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High energy scattering was recently shown to be similar to a reaction-
diffusion process. The latter defines a wide universality class that also con-
tains e.g. some specific population evolution models. The common point
of all these models is that their respective dynamics are described by noisy
traveling wave equations. This observation has led to a new understand-
ing of QCD in the regime of high energies, and known universal results on
reaction-diffusion models could be transposed to obtain quantitative prop-
erties of QCD amplitudes. Conversely, new general results for that kind
of statistical models have also been derived. Furthermore, an intriguing
relationship between noisy traveling wave equations and the theory of spin
glasses was found.

PACS numbers: 12.38.Cy, 13.60.Hb, 11.10.Lm

1. Introduction

The behavior of hadronic cross sections at high energy has been the
subject of intense theoretical and experimental investigations for several
decades. These studies will become even more relevant with the advent
of the LHC, where protons will collide at a center-of-mass energy of 14TeV.

In the following, we will focus on the forward elastic amplitude A(Y, k)
for the scattering of two hadronic objects at total rapidity Y , one of the
objects (called the probe) being characterized by a tunable momentum k,
that defines the scales in the plane transverse to the collision axis. The other
hadron will be called the target. The scattering occurs at a given impact pa-
rameter that, here, will be fixed. Experimentally, the corresponding process
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could be, for example, deep-inelastic electron–proton (or nucleus) scatter-
ing, in which case k would be of order of the virtuality of the exchanged
photon. The total rapidity Y can be seen as the rapidity of the target in the
rest frame of the probe: It is related to the squared center-of-mass energy s
through Y = ln (s/k2). Note that one could equally well work in transverse
coordinates instead of momenta, which proves useful in many cases: In coor-
dinate space, Ã(Y, r) is directly related to the probability that the probe of
size r interact with the evolved target at the considered impact parameter,
which in particular results in the unitarity bound Ã ≤ 1. The relationship
between the two representations of the amplitude reads

Ã(Y, r) = r2

∫
d2k

2π
eik·rA(Y, k) . (1)

Although total cross sections are not computable from standard QCD meth-
ods since confinement effects necessarily enter, the evolution with rapidity of
the scattering amplitudes for a localized probe at a given impact parameter
(understood in Eq. (1)) may be obtained starting from perturbative calcu-
lations that lead e.g. to the Balitsky hierarchy of equations [1]. In the latter

framework, the evolution of Ã reads

∂ᾱY Ã(Y, r) =

∫
d2z

2π

r2

z2(r−z)2

×
(

Ã(Y, z)+Ã(Y, r−z)−Ã(Y, r)−〈T̃ (Y, z)T̃ (Y, r−z)〉
)

, (2)

where ᾱ = (αsNc)/π. One had to introduce T̃ which is meant to be the
scattering amplitude off one particular configuration of the target. It is its
average over all quantum fluctuations of the latter that corresponds to the
physically measurable amplitude: Ã = 〈T̃ 〉.

Eq. (2) is not closed: One needs a further evolution equation for 〈T̃ T̃ 〉.
Eq. (2) is only the first equation of an infinite hierarchy which involves
increasingly complex mathematical objects. Solving that system is a formi-
dable task, and not surprisingly, no one has found a solution from a direct
study of Eq. (2). Another problem with the hierarchy is that it is not clear
whether its complete form for arbitrary targets is known.

A significantly simpler equation may be obtained by arbitrarily factor-
izing the correlator 〈T̃ T̃ 〉 into the product ÃÃ, within a kind of mean field
approximation that neglects fluctuations in the target. This was first pro-
posed by Balitsky [1] and subsequently re-derived by Kovchegov [2] in the
particular physical context of deep-inelastic scattering off an infinitely large
nucleus. An elegant representation of the resulting equation is obtained in
momentum space by using Eq. (1), namely
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∂ᾱYA = χ(−∂ln k2)A−A2 , (3)

where χ(−∂ln k2) is the expression of the integral kernel that appears in
Eq. (2) in momentum space. The main properties of the solutions to Eq. (3)
are now known [3–6], but the effects of the fluctuations neglected in going to
the Balitsky–Kovchegov (BK) equation (3) and even their very nature had
not been appreciated until quite recently.

One may guess that one difficulty with Eqs. (2) and (3) is that they both
contain nonlinearities. The latter are meant to encode parton saturation
effects [7]. One could think of neglecting them (by dropping the −A2 term
in Eq. (3) for example), and indeed, that used to be the usual approximation
until a few years ago. The resulting equation is named after Balitsky, Fadin,
Kuraev and Lipatov (BFKL) [8] (χ(−∂ln k2) that appears in Eq. (3) is called
the BFKL kernel). But in 1999, Golec-Biernat and Wüsthoff showed [9] that
the nonlinearities in Eqs. (2), (3) may already play an important role in the
most recent data for deep-inelastic scattering (see also Ref. [10]). Their
work stirred a great theoretical interest for the full nonlinear equations. For
a long time, it was the BK equation that was the focus of most of the
theoretical and phenomenological works in high energy QCD, despite the
relative arbitrariness of the approximations made to get it. Only in 2004 did
Mueller and Shoshi address the problem of trying to quantify effects beyond
those described by the BK equation, using a very original approach [11].
Subsequently, a deep interpretation of what they had done in relation with
problems of statistical mechanics was found [6,13,14], which paved the way
for a new and fruitful understanding of high energy QCD.

The goal of these two lectures is to show that high energy scattering looks
very much like some processes (called reaction-diffusion) that appear in other
physical, biological, or chemical contexts. We will provide a very simple and
transparent picture of high energy QCD, but accurate enough to enable
one to get presumably exact analytical results for QCD. The first lecture
(Sec. 2) aims at establishing this correspondence. “Cross-fertilization” is the
title of these lectures because while investigating this relationship, we were
able to also derive some general results that apply to a wider context. The
second lecture (Sec. 3) reviews them. The most important of these results
may directly be transposed to QCD. Throughout, the focus will be put on
the underlying physical ideas rather than on the technicalities (references
to original work where details are worked out will be provided whenever
necessary). We would like the reader to appreciate, that this business was
made possible by coming back to the basic concepts of high energy scattering
in the parton model in the light of apparently completely unrelated physics,
rather than trying to address directly the very technical equations that have
been established for QCD.
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2. High energy QCD as a statistical process

2.1. What is universality?

Our first task is to understand that it may sometimes be fruitful to
replace a complicated problem (like QCD evolution, see Eq. (2)) by a much
simpler one (reaction-diffusion in our case, as we will see in these lectures),
and yet be able to get quantitative results from the solution to the latter.
This is possible when both models, the simple and the complicated ones,
belong to the same universality class.

The concept of universality was introduced in the 60’s by a bunch of
renowned physicists, among whom Widom, Kadanoff, Fisher and Wilson in
the theory of critical phenomena. To illustrate it, let us consider a system of
spins, that is a set of binary variables Si = ±1, on a two-dimensional lattice
and interacting through the Hamiltonian

H = −
∑

i,j

JijSiSj . (4)

If Jij = J > 0 when the sites i and j are nearest neighbors and 0 other-
wise, this is the Ising model with ferromagnetic interactions. The partition
function is given by

Z =
∑

{Si}

e−H[{Si}]/kBT (5)

at a given temperature T .
At high temperature, all spin configurations have equal probability. At

low temperature, only a few configurations have a significant probability,
the ones that minimize the energy. The minimum energy configuration is
the one in which all spins are aligned. Near the critical point, the average
magnetization reads

〈Si〉 ∼ (Tc − T )β , (6)

and an exact calculation gives β = 1/8 for two-dimensional systems, as may
be checked in standard statistical mechanics textbooks.

The Ising model may represent only a very idealized magnet. One may
wonder why it is interesting to study extensively such an over-simplified
model, which obviously incorporates only a few very basic properties of
magnetic materials and neglects many others. Well, it turns out that the
exponent β (as well as a few other exponents) is completely independent of
the microscopic details of the system, which means that it is the exact result
also for realistic magnets. Of course, other quantities strongly depend on
those details: This is the case for the critical temperature Tc for example.
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The universality class is defined only by very general properties of the
system, like the space dimension, and the symmetries. All systems that
share these few properties are expected to bear the same critical exponents.
So if one is able to solve the simplest model, one is likely to know important
features of all representatives of its universality class.

High energy QCD has little to do with the Ising model and with critical-
ity. We are now going to introduce a class of systems which, as we will argue
later on, are likely to share universal properties with high energy QCD.

2.2. Warm-up: Properties of a stochastic zero-dimensional model

We address the time evolution of a system of n(t) particles that obey the
following rules: In each time interval dt, each single particle has a probability
dt to split in 2 particles, and a probability (n(t)−1)dt/N to disappear. This
yields:

n(t+ dt) =







n(t)+1 proba dt

n(t)−1 proba
(n(t)−1)dt

N

n(t) proba 1−dt− (n(t)−1)dt

N
.

(7)

One may represent the evolution of the system in the form of a stochastic
evolution equation1:

dn

dt
= n− n(n− 1)

N
+

√

n+
n(n− 1)

N
ν , (8)

where ν is a noise (i.e. a random function of time) of zero average and of
variance satisfying 〈ν(t)ν(t′)〉 = δ(t− t′). This means that ν typically varies
by 1 unit when t is changed by 1. It is a simple exercise to derive Eq. (8):
It is enough to compute the mean 〈n(t+dt)〉 and variance 〈n2(t+dt)〉 given
n(t) from the stochastic rules (7).

We see from Eq. (8)2 that in a typical realization, the number of particles
will start to grow exponentially (linear term) until n(t) ∼ N , at which point
a steady state is reached (nonlinear term), up to random fluctuations (noise
term).

1 Eq. (8) (as well as all other stochastic equations that appear in these lectures) has to
be interpreted in the Itô way.

2 Note that the form (8) is not particularly useful in practice, since ν does not have any
special properties. Our purpose in writing (8) is to get a feeling about the different
possible representations of a stochastic process. We may also comment that there is
a way to write the evolution as an Itô equation in which ν would have a Gaussian
distribution, and this is more interesting from a technical point of view. We refer the
reader to [15] for the details.
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Solving the model consists in exhibiting the statistics of n(t). In a first
approach, one may simulate numerically different realizations of the model,
and then perform the average over the realizations to get 〈n(t)〉 and maybe
higher-order moments of n(t). This is shown in Fig. 1. One could also try to
obtain an evolution equation for 〈n(t)〉 from Eq. (8) and solve it analytically.
But the latter involves the correlator 〈n2〉:

d〈n〉
dt

= 〈n〉 − 〈n(n− 1)〉
N

, (9)

and thus one eventually needs to solve an infinite hierarchy of coupled equa-
tions. This set of equations is qualitatively similar to the Balitsky hierar-
chy (2). Only through a mean field approximation, consisting in factorizing
all correlators and valid in the large-N limit does Eq. (9) boil down to
a closed equation

d〈n〉
dt

= 〈n〉 − 〈n〉2
N

. (10)

This is the equivalent of the BK equation (3). Unfortunately, the solution to
this much simpler equation is quite far from the complete solution to Eq. (8)
or (9) (see Fig. 1), and it is manifest that more sophisticated approaches to
the full stochastic model are needed.�
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Fig. 1. (From Ref. [15]). Ten realizations of the evolution (7) of the zero-
dimensional toy model (dotted lines), together with the full solution for 〈n(t)〉
(full line) and the solution of the mean-field equation (10) (dashed line). N is set
to 5000 in this example.

To address the complete stochastic model (7), we can think of two pos-
sible ways. One may compute iteratively the successive orders in 1/N by
field-theoretical methods and perform a resummation: This method was
pushed quite far in Ref. [16]. Another possible path is to notice that the
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noise is actually important only as long as the number of particles n(t) is
small: For large n(t), the evolution is essentially deterministic. For small
n(t) instead, it is the nonlinearity in Eq. (8) that is negligible, which makes
the evolution tractable, even analytically in this simple zero-dimensional
case. That was investigated in Ref. [15].

2.3. Universality class of traveling wave equations

We now add a spatial dimension to the model. We consider n(t, x)
particles at time t and on each site x of a one-dimensional lattice. In addition
to the rules (7) that apply on each site, a given particle at x has some
probability p to jump to the nearby sites x+ ∆x or x− ∆x. The evolution
of one realization may then be written as3

dn(t, x)

dt
= p

[

n(t, x+ ∆x) + n(t, x− ∆x) − 2n(t, x)
]

+n(t, x) − n(t, x)(n(t, x) − 1)

N
+

√

n(t, x) ν , (11)

where ν is again a noise of zero mean that varies by typically 1 whenx
or t are changed by one unit. This equation is very close to Eq. (8) except
for a new diffusion term (inside the square brackets) that correlates nearby
spatial sites.

Both in Eq. (8) and (11) the noise term is of order
√
n. This is typical of

a statistical noise associated to discrete systems of particles: Indeed, adding
stochastically n particles on the average to a system means adding a number
of particles typically in the range n± √

n in a given realization. Hence the
noise term is directly related to discreteness.

Let us follow a particular realization of the evolution of the system. Start-
ing from a given initial condition (for example a bunch of particles localized
around some given lattice site), the number of particles grows exponentially
on each occupied site until it reaches N , at which point the growth stops
because the positive growth term n is exactly compensated by the negative
nonlinear term −n2/N . At this point, only fluctuations of order

√
N are left

in the evolution. At the same time, diffusion takes place, allowing the par-
ticles to “escape” toward larger (or lower) values of x (there is a symmetric
front traveling to the left if the initial condition is local). It is then clear
that the solution will look like a noisy wave front, that connects a region
(say to the right) where there is no particle to a region (to the left) where

3 To keep the equation simple and transparent, we replaced the noise term by its
dominant part for n � N , up to a constant. In other words, ν has a variance
that is only approximately normalized to unity. This does not change the discussion
qualitatively.



3458 S. Munier

the equilibrium number of particles per site N is reached. This wave front
“travels” toward larger values of x, and is therefore called a traveling wave.
One step of the evolution is illustrated in Fig. 2.

(a) (b)

Fig. 2. Sketch of one step of the evolution of a realization in the one-dimensional
model (from (a) to (b); N = 12 here). The dark disks represent the particles that
have been added or that have diffused. For the smallest values of x, some particles
have also disappeared, so that the maximum particle number does not exceed N

on the average, up to fluctuations of order
√
N authorized by the stochastic term

in Eq. (11).

The model that we have outlined is a typical reaction-diffusion process.
The name “reaction-diffusion” stems from chemistry: Such a process may be
a (very crude) model for chemical reactions. Renormalizing the number of
particles through the introduction of u = n/N , one may write the general
structure of the evolution of such a system in the following form:

∂tu = χ(−∂x)u
︸ ︷︷ ︸

branching diffusion

− nonlinear function of u
︸ ︷︷ ︸

compensates the growth of u near 1

+ noise of order

√
u

N
︸ ︷︷ ︸

encodes discreteness

. (12)

χ(−∂x) is a kernel that encodes branching diffusion. It could be a differential
operator such as ∂2

x +1 (which would correspond to carefully performing the
limit ∆x→ 0 in the above example) or, more generally, an integral operator
(which is the case in QCD).

The universality class defined by Eq. (12) is usually named after Fisher
and Kolmogorov–Petrovsky–Piscounov (F–KPP) [17], who for the first time
formulated mathematically such processes. For a given stochastic equation,
there is no general theorem to decide whether it belongs to the same class as
Eq. (12) or not. It is rather a matter of guess from the physical properties
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of the underlying model. One knows however, that the exact form of the
nonlinearity in Eq. (12) is not important. It could be any reasonable power
of u, for example. Also the precise form of the noise is not an issue and
does not affect the properties of the solutions at large N : One could have
a slightly modified form, for example

√

u(1 − u)/N . The only important

feature is that it should scale like
√

u/N for small values of u.
We are now going to give some basic properties of the solutions to

F–KPP-like evolution equations [18]. More details and a review of the latest
developments will be provided in Sec. 3.

The traveling wave that develops at large times is characterized by its
mean shape and by the statistics of its position Xt. The latter may be
defined, for example, as the value of x for which u has a definite value u0,
for instance u0 = 1/2. It is known since the seminal papers of Brunet and
Derrida [19] that for large times and large N , Xt has the following mean
and variance:

〈Xt〉 =

(
χ(γ0)

γ0
− π2γ0χ

′′(γ0)

2 ln2N

)

t ,

〈X2
t 〉 − 〈Xt〉2 ∼ t

ln3N
. (13)

Fig. 3. (From Ref. [14]). 100 realizations of the evolution of a stochastic traveling
wave model, at two different times. The averages over the realizations (that cor-
responds to the physical amplitude in QCD, see the dictionary (18)) are shown in
full line. Inset: the average 〈u〉 over the different realizations, shifted in time and
superimposed in order to show the mismatch in slopes.
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The average is taken over many realizations of the evolution (12), and χ(γ)
is the characteristic function of the diffusion kernel (i.e. the eigenvalue of
χ(−∂x) that corresponds to the eigenfunction e−γx). γ0 solves χ(γ0) =
γ0χ

′(γ0). The shape of each realization is, up to some noise

u(t, x) = e−γ0(x−Xt) . (14)

A numerical evolution of a stochastic model of the F–KPP type is displayed
in Fig. 3. One sees the universality in shape of each individual realization as
well as the dispersion in front positions between different realizations, that
indeed grows like

√
t (see Eq. (13)). We will come back to the derivation of

these results in Sec. 3.

2.4. Evolution of QCD amplitudes

With the intuition gained by studying simple particle models, we are
now in position to argue that high energy scattering naturally belongs to
the universality class of the stochastic F–KPP equation.

We consider the scattering of two hadrons made of quark–antiquark pairs
of respective sizes 1/k and 1/k0, to simplify the discussion (see Fig. 4).
We assume that these hadrons are small enough (much smaller than 1/ΛQCD)
so that perturbation theory applies.

If there is few energy available for the scattering (the hadrons interact
almost at rest), then typically they are in their valence configuration. Their
interaction consists in exchanging one gluon when they are of similar size and
at the same impact parameter: In this case, the forward elastic amplitude
reads T ∼ α2

s . If the hadrons are of very different sizes or if their impact
parameters do not match, then they do not “see” each other and T = 0. Now
boost one of the hadrons, called the target: This corresponds to increasing
the center-of-mass energy of the reaction. Due to the resulting opening of
phase space, a typical configuration of the target is no longer the bare valence
quarks, but the latter together with a number n(Y, k) of gluons of transverse
momentum k, whose mean depend on the rapidity. Correspondingly, the
scattering amplitude off that particular configuration of the target reads

T (Y, k) ∼ α2
sn(Y, k) , (15)

where k is of the order of the inverse size of the hadronic probe. This
relationship is not exact, but may be derived rigorously as a limit of QCD
scattering amplitudes4.

4 Actually, it is useful to view the interaction in the framework of the color dipole
model [20], in which gluons are assimilated to zero-size quark–antiquark pairs whose
components combine with each other in the form of colorless dipoles, that evolve
independently when rapidity is increased. n is in fact the number of such dipoles.
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Fig. 4. One realization of the evolution of an onium-onium scattering amplitude.
At zero rapidity (leftmost plots), the amplitude consists in a bare gluon exchange
between the probe (of size 1/k; upper bubble) and the target (of size 1/k0; lower
bubble): T = α2

s
if the momentum scales of the two objects match, T = 0 otherwise.

When rapidity is increased (going from the left to the right), each gluon in the
Fock state of the target may split in two gluons of similar transverse momenta,
and this process drives an exponential increase of the amplitude for k around k0,
up to a diffusion. Eventually (rightmost plots), this growth has to slow down
when T ∼ 1 in order to comply with the unitarity constraints. Beyond this point,
nonlinear saturation effects enter and a traveling wave forms in T .

In a given realization of the Fock space of the target, the number of
gluons typically doubles when ᾱY is increased by one unit (each gluon has
a probability to split in 2 gluons). The transverse momenta of the new gluons
are close to the ones of their parents, up to some diffusion. This branch-
ing diffusion process is encoded in the BFKL evolution kernel χ defined in
the Introduction. As we are following one given realization, that evolves
randomly, the equation contains a stochastic term of order

√
n, i.e. αs

√
T

from Eq. (15). At this stage, we may write the evolution of the scattering
amplitude off one particular realization as

∂ᾱY T = χ(−∂ln k2)T + αs

√
2Tν , (16)

where ν is a noise of zero-mean whose variations are of order one when ln k2

and ᾱY are varied by one unit.

Because T̃ is related to an interaction probability, T̃ ≤ 1 in appropriate
normalizations and so the number of gluons of given momentum (related
toT ) cannot grow exponentially forever. Hence a negative term that be-
comes important when T ∼1 has to enter Eq. (16). One may write [12–14]
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∂ᾱY T = χ(−∂ln k2)T − T 2 + αs

√
2Tν . (17)

The physical amplitude A is obtained from T by taking the average over
all possible Fock realizations of the target, A = 〈T 〉. The mean-field ap-
proximation 〈T 2〉 = A2 of this equation precisely coincides with the BK
equation (3).

Hence we are led to an equation in the same universality class as Eq. (12),
with the following dictionary (compare Eq. (12) and Eq. (17)):

u = T , t = ᾱY , x = ln k2 ,

N =
1

α2
s

, χ(−∂x) = BFKL kernel . (18)

Let us comment on the physical implications of having a stochastic equa-
tion like (17) describing the dynamics. The BK equation (3) is known to
admit traveling wave solutions [5], whose position Xt (which corresponds
in QCD to the so-called saturation scale Qs(Y ) through Xt = lnQ2

s (Y ))
is a deterministic function of the rapidity. This property is related to
a phenomenon observed in the deep-inelastic scattering data and called “ge-
ometric scaling” [21]: The physical amplitude A(Y, k) only depends on the
combined variable k2/Q2

s (Y ), and not on k and Y separately. By contrast,
each realization of an evolution given by Eq. (17) is a noisy traveling wave,
which has a random position (i.e. saturation scale) whose statistics follow
Eq. (13) (use the dictionary (18)). The consequence is that A = 〈T 〉 has
a peculiar scaling behavior, different from geometric scaling [12–14]:

A(Y, k) = A




ln k2 − ᾱY

(
χ(γ0)

γ0
− π2γ0χ′′(γ0)

2 ln2(1/α2
s )

)

√

ᾱY/ ln3(1/α2
s )



 , (19)

which is easy to derive from Eqs. (13), (14).
Mueller and Shoshi were the first authors who noticed that geometric

scaling was broken beyond the BK equation. However, the statistical inter-
pretation given here was crucial to arrive at the correct scaling form (19)
(see Ref. [12]).

Let us summarize the assumptions that have lead to Eqs. (17) and (19).
The linear terms therein represent the perturbative splitting of the partons
when rapidity increases, and may be obtained exactly e.g. in the framework
of the color dipole model [20]. We have not written down explicitely the
distribution of the noise ν (we just gave its typical variations), but the
solution (19) is robust with respect to its detailed form. The nonlinear
term is supposed to encode parton saturation. So far, we cannot provide an
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exact expression for it because a QCD realization of saturation has not been
derived. However, the solution (19) is also universal with respect to the form
of the nonlinearities. The only really important condition for universality
arguments to apply is that there should indeed be saturation, i.e. the gluon
density should not be able to grow forever. Arguments for this feature were
given a long time ago [7]. So if the latter is true, because of the universality
of some properties of solutions to Eq. (17), then we believe that Eq. (19)
represents the exact asymptotics of QCD.

Last, we would like to draw the attention of the reader to the fact that
we do not think that these results are very relevant phenomenologically
yet, since the asymptotics show up only for ln 1/α2

s � 1 (which means
that αs has to be unrealistically small). In our opinion, one may conduct
sound phenomenological studies only once subleading effects have also been
understood, beyond Eq. (19). However, numerical calculations may already
provide some clues on the behavior of QCD amplitudes for more realistic
values of the parameters, as explained in Ref. [15].

3. New general results on traveling wave equations

and their applications to QCD

In the previous section, we have argued that the evolution of QCD ampli-
tudes at high energy is governed by a nonlinear stochastic evolution equation
in the universality class of the stochastic Fisher and Kolmogorov–Petrovsky–
Piscounov (F–KPP) equation. The latter literally reads

∂tu = ∂2
xu+ u− u2 +

√

2

N
u(1 − u) ν , (20)

where ν is a normal Gaussian noise, uncorrelated both in t and in x. The
deterministic part of this equation (obtained by setting ν = 0) was first
written in 1937 in the context of studies of the spread of genes (or diseases)
in a population [17]. Only in 1983 some properties of its solutions were
rigorously derived [18]. In particular, it was understood that the large-time
solutions were traveling waves. The dominant effect of the noise term in
Eq. (20) on the shape and velocity of the wave front was worked out by
Brunet and Derrida in 1997. Note that the scaling form of the dispersion
in the front position had only been measured numerically. We have recently
been able to make progress on the statistics of the position of the front [22].

In practice, we will discuss the more general equation (12), of which (20)
is just a particular case.
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3.1. More on the propagation of noisy traveling waves

(i) Solving the deterministic F–KPP equation. First, we address the deter-
ministic version of Eq. (20), namely

∂tu = χ(−∂x)u− u2 . (21)

The choice χ(−∂x) = ∂2
x + 1 would correspond to Eq. (20) exactly, but we

keep the branching diffusion terms in a more general form in order to be able
to easily transpose the results to other contexts, such as the QCD evolution
equations.

In the case of the deterministic F-KPP equation, there are two fixed
points, u = 0 and u = 1 which are respectively unstable and stable under
small perturbations. Starting from a localized initial condition, the branch-
ing diffusion encoded in χ leads to a local exponential growth of u and
a spread in x. When u becomes close to 1, then the nonlinear term tames
the growth so that u does not get bigger than 1. This mechanism leads to
a wave front that invades larger values of x when time flows, being pulled
by its tail.

One may compute the asymptotic velocity of the front in a very simple
way. Indeed, because the wave front is “pulled” by its low density tail, where
the nonlinearity is negligible, it is enough to solve the linear part of Eq. (21)
to understand the properties of the wave front.

Consider a front decaying like uγ = e−γ(x−v(γ)t) , with γ a given wave
number and v(γ) its velocity. Then it is clear from Eq. (21) that

v(γ) =
χ(γ)

γ
. (22)

The general solution is a linear superposition of uγ ,

u(t, x) =

∫

dγf(γ)e−γ(x−v(γ)t) , (23)

where f(γ) is a representation of the initial condition.
Let us concentrate on the large-time behavior of the solution. We are

following the wave around a fixed value of u (since the nonlinearity forces
u to range between 0 and 1), so the large-t limit has to be performed in
the frame of the wave defined by the change of variable xWF = x − V∞t,
where V∞ is the asymptotic velocity of the wave. After replacement of x
in Eq. (23), the saddle point condition reads V∞ = χ′(γ). Matching this
expression with Eq. (22), we find that the wave number γ0 that dominates
asymptotically solves χ(γ0)/γ0 = χ′(γ0), i.e. γ0 minimizes v(γ). Thus the
asymptotic form of the wave front reads
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u(t→ ∞, x) ∼ e−γ0(x−v(γ0)t) , for x� v(γ0)t ,

with v′(γ0) = 0 . (24)

(The complete discussion may be found in Ref. [5]). This is the large time
solution, but the front shape and velocity are also known at subasymptotic
times. Let Xt be the position of the front, defined e.g. by u(t,Xt) = u0,
where u0 is a constant between 0 and 1. Then if the initial condition is
localized enough, the wave front has the shape [12]

u(t, x) ∼ (x−Xt) exp

(

−(x−Xt)
2

2χ′′(γ0)t

)

e−γ0(x−Xt) (25)

and the front velocity reads

vt =
dXt

dt
=
χ(γ0)

γ0
− 3

2γ0t
. (26)

The asymptotic velocity V∞ (first term) is reached quite slowly. One more
term is known in this large-t expansion [6], but we will not discuss it here.
We may comment that the velocity (26) corresponds to the velocity of a front
that has reached its asymptotic shape (24) only in the range

(x−Xt)
2 < 2χ′′(γ0)t . (27)

This is indeed the range in which the Gaussian factor in Eq. (25) is close to
a constant.
(ii) Hacking the deterministic equation to simulate discreteness. Now we
go back to the original stochastic equations (12) or (20). Generally speak-
ing, what we missed when we neglected the noise is mainly the discreteness
ofu. Think of a particle model on a lattice: u can take the values 1/N ,
2/N , 3/N . . . but not fractions of these numbers, a feature which of course
was completely neglected in Eq. (21), as can be seen on the solution (24).
For u � 1/N , this might not be a problem, but for u ∼ 1/N , neglecting
discreteness may prove very wrong, especially since the propagation of the
wave front is very sensitive to its tail.

Brunet and Derrida came up with the idea that this discreteness could
be incorporated back into the deterministic equation (21) by simply adding
a cutoff 5 that forbids the values of u between 0 and 1/N [19]. They solved

5 This cutoff coincides with the one argued by Mueller and Shoshi, but the interpreta-
tion as being a consequence of discreteness of the number of partons had not been
appreciated in Ref. [11]. Historically, we understood the relationship between QCD
and statistical physics [12] by looking for an interpretation of the Mueller–Shoshi
results, in connection with the work of Brunet and Derrida [19].
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an equation of the type6

∂tu =
[
χ(−∂x)u− u2

]
Θ(u− 1/N) (28)

and claimed that the solution matched the first order of the full equation in
a small-noise (large-N) expansion.

We may estimate the large-t velocity VBD of the traveling wave solution
of Eq. (28). Starting from some initial condition, the front evolves toward the
asymptotic shape e−γ0(x−Xt) and its velocity increases according to Eq. (26).
However, as soon as the asymptotic front extends down to values of u ∼ 1/N ,
that is for x ∼ Xt + L, where

L =
lnN

γ0
, (29)

this shape cannot extend any further because of the cutoff in Eq. (28).
Then also the front velocity cannot grow any longer. According to Eq. (27),
this happens at time t ∼ L2/(2χ′′(γ0)), time at which the velocity reads
VBD = V∞ − 3cχ′′(γ0)/(γ0L

2) according to Eq. (26). c is a factor of order 1
whose determination needs a more accurate calculation [19]. The complete
result reads

VBD = V∞ − π2χ′′(γ0)

2γ0 L2
=
χ(γ0)

γ0
− π2γ0χ

′′(γ0)

2 ln2N
. (30)

The philosophy behind this procedure is quite transparent. As soon as
there are a few particles on a spatial site, parton number fluctuations are
negligible and the subsequent evolution in that bin is deterministic. (One
can get convinced of this statement already by looking at realizations of the
evolution in the zero-dimensional model, see Fig. 1.) On the other hand, in
the bins in which the deterministic evolution predicts a number of particles
less than 1 (u < 1/N), one just sets u to 0 in order to simulate discreteness.
This is the effect of the cutoff.
(iii) Incorporating stochastic effects. The Brunet–Derrida cutoff procedure
led to the following result: The front propagates at a velocity VBD lower
than the velocity predicted by the mean-field equation (21), and its shape
is the decreasing exponential (Eq. (24)), down to the position xtip(t) =
XBD

t + lnN/γ0 (XBD
t = VBDt), at which it is sharply cut off.

6 Strictly speaking, the Θ function in Eq. (28) should not be applied to the diffusion
term. In the case of the F-KPP equation, one would rather write

∂tu = ∂2

xu + (u − u2)Θ(u − 1/N) ,

although therewould still be problems with the very mathematical definition of such an
equation. Eq. (28) would be correct literally if t were discrete with steps ∆t of order 1.
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But it may happen that a few extra particles are sent stochastically
ahead of the sharp tip of the front (see Fig. 5). Their evolution would pull
the front forward. To model this effect, we assume that the probability per
unit time that there be a particle sent at a distance δ ahead of the tip simply
continues the asymptotic shape of the front, that is to say

p(δ) = C1e
−γ0δ , (31)

where C1 is a constant. Heuristic arguments to support this assumption are
presented in Ref. [22] (Appendix A). Note that while the exponential shape
is quite natural since it is the continuation of the deterministic solution (24),
the fact that C1 need to be strictly constant (and cannot be a slowly varying
function of δ) is a priori more difficult to argue.

Now once a particle has been produced at position xtip + δ, say at time
t0, it starts to multiply (see Fig. 5) and it eventually develops its own front
(after a time of the order of L2), that will add up to the deterministic primary
front made of the evolution of the bulk of the particles.

Fig. 5. Evolution of the front with a forward fluctuation. At time t0, the primary
front extends over a size L (Eq. (29)) and is a solution of the Brunet–Derrida cutoff
equation (28). An extra particle has been stochastically generated at a distance
δ with respect to the tip of the primary front. At a later time, the latter grows
deterministically into a secondary front, that will add up to the primary one.

Let us estimate the shift in the position of the front induced by these
extra forward particles. Between the times t0 and t = t0 + L2, the velocity

of the secondary front is given by Eq. (26). Hence its position X
(2)
t , after

relaxation, will be given by

X
(2)
t = XBD

t + δ +

t∫

t0

dt′ vt′−t0 ∼ XBD
t + δ − 3

2γ0
lnL2 , (32)
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where XBD
t = VBDt. Eq. (32) holds up to a constant. We have used Eq. (26)

to express vt′−t0 . The observed front will eventually result in the sum of the
primary and secondary fronts, after relaxation of the latter. Its position will
be XBD

t supplemented by a shift R(δ) that may be computed by writing the
resulting front shape as the sum of the primary and secondary fronts:

e−γ0(x−XBD

t −R(δ)) = e−γ0(x−XBD

t ) + C2e
−γ0(x−XBD

t −δ+ 3

2γ0
ln L2)

, (33)

where C2 is an undetermined constant. From Eq. (33) we can compute the
shift due to the relaxation of a forward fluctuation R(δ):

R(δ) =
1

γ0
ln

(

1 + C2
eγ0δ

L3

)

. (34)

The probability distribution (31) and the front shift (34) due to a forward
fluctuation define an effective theory for the evolution of the position of the
front Xt:

Xt+dt =

{
Xt + VBDdt proba 1 − p(δ)dδdt

Xt + VBDdt+R(δ) proba p(δ)dδ dt .
(35)

From these rules, we may compute all cumulants of Xt:

V − VBD =

∫

dδp(δ)R(δ) =
C1C2

γ0

3 lnL

γ0L3

[n-th cumulant]

t
=

∫

dδp(δ)[R(δ)]n =
C1C2

γ0

n!ζ(n)

γn
0L

3
.

(36)

We see that the statistics of the position of the front still depend on the
product C1C2 of the undetermined constants C1 and C2. We need a further
assumption to fix its value.

We go back to the expression for the correction to the mean-field front
velocity, given in Eq. (36). From the expressions of R(δ) (Eq. (34)) and
of p(δ) (Eq. (31)), we see that the integrand defining V − VBD is almost
a constant function of δ for δ < δ0 = 3 lnL/γ0, and is decaying exponen-
tially for δ > δ0. Furthermore, R(δ0) is of order 1, which means that when
a fluctuation is emitted at a distance δ ∼ δ0 ahead of the tip of the front, it
evolves into a front that matches in position the deterministic primary front.
We also notice that when a fluctuation has δ < δ0, its evolution is completely
linear until it is incorporated to the primary front, whereas fluctuations
with δ > δ0 evolve nonlinearly but at the same time have a very suppressed
probability. We are thus led to the natural conjecture that the average
front velocity is given by Eq. (30), with the replacement L→ lnN/γ0 + δ0.
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The large-N expansion of the new expression of the velocity yields a cor-
rection of the order of ln lnN/ ln3N to the Brunet–Derrida result, more
precisely

V =
χ(γ0)

γ0
− π2γ0χ

′′(γ0)

2 ln2N
+ π2γ2

0χ
′′(γ0)

3 ln lnN

γ0 ln3N
. (37)

Eqs. (36) and (37) match for the choice C1C2 = π2χ′′(γ0). From this deter-
mination of C1C2, we also get the full expression of the cumulants:

[n-th cumulant]

t
= π2γ2

0χ
′′(γ0)

n!ζ(n)

γn
0 ln3N

. (38)

We note that all cumulants are of the order of unity for t ∼ ln3N , which
is the sign that the distribution of the front position is far from a trivial
Gaussian, which makes it particularly interesting. On the other hand, they
are proportional to κ = t/ ln3N , which is the sign that the position of the
front is the result of the sum of κ independent random variables, and as
such, becomes Gaussian when κ is very large.

These results rely on a number of conjectures that no-one has been able
to prove so far. However, we performed very precise numerical checks on
specific models, and we found a perfect matching (see Ref. [22]). So we are
reasonably confident that our expressions are the correct ones. Providing
a formal proof would be an interesting challenge for a mathematician.

The analytical results presented here, namely Eqs. (37) and (38), may
directly be applied to QCD using the dictionary (18). This would help to
improve the analytic form of the amplitude (17).

3.2. Traveling waves in evolution models

Let us now consider a model of population evolution. Each individual
is characterized by a single real number x that measures its adequacy to
the environment. At time t, there are n(t, x) individuals in the population
with a given adequacy x. To go from time t to t+ 1, we give the following
rule: Each individual dies after having given birth to 2 offspring, that have
respective adequacies x + ε1 and x + ε2, where ε1,2 are random variables
distributed according to a sufficiently local probability distribution ψ. If the
total population exceeds a given integer N , then we get rid of the individuals
with the lowest values of x in order to keep the population size constant
and equal to N . This model could represent for example the evolution of
a population of bacterias under asexual reproduction, in a medium where
resources are limited, which enforces a selection of the “best” individuals.
Let us define u(t, x) to be the fraction of population that has its adequacy
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Fig. 6. Evolution of the population over a few generations. In this model, each
individual of a given generation t has exactly two offspring, whose adequacy to en-
vironment differs from his by the random variables ε1 and ε2. Once the population
size has reached N (N = 8 in this sketch), it is kept constant by allowing only the
“best” N individuals to have a descendance. The fraction u of individuals having
their adequacy variable larger than x is plotted (bottom plot) for 3 different times.
One sees that u exhibits the characteristics of a traveling wave.

variable larger than x. It is not difficult to realize that u has the shape of
a wave front, connecting a region where u = 1 (for small values of x), and
a region where u = 0 (for larger values of x), that moves toward positive x
when time elapses, see Fig. 6.

One may write a stochastic evolution equation for u:

u(t+ 1, x) = min

(

1, u(t, x) + 2

∫

dεψ(ε)u(t, x − ε)

)

+

√

1

N

(

u(t, x) + 2

∫

dεψ(ε)u(t, x − ε)

)

ν(t+ 1, x) , (39)

where as usually, ν is a noise of zero mean and variance of order 1 in the
region where u is small. At first sight, it is far from obvious that this equa-
tion should be in the universality class of the F–KPP equation. First, this is
a finite difference equation in t rather than a differential equation. Second,
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the noise term is non-Gaussian and furthermore, a closer look shows that ν
is strongly correlated spatially. The nonlinearity is also of completely dif-
ferent nature in this model. However, the fact that a noisy front is formed
for u and especially the physical mechanism of evolution (branching diffu-
sion+saturation) points toward the F–KPP universality class. If this is true,
we can apply the results obtained in the previous subsection to study how
the mean adequacy x grows with time (this would be the average position
of the front). It is easy to see that for this model, the characteristic function
would be

χ(γ) = ln

(

1 + 2

∫

dεψ(ε)eγε

)

. (40)

We checked that a numerical simulation of this model indeed matches the
analytical predictions, confirming that the model (39) is indeed in the uni-
versality class defined by the F–KPP evolution.

Fig. 7. Evolution of the population over a few generations. Each individual has
two offspring in the next generation, but only the N (= 8 in this illustration) with
highest values of x are allowed to have a descendance. Sometimes, an individual
is so advanced (it has to be ahead by at least δ = δ0 = 3/γ0 ln lnN) that his
descendance will take over the whole population. This happens, on the average,
once in ln3N generations. An estimator of this time scale may be obtained by
picking 2, 3 or more individuals at random and looking for their common ancestor.

For that kind of evolution models, one may ask a further question. At
a given time t, one may pick a given number of individuals, say 2 or 3, and
count the number of generations one has to go back in the past to find their
most recent common ancestor. We denote these numbers by T2, T3. . . This
question may be relevant to studies of the genetic diversity of a population.
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It is not difficult to guess the order of magnitude of Ti. We saw in
the previous subsection that Xt looked like the sum of κ = t/ ln3N inde-
pendent random variables. One can understand this fact very precisely on
this model. Indeed, from time to time, the evolution generates an individual
whose adequacy to the environment is much larger than the one of any other
individual. His offspring will partly inherit his adequacy, according to the
stochastic evolution rules and thus will still be in advance with respect to the
bulk of the population. After some generations, only his descendants may
survive, so that he will be the common ancestor of the whole population.
For an individual to have a significant probability to have his descendance
replacing the whole population at some later time, the position of the sec-
ondary front developed by this individual has to be larger than the position
of the primary front, a condition which reads δ > lnL3/γ0. According to
Eq. (31), this happens once in L3 = (lnN/γ0)

3 generations. Hence

Ti ∼ ln3N . (41)

It turns out that through a slightly more elaborate analysis, we may also
fully compute the coefficients of the Ti, simply from the assumptions of the
previous subsection on the mechanism of the propagation of the front. We
found [23]

〈T3〉
〈T2〉

=
5

4
,

〈T4〉
〈T2〉

=
25

18
, . . . . (42)

These numbers characterize the statistics of the genealogical trees that can
be drawn in this kind of models.

It is not clear if results such as (41) and (42) may be applied to par-
ticle physics observables. The latter may be more relevant to evolutionary
biology.

3.3. Spin glasses

A spin glass [24] is a system of spins with random interactions. The
Hamiltonian is given by Eq. (4), but the Jij are now random numbers en-
dowed with a given probability distribution. The simplest case is when
Jij are binary variables ±1, but the standard choice is a Gaussian distri-
bution which leads to a model named after Edwards and Anderson. The
Sherrington–Kirkpatrick model is the infinite-range version of the latter:
The same distribution holds for any pair of spins and not only for nearest
neighbors.

This time, the minimum energy state at zero temperature is not unique,
contrarily to the Ising case for which the minimum energy configuration
is reached when all spins are aligned. This is due to “frustration” (the fact
that all interactions can never be satisfied simultaneously), and is illustrated
in Fig. 8.
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Fig. 8. Two frustrated configurations of 4 spins, that have the same energy. The
“+” and “−” on the lattice links represent the values of the interaction Jij .

To classify the configurations, one may define the overlap between two
spin configurations a and b as a function that reflects the fraction of spins
that are common to a and b. The usual definition is qab = 1

N

∑

i S
a
i S

b
i .

Speaking through the hat, the configurations that minimize the energy are
organized ultrametrically with respect to a distance derived from the overlap.
This means that the configurations may be represented as the leaves of
a (random) tree. The statistics of this tree, first found by Parisi [25], turn
out to be exactly the same as the ones of our genealogical trees in the
previous subsection that are encoded in the ratios (42).

It should be clear to the reader that there is no a priori reason for such a
feature. The method for finding the statistics in Parisi’s theory relies on the
replica method (see Ref. [23] for details), and has nothing to do with the way
we derived the result in our case. Whether this link is deep or accidental is
an outstanding open question, for which we have no clue.

4. Conclusion

When it was first suggested that high energy QCD has something to do
with reaction-diffusion processes and that this analogy leads to new quanti-
tative predictions [12], many experts were skeptical and reluctant to accept
this new point of view. Getting these ideas through has involved some pas-
sionate debates, to say the least. But at the time of the present lectures,
that is two years later, this proposal has undoubiously triggered a burst of
activity, that has spread in many different directions.

The main advantage of viewing high energy scattering in the peculiar way
that we have explained here is that it provides a simple picture endowed with
a clear physical interpretation. This contrasts with the high technicity of
evolution equations for QCD amplitudes that had been derived over the last
10 years such as the Balitsky hierarchy (2). Furthermore, this picture has
a direct and intuitive connection with the basics of the parton model. This
approach has paved the way for new results in QCD, obtained from tools
known in statistical physics.

Obviously, there is still room for improvements of our understanding of
high energy scattering. Admittedly, our proposal relies on a few conjectures
that will have to be proved. In our opinion, the most problematic one is
the assumption that the number of gluons or of color dipoles saturates at
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1/α2
s per unit of transverse phase space. Of course, this has been part of the

“folklore” of high energy physics at least since the seminal work of Gribov,
Levin, Ryskin in the 80’s [7]. However, no QCD realization of saturation
has yet been found. A relevant question would be, for example, how parton
recombination may be implemented in the framework of the color dipole
model. Some interesting ideas have recently been put forward (see e.g.
Ref. [26]), but a rigorous proof in QCD still has to be provided.

In the second lecture, we have presented some recent advances in sta-
tistical physics to which we have been able to contribute. Here also, there
is an intriguing correspondence between two seemingly different physical
problems: stochastic fronts and the theory of spin glasses. Whether this is
something deep or simply accidental still remains to be understood.

This work was supported in part by the French–Polish research program
POLONIUM, contract 11562RG, and by the ECO-NET program, contract
12584QK.
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