2rT dx
∼

(x0

x

)λ

exp (−2mπrT) , (10)

where the exponential fall off should be of the form shown at large rT,
since the lowest mass particle exchange with isospin zero is two pions. The
cross section for a particle of some size to penetrate the hadron, and have a
large probability to scatter occurs when this density is some fixed number.
Therefore

σ ∼ R2 ∼ ln2

(

1

x

)

∼ ln2

(

E

E0

)

. (11)

This behavior is the Froissart bound for cross sections, and describes high
energy scattering reasonably well. It origin is the trade off in rapidly falling
impact parameter profile against rapidly rising density of partons.

One of the remarkable predictions of the Color Glass Condensate was
the mutliplicty of particles produced in heavy ion collisions at RHIC [24].
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Fig. 6. Geometric Scaling as seen at Hera.

Fig. 7. The total hadronic cross section as a function of energy.

The multiplicity of saturated gluons inside a nucleus should scale as

dN

dy
∼

1

αS

πR2Q2
sat . (12)
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The energy dependence of Qsat is known, and the dependence on centrality
should be proportional to Ncoll, the number of nucleons colliding, at not
too high an energy. Assuming the hadron multiplicity is proportional to the
number of produced gluons gives the plot shown in Fig. 8 [25].

Fig. 8. dN/dη vs Centrality at η = 0. The multiplicity as a function of energy

observed at the RHIC.

Experiments using deuterons on nuclei in the fragmentation region of
the deuteron also test ideas about how the gluon distribution is modified
by the Color Glass Condensate. If one uses a multiple collision model to
infer the change of the distribution of produced high momentum particles,
then there should be more particles at high pT for intermediate to high
pT. Because of probability conservation, there should be a depletion of low
momentum particles. At very high pT, where multiple scattering should not
be important, the distribution should not be changed.

The CGC on the other hand predicts an additional phenomenon. Since
there is a high density media, the QCD evolution equations stop running
when the scale becomes of the order of the saturation momentum. This
means that in nuclei which have a larger saturation momentum than the
proton, that there should be a net depletion of particles.

The experimental measurements are in accord with CGC predictions at
forward rapidities [25]. The effect is shown as a function of centrality of the
collisions in Fig. 9. Forward rapidities correspond to small x values for the
deuteron wavefunction. At larger values of x, the multiple scattering effects
dominate, and there is an enhancement as a function of centrality. For the
central region of gold–gold collisions at RHIC energies, the effects almost
cancel one another.
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In the future years, there will be increasingly stringent tests arising at
RHIC, LHC and potentially eRHIC. Theoretically, we are just beginning to
understand the properties of this matter. New ideas concerning the structure
of the underlying theory and the breadth of phenomena it describes are
changing the way we think about high energy density matter.
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Fig. 9. The ratio of single particle production in central to peripheral collisions at

forward rapidity as a function of centrality as measured in the Brahms experiment.

5. What is the glasma?

When two sheets of colored glass collide, the properties of the matter are
changed in the time it take light to propagate across the sheets of colored
glass [26–30]. In Fig. 10(a), the sheets of colored glass approach one another.
The colored fields in the two sheets form a condensate of Weizsacker–Willams
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Fig. 10. (a)Two sheets of colored glass approach one another. (b) After the colli-

sions, Glasma is formed in the region between the sheets.
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fields disordered in polarization and color. In the time it takes the sheets
to pass through one another, the fast degrees of freedom gain a density of
color electric and magnetic charge. The density of charge on each sheet
is equal and opposite. This is a consequence of the classical fields which
are generated by the source sheets of color glass. Attached to the region
away from the collision region is a pure two dimensional transverse vector
potential. This potential has no color electric and magnetic field until the
nuclei pass through one another, since then the vector potential of one sheet
multiplies the field of the other. Then sources are set up according to the
Yang–Mills equations

ρa
E = fabcAb Ec ,

ρa
B = fabcAb Bc . (13)

These colored electric and magnetic charges generate longitudinal color
electric and magnetic fields as shown in Fig. 10(b). The reason why both
electric and magnetic fields are made is because of the duality of the Yang–
Mills equations under E ↔ B, and because the initial fields of the colored
glass have this symmetry.

When there is a nonzero E B means that there is a topological charge
induced. This Chern Simons charge is

∂ K = αSκE B , (14)

where κ is a constant. This topological charge generates helicity non-
conservation. To understand how this works, consider a parallel electric
and magnetic field in electrodynamics An electron is accelerated and rotates
around a magnetic field in the opposite sense to a positron. Therefore both
the electron and positron acquire the same vorticity. The sign of the vor-
ticity depends upon the sign of E B. For an extended charge distribution,
corresponding to a hadron, we expect that there will be a similar biasing of
the helicity distributions of hadrons.

The classical equations after the collision evolve in time and become
dilute as a consequence of the non-linearities of the Yang–Mills equation.
There is a simple solution to this problem which has an invariance under
Lorentz boosts along the collision access. It has however been recently show
that this solution is unstable with respect to small non boost invariant solu-
tions. These solutions grow in magnitude as time evolves, amplifying small
initial fluctuations into full scale chaotically turbulent solutions. This tur-
bulence and its rapid onset may be responsible for the early thermalization
seen at RHIC.
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One of the outstanding problems of the Glasma is to understand how
these initial fluctuations are formed. They presumably arise from the initial
wavefunction of the nuclei. Then the classical instabilities of the Yang-
Mills equations amplify these fluctuations, and if one waits long enough, the
fluctuations dominate the classical solution. Therefore, quantum noise is
amplified to such an effect that it becomes as large as the classical fields.
Whether or not there is sufficient time in RHIC or LHC energy collisions for
these effects to become significant is not yet known.

6. The emerging picture of RHIC collisions

The emerging picture we have of RHIC collisions is shown in Fig. 11.
In the initial state, there are two sheets of colored glass. They collide and
produce a glasma, which melts into gluons. During the melting, or per-
haps afterwards, the quarks and gluons thermalize. This eventually makes a
Quark Gluon Plasma. Data from RHIC indicates this happens very rapidly,
on a time scale of the order of 1 Fm/c. In Fig. 11, I have presented the
typical energy scales and times involved. The scale of energy comes from
the measurements of multiplicities and HBT radii at RHIC. The range in
estimates comes from making the radical assumptions of complete thermal-
ization and no thermalization of the gluons. The bottom line is that the
scales are large and the times probed are very early.

Fig. 11. The Emerging picture of RHIC collisions.
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7. Summary

In addition to the Quark Gluon Plasma, other interesting new forms of
matter are being probed at RHIC. These are the Color Glass Condensate and
the Glasma. These forms of matter allow us to test ideas about QCD when
the non-linearities of QCD are present, yet to use weak coupling methods.
At the LHC, the potential for studying such new form of matter is great due
to the larger range in x and typical momentum scales.
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