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LATTICE STUDY OF GLUON VISCOSITIES

— A STEP TOWARDS RHIC PHYSICS∗

Atsushi Nakamura

Research Institute for Information Science and Education
Hiroshima University

Higashi-Hiroshima, 739-8521, Japan

Sunao Sakai

Faculty of Education, Yamagata University

Yamagata 990-8560, Japan

(Received November 8, 2006)

After a brief overview of the high energy heavy ion collisions and lattice
QCD simulations at finite temperature and density, we report our lattice
study of transport coefficients of quark–gluon plasma (QGP) in the lat-
tice quench approximation. We discuss why the transport coefficients are
important and interesting in QGP physics.

PACS numbers: 25.75.Nq, 12.38.Gc, 12.38.Mh, 24.85.+p

1. Introduction — QCD as a function of T and µ

One of the authors (A.N.) is very happy to come back to Zakopane after
twenty years for the occasion of Prof. Andrzej Bialas’ seventieth birthday.
When he was a post-doc in Europe, Andrzej kindly asked him to give a talk
at Zakopane on lattice QCD and his first finite temperature and density lat-
tice simulation results [1]. During his stay in Cracow, he had an opportunity
to discuss his work with Andrzej and Larry McLerran. They also read his
draft and encouraged him very strongly to pursue this direction. This paper
is now considered as the first lattice simulation of finite density QCD [2].
His talk today is a report to Andrzej after twenty years.

QCD is now a well established theory for the quark–gluon dynamics at
the zero-temperature and zero-baryon density. The theory is very simple: it
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consists of only two fields, gluon as a gauge field and quark as Dirac fermion
field, and we can write down the Lagrangian in one line. Nevertheless its
behavior is very non-trivial due to the non-linear character of gluons and the
approximate chiral symmetry. At large distance, the confinement of quarks
and gluons emerges as a non-perturbative feature, that is unique among all
theories describing the real world in the history of physics.

It is straightforward to formulate the statistical physics of QCD (at least
in the case of equilibrium systems),

Z = Tr(e−
1

kT
(H−µN)) =

∫

DUDψ̄Dψ exp











−

1/kT
∫

0

dτ

∫

d3x(L+ µn)











=

∫

DUDψ̄Dψe−(SG+ψ̄∆ψ) =

∫

DU det ∆e−SG , (1)

where SG stands for the gluon action, and k is the Boltzmann constant,
which is set to be one in the following. Here we express the formula in
the lattice notation, i.e., lattice link fields Uµ(x) are related to the gauge
potential as Uµ(x) = exp(iaAµ(x)), and we do not include the gauge fixing
term. Using this formula, we can calculate expectation values of physical
quantities in QCD non-perturbatively by lattice simulation.

We can apply this well formulated theory, QCD, to predict phenomena
that can be tested by experiments or observations. This is a great pleasure
of physicists. Already more than twenty years ago, Gross, Pisarski and
Yaffe pointed out that there are places where one might look for the effects
of high temperature and/or large baryon density, i.e., (i) the interior of
neutron stars, (ii) during the collision of heavy ions at very high energy per
nucleon, and (iii) about 10−5 sec after the big bang [3].

Our dream comes true. Now QCD at finite density and temperature
is not anymore a theorist’s imagination: experimentalists are creating high
temperature and density state in heavy ion collisions on the earth. Braun-
Munzinger, Redlich and Stachel have demonstrated this fact by estimat-
ing temperature and chemical potential at RHIC, SPS, AGS and SIS from
produced hadron experimental data and by comparing them with lattice
data [4]. In Fig. 1, we show results of analysis in Ref. [5] and recent lattice
QCD results. Observed hadrons are expected to path through these points
in (T, µB) plain. When they are created, the temperature and the density
are probably even higher. Phase transition lines estimated by lattice QCD
calculations are also shown in the figure. Ref. [6] is a nice review on QCD
phase diagram and the critical point. Ref. [7] is a comprehensive new review
of QGP.
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Fig. 1. A compilation of chemical freeze-out parameters together with the lattice

gauge theory results. The nuclear density corresponds µ = 923 MeV.

From this figure, we see that in RHIC the confinement/deconfinement
transition temperature is exceeded. In this school, we hear from Peter Sey-
both that they survey regions near a possible end critical point [8].

Two decades ago, using lattice simulations, three groups predicted that
at high temperature there is a phase transition from the confinement to
the deconfinement phase [9–11]. Since then, there have been many lattice
studies on the phase transition point at T > 0 and µ = 0. See Ref. [12] for
lattice studies at finite temperature.

At large baryon density regions, many theoretical works have revealed
that QCD has rich phase structure there. A remarkable feature is the ex-
istence of the color super conductivity phase, which were pointed out in
Refs. [13–15]. It was thought, however, that this phenomena would be eas-
ily washed out at relatively low temperature due to the small gap energy
and could not be observed. In late ninetieth, using instanton type modeling
of the attractive force, Alford et al. [16] and Rapp et al. [17] argued that the
gap energy is of the order of 100 MeV, and therefore the transition temper-
ature, which should be approximately equal to the gap energy, is relatively
high. The color super conductivity may be realized in neutron stars. After
these papers, the field has become very active and many new possible phases
were found. See Refs. [19, 20].
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2. QGP produced in heavy ion collisions

Since 2000, RHIC has brought us many experimental informations in
high energy heavy ion collisions. The news is very surprising: The produced
matter does not look as a quasi-free gas, as naively expected, but rather is
well described as a fluid. In SPS energy regions, the hydro-model describes
well one-particle distributions, HBT etc., but fails to describe the elliptic flow
data. The success of the hydro-model may not be so surprising. Fifty years
ago, Landau criticized Fermi’s statistical model [21], and noticed ‘owing to
high density of the particles and to strong interaction between them, one
cannot really speak of their number’ and proposed his relativistic hydro-
dynamical model [22]. The first quantum field theoretical analysis of the
applicability conditions of the Landau hydro-dynamical model was reported
in Ref. [23].

In three-dimensional hydro-dynamical calculations to analyze RHIC
data, it is assumed that the matter produced is a perfect fluid, i.e., its
viscosity is zero. This assumption is supported by several phenomenological
analyses.

This also suggests that the new state of matter produced at RHIC should
be treated as a strongly coupled system. In order to get the point, let us
consider the lowest perturbative calculation result,

η =
η1 T

3

g4 ln(µ∗/gT )
. (2)

The viscosity is small when g is large. See Fig. 2. This is contrary to the
pressure,

P =
π2

90
T 4

(

1 −
15

8

( g

π

)2
+ · · ·

)

. (3)

Here the deviation from the free case can be controlled as a corrections of
order g2, g4 etc. It might look strange that the viscosity becomes small
at large coupling. There should be, however, sufficient frequent momentum
exchange to realize a perfect fluid. Indeed

Free Gas ⇐⇒ Perfect Fluid
(weak interaction limit) (strong interaction limit)

Policastro, Son and Starinets have shown an example of a strongly coupled
theory in which the viscosity is indeed very small, i.e., η/s = 1/4π [24, 25].
They stressed that this is much smaller than that of ordinary matter, such as
water or liquid helium, and conjectured that this is the lowest bound (KSS
bound) [26].

It is thus important now to calculate the transport coefficients from
QCD, non-perturbatively.
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Fig. 2. η/T 3 in the case of the lowest perturbation theory.

3. Transport coefficients on lattice

On the lattice, the calculation of the transport coefficients is formulated
in the framework of the linear response theory [27, 28].

η = −

∫

d3x′
t

∫

−∞

dt1e
ε(t1−t)

t1
∫

−∞

dt′〈T12(~x, t)T12(~x′, t
′)〉ret . (4)

Here, 〈TµνTρσ〉ret is the retarded Green’s function of energy momentum ten-
sors Tµν at a given temperature. In the quenched approximation, the energy
momentum tensors are constructed from only gluonic field strength terms.
Bulk viscosity is defined in a similar manner.

Shear viscosity in Eq. (4) is also expressed using the spectral function ρ
of the retarded Green’s function ρ(ω) [28] as

η = π lim
ω→0

ρ(ω)

ω
= π lim

ω→0

dρ(ω)

dω
, (5)

i.e., the viscosity is controlled by the shape of the spectral function near
ω = 0.

For evaluating ρ(ω), we use a fact that the spectral function of the re-
tarded Green’s function at temperature T is the same as that of Matsubara–
Green’s function, i.e., Abrikosov–Gorkov–Dzyalosinski–Fradkin Theorem [30].
Therefore, our target is to calculate Matsubara–Green’s function(Gβ(tn)) on
a lattice and determine ρ from it [31].

To determine the spectral function ρ(ω) from Gβ(tn), we adopt the sim-
plest non-trivial ansatz, i.e., a Breit–Wigner type ansatz proposed by Karsch
and Wyld [32],

ρBW(ω) =
A

π

(

γ

(m− ω)2 + γ2
−

γ

(m+ ω)2 + γ2

)

. (6)
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As this formula has already 3 parameters, to determine them, the lattice
size in temperature direction(NT ) should be NT ≥ 8. Thus, the minimum
lattice size should be 243 × 8, to obtain non trivial results.

Simulations are carried out using the Iwasaki’s improved action and stan-
dard Wilson action. Use of the improved action reduces noise of the Monte
Carlo simulation at intermediate coupling regions. This suggests that our
observables the energy-momentum, suffer finite lattice spacing artifact.

The simulations are performed at β = 3.05, 3.3, 4.5 and 5.5 for the
improved action and at β=7.5 and 8.5 for Wilson action. With roughly 106

MC measurements at each β, we determine Matsubara–Green’s functions
Gβ(tn). The errors of Gβ are still large in the large t region, however, we fit
them with the spectral function ρ given by Eq. (6).

The bulk viscosity is equal to zero within the range of error bars, whereas
the shear viscosity remains finite.

4. Conclusions

Because we adopt an ansatz for the spectral function, our study is not
a first-principle calculation, yet, although this is best that one can do now.
Therefore it is important to investigate reliability of the ansatz.

We may compare our results with the perturbation results of η in rather
high temperature regions. In perturbation, bulk viscosity becomes zero
[28,29], whereas shear viscosity in the next-to-leading log is given by Eq. (2).
As seen in Fig. 3 (bottom), in low-T regions, the perturbative calculation
becomes inapplicable. At very high temperature, lattice and perturbative
results are satisfactorily consistent with each other. Although our result
depends on the assumption regarding ρBW given in Eq. (6), it may be a
reasonable approximation of dρ/dω at ω = 0.

Aarts and Resco has proposed an another form of ρ as [34]

ρ(ω) = ρlow(ω) + ρhigh(ω) , (7)

ρigh(ω) = θ(ω − 4m2
th)
dA(ω2 − 4m2

th)5/2

80π2ω

[

n
(ω

2

)

+ 0.5
]

, (8)

where dA = N2
c − 1 and n(ω) = 1/(exp(ω/T ) − 1). ρlow(ω) is a rational

function with coefficients as parameter.
In order to study the effect of ρhigh on the shear viscosity, η, we assume

that ρ is given by ρ = ρBW+ρhigh, where ρBW is given by Eq. (6). By chang-
ing mth, the change in η is studied at β = 3.3 of improved action. When
ρhigh is absent( mth = ∞), ηa3=0.00225(201). If mth is set to be 5.0, 3.0 and
2.0, ηa3 becomes 0.00223(0.00191), 0.00194(0.00194) and 0.00126(0.00204),
respectively. At mth = 1.8, the contribution from ρhigh becomes larger than
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Fig. 3. Shear viscosity as a function of temperature. Its ratio to entropy density

in RHIC temperature regions (top) and data in physical unit in wide temperature

regions together with perturbative calculations (bottom).

Gβ(tn) of simulation at t = 1, that fit could not be done. Generally, as mth

decreases, the contribution from ρhigh increases and ρ in the small ω region
is suppressed. In this case, it results in a decrease in η.

We have calculated Matsubara–Green’s function and determine the shear
viscosity of gluon plasma. In the high-temperature region, the agreement of
the lattice and perturbative calculation is satisfactory. The lattice result of
η/s in T/Tc ≤ 3 is smaller than that obtained by the extrapolation of the
perturbative calculation and satisfies the KSS bound. From the well known
relation between the mean free path and viscosity, our results also suggest
that gluon plasma is strongly interactive.

Although our results depend on the form of the spectral function ρBW

given by Eq. (6), we think that the qualitative features will not change,
because as discussed, our results are stable if the high frequency part of
the spectral function is included. We think that η and η/s will not reach 10
times of the present value when more accurate determination of the transport
coefficients is carried out.
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However, it is important to carry out a more reliable and accurate cal-
culation of transport coefficients, independent of the assumption regarding
the spectral function. To this purpose, we are starting simulations on an
anisotropic lattice, to apply maximum entropy method, and simulations
with improved energy-momentum operators where we use the clover-type
operators.

The author appreciates great hospitality of Andrzej Białas and Michał
Praszałowicz at Cracow School of Theoretical Physics, XLVI, 2006. The
work is partially supported by Grant-in-Aid for Scientific Research by
Monbu-kagakusyo, No. 13135216 and 17340080. The calculation was done
on SX-5 at RCNP, Osaka University and on SR-8000 at KEK and Hiroshima
University.
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