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We show that the boost-invariant and cylindrically asymmetric hydro-
dynamic equations for baryon-free matter may be rewritten as only two
coupled partial differential equations. In the case where the system ex-
hibits the cross-over phase transition, the standard numerical methods may
be applied to solve these equations. An example of our results describing
non-central gold on gold collisions at RHIC energies is presented.

PACS numbers: 25.75.—q, 25.75.Dw, 25.75.Ld, 25.75.Nq

1. Introduction

The success of the relativistic hydrodynamics in describing the RHIC
data [1-7] suggests that the hot and dense matter produced at RHIC be-
haves like an almost perfect fluid [8]. In this paper we discuss how the boost-
invariant and cylindrically asymmetric relativistic hydrodynamic equations
for baryon-free perfect fluid may be very conveniently reduced to only two
coupled partial differential equations. Our presentation is based on the re-
cent investigations published in Refs. [9,10]. We argue that the effects of the
cross-over phase transition may be included by the use of the temperature
dependent sound velocity ¢s(7"). As long as the function c¢s(7") satisfies the
stability condition against the shock formation, the resulting equations may
be solved with the help of standard numerical methods and used to describe
the expansion of matter produced in the central region of ultra-relativistic
heavy-ion collisions, such as studied in the present RHIC or future LHC
experiments. The presented formalism is a direct generalization of the ap-
proach introduced by Baym, Friman, Blaizot, Soyeur and Czyz [11] where
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the boost-invariant and cylindrically symmetric systems were considered,
and the numerical calculations were performed only for the case of the con-
stant sound velocity.

2. Hydrodynamic equations

The relativistic hydrodynamic equations of the perfect fluid follow from
the energy-momentum conservation law and the assumption of the local
thermal equilibrium. For baryon-free matter they have the following form

w0, (Tu”) =0T, Ou(sut) =0, (1)
where T is the temperature, s is the entropy density, and u# = ~(1,v) is
the four-velocity of the fluid. For boost-invariant systems Eqgs. (1) may be
reduced to three independent equations [12]

9 (rtsy) + 9 (rtsyvcos a) + 9 (tsyvsina) = 0 (2a)
ot VT g Y a1 -
0 0 .0
5 (rTyv) + rcos agy (Ty) + sin aa—¢ (Ty) = 0, (2b)
do  vsino 0T  cosadT
T | — — sina— — =0. 2
'yv<dt+ . ) smaar—l— R (2c)

In Egs. (2a)—(2c) the quantities t,r= /22 + y2, and ¢ = tan~!(y/z) are

space—time coordinates which parameterize the plane z = 0. The quantity v
_1

is the magnitude of the fluid velocity, v = (1 — vz) 2 is the Lorentz factor,

and « is the function describing direction of the flow, a = tan=!(vr/vR),

see Fig. 1. The differential operator d/dt in (2c) is defined by the expression

d 0 0 wsina 0
— = 5; tvcosa— =

dt Ot or r 09 )

Egs. (2) are three differential equations for four unknown functions: 7', s,
v, and . To solve them one has to use also the equation of state, i.e., the
relation connecting T and s. In our approach, the equation of state is taken
into account by the use of the temperature dependent sound velocity

oP s 0T
T)=5-=57> (4)
Ode T Os
and by the use of the potential ¢(T") defined by the differential equation

_ dlnT

Cs

dd

=c¢dlns. (5)
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Fig.1. Decomposition of the flow velocity vector in the plane z = 0. In our
approach we use the magnitude of the flow v and the angle a as two independent
quantities.

The form of the function ¢2(7T") used in our calculations is defined and dis-

cussed in more detail in Ref. [9]. Here we only note that the form of our sound
velocity function automatically satisfies the condition against the shock for-
mation [11,14]. The integration of Eq. (5) allows us to express @ in terms
of the temperature, ® = @p(T), or to express temperature in terms of &,
T = Ts(P). These two functions may be used to rewrite the hydrodynamic
equations in the very concise form. In fact, with the help of the substitutions:

v = tanh@, ar =exp(®+90), (6)
the sum and the difference of the equations (2a) and (2b) may be rewritten as
Oay (v =+ cs) dayr  (v=Ecs) sinaday
COoS & +
ot (1+c5v) or  (Itew) r 0¢

GV sinaa—a B cosa@_a "
(1+c5v) or r o) F
Cs 1 wcosa
— =0 7
+(1:tcsv) [t T }ai 7 (7)

while the third equation in (2¢) is

Oa (1—1;2) Cs Sina@_@_cosa@_@ Cw Cosaa_a+sina8_a+sina (8)
or r O¢ or r 0¢p r )’

Egs. (7) and (8) are three equations for three unknown functions: a (¢,7, ¢),

a_(t,r,¢), and «(t,r, ¢). We note, that the velocity v and the potential @
are functions of a4 and a_

ot v

ay —a_ 1

= — ) d=—-1 _). 9

VS Ta 5 In(ara-) (9)

Also the sound velocity may be expressed as the function of a4 and a_,
however, through a more complicated formula, see Ref. [10].
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3. Boundary conditions

In this paper we consider the collisions of identical nuclei with atomic
number A which collide moving initially along the z-axis. The impact pa-
rameter b points in the z-direction. The center of the first nucleus in the
transverse plane is placed at ®1 = (z1,y1) = (—=b/2,0), and of the second
nucleus at @9 = (r2,y2) = (b/2,0). In such a case we require that the mag-
nitude of the flow vanishes at « = (x,y) = (0,0). This condition is fulfilled
naturally by the ansatz

ay(t,r,¢) = a(t,r,¢), r>0, (10a)
a_(t,r,¢) = a(t,—r,¢), r<O0. (10b)

We supplement the ansatz (10) by the definition of the function «(t,r, ¢) for
the negative arguments, (see Fig. 2)

alt,—r,¢) = aft,r,¢), r>0. (11)

With the help of the definitions (10) and (11), Egs. (7) may be reduced to
a single equation for the function a(t,r, ¢),

da  (v+c) cosa@—k (v+cs) sina da CsV
ot (1+csv) or  (I4+cw) 7 0 (14 csv)

x (sina2 _cmadol 6 L vesa)
or r O0¢ (14 csv) [t r -

Here, similarly to the cylindrically symmetric case, the range of the variable
r is extended to negative values. Eq. (12) should be solved together with
Eq. (8), where the range of » may be also extended trivially to negative

A a+(r,¢,t) = a(r,¢,t)

’_y \‘\a—(r;‘ﬁst) = a(-r,é,t)

a(r,é,t)

- >
v

Fig. 2. Construction of the functions a4 (¢, 7, ¢) and a_(t,r, ¢) with the help of the
function a(t,r,¢). The function «(t,r, @) is symmetrically extended to negative
values of r.
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values (definitions (10) and (11) imply that this equation is in fact invariant
under transformation: r — —r). The use of the polar coordinates in the
transverse plane requires also that all functions at ¢ = 0 and ¢ = 27 are
equal: a(t,r,0) = a(t,r,27), a(t,r,0) = a(t,r,2m).

4. Initial conditions

In the following we assume that the hydrodynamic evolution starts at
a typical time ¢t = tg = 1fm. We assume also that the initial temperature
profile is connected with the number of participating nucleons

N\ /3
T(to,z,y) = const (CZE—CZ/> . (13)

The idea to use Eq. (13) follows from the assumption that the initially pro-
duced entropy density o(tg, x,y) is proportional to the number of the nucle-
ons participating in the collision at the position (z,y). Since the considered
systems are initially very hot (with the temperature exceeding the critical
temperature T¢), they may be considered as systems of massless particles,
where the entropy density is proportional to the third power of the temper-
ature. In this way we arrive at Eq. (13). The initial form of the functions
v(t,r,¢) and a(t,r, @) is

H()?“
V14 Hr? ’

where Hj is a parameter defining the initial transverse flow formed in the
pre-equilibrium stage. In the present calculations we use a very small value
Hy = 0.001 fm~!. The two initial conditions, Eqs. (13) and (14), may be
included in the initial form of the function a(r) if we define

1/3 vO(r
a(t =to,r,¢) = exp {@T [const <dd$]\;py> ] } i_iv?)gri ) (15)

5. Results

v(to,,¢) = vo(r) = a(to,r,¢) =0, (14)

In this section we give an example of our results describing the collisions
with the impact parameter b = 7.6 fm, typical for centrality class ¢ = 0—80%
[15]!. In this case the initial central temperature Ty equals 2.5 Ti, where T,
is the critical temperature, Ty = T'(to,0,0). The part (a) of Fig. 3 shows
the temperature profiles for different values of time: ¢t = 1,4,7,10, 13, 16 fm.

! In the paper [10] we considered the centrality classes: 0-20%, 20-40%, 40-60%.



3396

(@

M. CHOJNACKI

et
N O

T(r) [Tcl
- o

o
3

o

in—plane, ¢ = 0°

out-of-plane, ¢ = 90° ——~

o~
()
~

25

a(r) [deg]
| I
5 3 & o

|
N
o

|
N
o

t= 4[fm]

$=4

50

5 10 15 20

r [fm]

25

T(r,t) [Tl

in—plane, ¢ = 0°
out—of—plane, ¢ = 90° ==~

15 20 25
r [fm]

(d)
1

0.8
o 0.6

> 0.4
0.2

in-plane, ¢ = 0°
out-of-plane, ¢ = 90° ——~
t=1[fm]

10 15 20 25

y [fm]

r [fm]
T
24
422
L 20
[ H“_‘_‘ 14

y [fm]

-10 [

t=10.0 [fm] ]

t=13.0 [fm] ]

71 viel

10 —

Jo09 —

/ 08 —
407 —

//

06 —
H-—— Jos -

0.4
T~
™~ Jo3
~—r \ 0.2

\ Joa

— 0
t=160 (tml 15, .,

-30

-20 -10 0 10 20

30-30

-20 -10 ©

10 20 30-30

-20 -10 0 10

20 30

X [fm] x [fm] x [fm]

Fig.3. Time development of matter characterized by the initial conditions (14),
(15) with Hy = 0.001 fm™", Ty = T'(t0,0,0) = 2.5 T. and b = 7.6 fm.
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The solid lines represent the temperature profiles along the z-axis (¢ = 0),
while the dashed lines represent the profiles along the y-axis (¢ = 7/2). One
can observe that during the whole considered evolution time, 1 fm < ¢ <
16 fm, the y-extension of the system remains larger than the x-extension.
However, the relative magnitude of this effect decreases with time, indicating
that the cylindrical symmetry is gradually restored as the time increases. In
this part of Fig. 3 one can also notice the effect of the phase transition;
initially the system cools down rather rapidly, later the cooling down is
delayed and the main visible effect is the increase of the volume of the system.
We note that this behavior is related to the sudden decrease of the sound
velocity in the region T' ~ T. The part (b) of Fig. 3 shows the isotherms in
the t —r space, again for ¢ = 0 (solid lines) and ¢ = 7 /2 (dashed lines). The
pairs of isotherms indicate different values of the temperature. They start at
T =1.8T, and go down to T' = 0.27T,, with a step of 0.27T¢. It is interesting
to observe that the solid and dashed lines cross each other. This effect means
that the central (relatively hotter) part of the system acquires a pumpkin-
like shape during the evolution of the system. Such pumpkin-like regions,
however, shrink and disappear during further expansion. In the part (c) of
Fig. 3 the profiles of the function a(t,r, ¢) are shown for ¢t = 1,4,7,10, 13,
16fm and ¢ = 7/4. For ¢ = 0 and ¢ = 7/2 the function a(t,r, ¢) vanishes
due to the symmetry reasons. In the first and third quadrant the values
of o are predominantly negative, while in the second and fourth quadrant
the values of « are positive. This behavior characterizes the direction of
the flow which has the tendency to change the initial almond shape into
a cylindrically symmetric shape. In the part (d) the velocity profiles are
shown, again for ¢ = 1, 4, 10, 16 fm. Similarly to the previously discussed
figures, the solid lines are the profiles for ¢ = 0 (x-direction), whereas the
dashed lines are the profiles for ¢ = m/2 (y-direction). One can observe
that the magnitude in the z-direction is larger than the magnitude in the
y-direction, which is an expected hydrodynamic behavior caused by larger
pressure gradients in the z-direction. Exactly this effect is responsible for
the observed azimuthal asymmetry of the transverse-momentum spectra,
quantified by the values of the vy coefficient. Finally, in the part (e) we show
the contour lines of the temperature, again for different values of time. These
plots visualize the time development of the system. The arrows describe the
magnitude and the direction of the flow (for better recognition the angle «
is magnified by a factor of 3).



3398 M. CHOJNACKI

6. Summary

In this paper we presented a new and concise treatment of the boost-
invariant and cylindrically asymmetric relativistic hydrodynamic equations.
The presented formalism is a direct generalization of the approach intro-
duced by Baym et al. in Ref. [11]. In the studied case, the symmetry
of the problem allows us to rewrite the hydrodynamic equations as only
two coupled partial differential equations, (8) and (12), which automati-
cally lead to the fulfillment of the requested boundary conditions for the
velocity and the temperature at the center of the system. The effects of
the phase transition are included in this scheme by the use of the tempera-
ture dependent sound velocity. The presented results of the hydrodynamic
calculations, supplemented with the appropriate freeze-out model (e.g., the
single-freeze-out model of Refs. [16,17]), may be used to calculate different
physical observables. To achieve this task, in the closest future we intend to
combine our hydrodynamic approach with the statistical Monte Carlo model
THERMINATOR. [18].
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