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In this artcle, I shall review the basic concepts of perturbative QCD in
its high-energy limit. I shall concentrate on the approach to the unitarity
limit, usually referred to as saturation, as well as on the gluon-number
fluctuations the importance of which has recently been discovered. I shall
explain the basic framework showing the need for those phenomena, first,
from a simple picture of the high-energy behaviour, then, giving a short
derivation of the equation driving this evolution. In the second part, I shall
exhibit an analogy with statistical physics and show how this allows to
derive geometric scaling in QCD with saturation. I shall finally consider the
effects of gluon-number fluctuations on this picture and draw the physical
consequences, i.e. a new scaling law, arising from those results.

PACS numbers: 13.60.Hb, 11.10.Lm

1. Introduction

The quest for the high-energy behaviour of perturbative QCD started
thirty years ago, soon after QCD was proposed as the fundamental theory
of strong interactions. To grasp this problem, it has been realised that satu-
ration effects were to be considered in order to satisfy unitarity constraints.
Throughout this article, I shall summarise the present status of our under-
standing of this limit, which basically means finding an equation giving the
evolution of amplitudes towards high energy and finding the properties of
its solutions.
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In order to motivate the physical picture we want to reproduce, let us
consider the problem of Deep Inelastic Scattering (DIS) i.e. γ∗p→ X colli-
sions. This process depends on two kinematical variables: the virtuality Q2

of the photon, imposing 1/Q as the (transverse) resolution scale at which
the photon scans the proton, and the Bjorken x, given by the fraction of
the proton momentum carried by the parton struck by the virtual photon
in a frame where the proton is moving fast. This last variable is related
to the centre-of-mass energy s = Q2/x, meaning that the high-energy limit
corresponds to the small-x limit (at fixed Q2). For practical purposes, we
also introduce the rapidity defined through Y = log(1/x).

In figure 1, we have represented the typical configuration of the pro-
ton in different domains of this phase space. We start with a proton at
low Q2 and low energy, represented as three partons (bottom-left part of
the picture). If we increase the virtuality of the photon, we are able to
resolve its partons into smaller ones. This type of evolution is described
in perturbative QCD by a renormalisation group equation known as the
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation [1]. In that
limit, the number of partons rises logarithmically while their typical size
decreases like 1/Q2 so that the proton becomes more and more dilute. In
what follows, we shall be interested in the other type of evolution, namely
the evolution towards smaller values of x for constant Q2. If one boosts
the proton, what typically happens is that we create new partons of a size
comparable to the parents’ ones. Obviously, during this evolution, known as
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution [2], the proton ap-
proaches the black-disc limit for which partons start to overlap. At that
level, they start to interact among themselves and unitarity corrections are
to be considered [3]. This blackening of the proton is called saturation and
we shall describe it in details from perturbative QCD in this paper.

In addition, it has recently been discovered that gluon-number fluctua-
tions play a crucial role in the evolution towards high energy. As we shall
see later on, those fluctuations, dominating the evolution in the dilute tail
(i.e. at large momentum) of the system, are amplified by BFKL evolution
and thus influence greatly the whole evolution.

In the first part of this paper, we shall derive the equations describing
the evolution towards high-energy. We shall begin our analysis with a short
introduction to the dipole picture which provides a very intuitive framework
to deal with high-energy QCD at large-Nc. This will allow for a derivation
of the BFKL equation. The solution of the BFKL equation naturally leads
to the introduction of unitarity corrections and to new evolution equations
— the Balitsky/JIMWLK hierarchy [4,5] and the Balitsky–Kovchegov (BK)
equation [4, 6]. We shall then derive and discuss the contribution due to
gluon-number fluctuations [7–10].
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Fig. 1. Picture of the proton in DIS.

In the second part, we shall consider the solutions to those evolution
equations. First, we shall show that, within relevant approximations, the
BK equation reduces [11] to the Fisher–Kolmogorov–Petrovsky–Piscounov
(F-KPP) equation [12], well studied in statistical physics. This allows for
a description [11] of the asymptotic behaviour of the scattering amplitudes
in terms of travelling waves, translating in QCD into the geometric scaling

property [13]. We shall also show that geometric scaling extends to nonzero
momentum transfer [14, 15]. In the last section, we shall come back to
the effect of gluon-number fluctuations, which have recently proven to have
important consequences [16–23] on the approach to saturation.

2. Evolution towards high energy

2.1. Small-x gluons and the dipole picture

In order to clearly emphasise the need for a resummation at high energy,
let us start with a fast-moving quark of momentum p. This quark emits
Bremsstrahlung gluons characterised by their transverse momentum k2

⊥ and
their longitudinal momentum kz = xp. The probability for emitting such a
gluon is

dP ∝ αs
dx

x

dk2
⊥

k2
⊥

.

When we consider large transverse momentum (high Q2 and fixed x in DIS),
the collinear divergence dk2

⊥/k
2
⊥ needs to be resummed and this gives rise to

a renormalisation group equation known as the DGLAP equation. Through-
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out this article, we shall instead consider the limit of high energy, in which,
we are sensitive to the gluons of small longitudinal momentum x � 1 at
fixed Q2. This leaves a large phase-space to allow for successive soft gluon
emissions satisfying x � x1 � · · · � xn � 1 which gives a contribution of
order

αn
s

1∫

x

dx1

x1
. . .

1∫

xn−1

dxn

xn
=

1

n!
αn log(1/x)n .

Even when the coupling αs is small enough to ensure applicability of per-
turbation theory, for sufficiently small values of x (i.e. at sufficiently high
energy), we have αs log(1/x) ∼ 1 and all these contributions have to be
resummed.

In practice, it is more convenient to start with a quark–antiquark pair
of transverse coordinates x and y. Successive soft gluon emissions can be
considered as independent and are depicted in figure 2. In order to simplify
the discussion, we shall consider the large-Nc limit (Nc is the number of
colours). In that limit, a gluon of transverse coordinate z can be considered
as a quark–antiquark pair at point z. This means that, instead of considering
a wavefunction made of quarks, antiquarks and gluons, it is sufficient to
consider an onium which is an evolving system of colourless qq̄ dipoles. We
can thus think only in terms of dipoles. This is the dipole picture introduced
by Mueller [24].

Y0 � Y1 � Y2 � Y3

}

dipole 4

}

dipole 3

}

dipole 2

}

dipole 1

Fig. 2. Onium wavefunction.

At high-energy, all possible gluon emissions from one dipole are thus
tantamount to this dipole splitting into two child dipoles as depicted in
figure 3. We see that the probability density for a dipole of transverse
coordinates (x,y) to split into two child dipole (x, z) and (z,y) can be
computed from gluon emissions from the quark and antiquark lines. The
computation is performed in old-fashioned light-cone perturbation theory
but we shall simply give the final result:

dP =
ᾱ

2π
Mxyz dY d

2z (1)
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with ᾱ = αsNc/π and1

Mxyz =

[
x − z

(x − z)2
− y − z

(y − z)2

]2

=
(x − y)2

(x − z)2(z − y)2
. (2)

≡

Fig. 3. Gluon emission in the dipole picture is equivalent to dipole splitting.

2.2. The BFKL equation

Let us denotes by 〈Txy〉 the scattering amplitude2 for a dipole made
of a quark at transverse coordinate x and an antiquark at y. Getting the
evolution of 〈T 〉 from the dipole picture is pretty straightforward. Indeed,
if one boosts the dipole (x,y) from a rapidity Y to a rapidity Y + δY , this
dipole shall split into two dipoles (x, z) and (z,y). Each of those dipoles
can interact with the target which leads to the following evolution equation3

∂Y 〈Txy〉 =
ᾱ

2π

∫

z

Mxyz (〈Txz〉 + 〈Tzy〉 − 〈Txy〉) , (3)

where we have explicitly used the probability density for dipole splitting.
Equation (3) is the BFKL equation, derived in the mid-seventies [2] by
Balitsky, Fadin, Kuraev and Lipatov.

x

y

δY

x

y

z

x

y

z

x

y

z

Fig. 4. BFKL evolution through dipole splitting in the projectile.

Note that here we have derived the equation by putting the evolution in
the projectile dipole. It is also possible to write the evolution equation for

1 The first equality shows explicitly the two contributions coming from emission by the
quark and the antiquark.

2 The notation 〈·〉 denotes the average over all possible realisations of the target colour
field. It can be understood as the expectation value for the T -matrix operator over
the target wavefunction.

3 The last term, coming with a minus sign, corresponds to virtual corrections.
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the dipole density nxy in the target and to obtain (3) by letting the projectile
dipole interact with the evolved target. We sketch out the derivation of the
BFKL equation for the dipole wavefunction of the target in Appendix A.

This equation being linear, one expects its solution to grow exponen-
tially. To be more explicit, if one neglects impact-parameter dependence,
i.e. assumes that 〈Txy〉 = 〈T (r = |x − y|)〉, the solution of (3) is found by
Mellin transform:

〈T (r)〉 =

∫
dγ

2iπ
T0(γ) e

ᾱχ(γ)Y −γ log(r2

0
/r2), (4)

where χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) is the BFKL eigenvalues plotted in
figure 5, and T0(γ) describes the initial condition. For a fixed dipole size,
one finds the high-energy behaviour by expansion around the saddle point
γ = 1/2. One obtains

〈T (r)〉 ∼ r

r0
exp

[

ωPY − log2(r20/r)

2χ′′(1/2)ᾱY

]

,

with ωP = 4π log(2)ᾱ being the BFKL Pomeron intercept. This expression
suffers from two major problems:

• first, even if one start with an initial condition peaked around a small
value of r, when rapidity increases, the amplitude starts to diffuse to
the large dipole sizes i.e. to the non-perturbative domain;

• second, the solution of the BFKL equation grows exponentially with
rapidity. Hence it violates the unitarity constraint T ≤ 1 obtained
from first principles.

γ

χ
(γ

)

10.90.80.70.60.50.40.30.20.10

14

12

10

8

6

4

2

0

Fig. 5. The BFKL eigenvalues.

2.3. Saturation and the BK equation

This unitarity problem is precisely the point where we meet the require-
ment to take into account multiple interactions. The most straightforward
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way to see this is to come back to the splitting of a dipole (x,y) into (x, z)
and (z,y). When the target becomes dense enough, both dipoles can scat-
ter on it. We thus have to take into account this contribution, represented
in figure 6. This leads to a quadratic suppression term in the evolution
equation which becomes

∂Y 〈Txy〉 =
ᾱ

2π

∫

z

Mxyz

(

〈Txz〉 + 〈Tzy〉 − 〈Txy〉 −
〈

T
(2)
xz;zy

〉)

. (5)

The first thing to remark is that this new term is of the same order as
the previous ones when T 2 ∼ T or, equivalently, when T ∼ 1. It is thus, as
expected, a mandatory contribution near the unitarity limit. However, equa-
tion (5) involves a new object, namely

〈
T 2

xz;zy

〉
which probes correlations

inside of the target. In a general framework, one should then write down an
equation for

〈
T 2

〉
, which will involve

〈
T 2

〉
through BFKL-like contributions

and
〈
T 3

〉
from unitarity requirements. This ends up with a complete hier-

archy, giving the evolution for each
〈
T k

〉
, known as the (large-Nc) Balitsky

hierarchy [4].

≡

Fig. 6. Multiple scattering between a target and a projectile made of two dipoles.

This can be interpreted as Pomeron merging in the target.

If the target is sufficiently large and homogeneous, one can simply assume
〈
T 2

xz;zy

〉
= 〈Txz〉 〈Tzy〉, ending up with a closed equation for 〈T 〉

∂Y 〈Txy〉 =
ᾱ

2π

∫

z

Mxyz (〈Txz〉 + 〈Tzy〉 − 〈Txy〉 − 〈Txz〉 〈Tzy〉) . (6)

This last expression is the Balitsky–Kovchegov (BK) equation [4, 6],
which is the most simple equation one can obtain from perturbative QCD by
including both the BFKL contributions at high-energy and the corrections
from unitarity. Remembering that the dipole splitting is equivalent to gluon
emission, we see from the diagram in figure 6 that the BK equation resums
fan diagrams in addition to BFKL ladders. It is easy to check that 〈T 〉 = 0
is an unstable fix point of the BK equation, while 〈T 〉 = 1 is a stable fix
point, ensuring unitarity is satisfied.
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In addition, this new term also solves the problem of infrared diffusion.
This can be seen in figure 7 which shows the dipole occupation number for
numerical solutions of the BFKL and BK equations in momentum space (k
is the dipole momentum, canonically conjugated to its size). The BFKL
solution exhibits the Gaussian shape predicted from (4), extending both to
the infrared and to the ultraviolet. In the BK solution, we clearly see that
the infrared evolution is cut and the maximum of the distribution provides
a natural scale Qs(Y ), called the saturation momentum, increasing with
rapidity. In general, one can say that saturation corrections cut the emission
of dipoles of sizes larger that the inverse of the saturation momentum. We
shall come back with more details to the study of the solution of the BK
equation in the next section.

BFKL
BK

Y = 0

log(k2/k2

0
)

n
(k

)

403020100-10

10000

1000

100

10

1

0.1

0.01

Fig. 7. Dipole occupation number shown as a function of the dipole momentum k

for Y = 0, 4, 8, 12, 16, 20. The dashed lines correspond to the solution of the BFKL

equation while the solid lines correspond to BK evolution.

2.4. Fluctuations

Very recently, it has been realised that the question of the high-energy
limit of QCD, even at the leading logarithmic accuracy, is not fully described
by the Balitsky hierarchy. To see this more precisely, let us consider in more
details the evolution equation for

〈
T 2

〉
. It corresponds to the scattering of

two dipoles off a target and the diagrams contributing to one step of rapidity
evolution are shown in figure 8. The first graph on the left of this figure
is simply the BFKL-ladder contribution for which ∂Y

〈
T 2

〉
∝

〈
T 2

〉
. The

diagram in the middle corresponds to multiple scattering (see also figure 6).
It accounts for unitarity corrections and gives a contribution ∂Y

〈
T 2

〉
∝



QCD at High Energy: Saturation and Fluctuation Effects 3485

〈
T 3

〉
. If those two graphs were the only relevant ones in the evolution, one

would obtain the (large-Nc) Balitsky equation. Nonetheless, it has been
argued that a third contribution, represented by the rightmost diagram of
figure 8, has to be included. This graph describes multiple scattering off
the projectile or, equivalently, gluon-number fluctuations inside the target.
After the Pomeron-merging term, contributing to saturation, one thus now
also includes the Pomeron-splitting contribution, which gives rise to a new
term in the evolution equation ∂Y

〈
T 2

〉
∝ 〈T 〉. By combining Pomeron

mergings and Pomeron splittings it is possible to build Pomeron loops. For
that reason, in what follows we shall refer to those equations as the Pomeron-

loop equations.

Fig. 8. Diagrams contributing to the evolution of
〈
T 2

〉
. They correspond, from left

to right, to BFKL ladders, saturation corrections and fluctuations effects.

For large-Nc and at the two-gluon-exchange level, this new term has been
computed [9]. We shall only give the main steps hereafter. We start with
the observation that gluon-number fluctuations are expected to be impor-
tant when the target is still dilute, which is always the case for sufficiently
small dipole sizes. In that case, it can be understood as a superposition of
dipoles and the s-channel gluon in the fluctuation diagram (last diagram
of figure 8) can be considered as emitted through a dipole splitting in the
target, as represented in figure 9. Since we work in the two-gluon-exchange
approximation, the scattering amplitude and the dipole density are related

≡

x1

y1

x2

y2

u
z

v

Fig. 9. For a dilute target, the fluctuation diagram can be obtained from dipole

splitting in the target.



3486 G. Soyez

through

〈Txy〉 = α2
s

∫

uv

A0(xy|uv) 〈nuv〉 . (7)

with A0 being the dipole–dipole amplitude at the two-gluon-exchange level

A0(xy|uv) =
1

8
log2

[
(x − u)2(y − v)2

(x − v)2(y − u)2

]

. (8)

This relation can be inverted to obtain

〈nxy〉 = α−2
s ∇2

x∇2
y 〈Txy〉 .

The new contribution to the evolution of
〈

T 2
x1y1;x2y2

〉

is thus

∂Y

〈

T 2
x1y1;x2y2

〉∣
∣
∣
fluct

=
1

2

ᾱ

2π

(αs

2π

)2

×
∫

uvz

MuvzA0(x1y1|uz)A0(x2y2|zv)∇2
u∇2

v 〈Tuv〉 + (1 ↔ 2) . (9)

The correction (9) becomes of the same order as the BFKL contribution
when T 2 ∼ α2

sT , or T ∼ α2
s , i.e. in the dilute regime where, as expected,

fluctuations should lead to important effects. Although this may at first sight
seem irrelevant for the physics of saturation, one has to realise that, due to
colour transparency, the amplitude becomes arbitrarily small for small dipole
size, hence, even for dense targets, there is always some region of the phase-
space where the system is dilute and its evolution governed by fluctuation
effects.

Let us give an additional argument in favour of the importance of the
fluctuation term on high-energy evolution. Once we have a Pomeron split-
ting coming from a fluctuation, it grows, from BFKL evolution, like two
Pomerons, i.e. T ∼ α2

s exp(2ωPY ). This has to be compared with the
one-Pomeron exchange T ∼ exp(ωPY ). We see that at very large ener-
gies Y ≥ ω−1

P
log(1/α2

s ), BFKL evolution compensates the extra factor of
α2

s coming from the initial fluctuation. We shall see more precisely in the
last section that those fluctuation effects in the dilute tail have important
consequence on the saturation physics.

So far in this section, we have only discussed the evolution equation for
〈
T 2

〉
. What we really get is an infinite hierarchy, where the evolution of

〈T 〉 is given by (5), as in the Balitsky hierarchy, and the evolution of
〈
T k

〉

contains three contributions: a linear BFKL term proportional to
〈
T k

〉
,

a (negative) saturation term proportional to
〈
T k+1

〉
as it appears in the
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Balitsky hierarchy, and the new fluctuation contribution proportional to
〈
T k−1

〉
, similar to (9). Remarkably enough, it is possible to show that this

infinite hierarchy for the average amplitudes can be rewritten as a single
Langevin equation4

∂Y Txy =
ᾱ

2π

∫

z

Mxyz [Txz + Tzy − Txy − TxzTzy]

+
1

2

ᾱ

2π

αs

2π

∫

uvz

A0(xy|uz)
|u − v|
(u − z)2

√

∇2
u∇2

vTuv νuvz;Y , (10)

where ν is a Gaussian white noise satisfying

〈νuvz;Y 〉 = 0,
〈
νuvz;Y νu′v′z′;Y ′

〉
= δ(ᾱY − ᾱY ′)δ(2)(u − v′)δ(2)(z − z′)δ(2)(v − u′) .

Different realisations of the noise term lead to different events Tx,y, from
which one can compute

〈
T k

〉
using standard statistical techniques. However,

dealing with equation (10) remains very difficult since the noise term is off-
diagonal and non-local.

Finally, let us conclude this section by quoting that the equation (9), in-
cluding linear, saturation and fluctuation effects is the most complete equa-
tion known in perturbative high-energy QCD so far. Its extension beyond
the large-Nc approximation is still a challenging problem.

2.5. QCD as a reaction-diffusion process?

Let us make a short digression and consider a reaction-diffusion system
in which we have a set of particles evolving through splitting at a rate γ and
merging at a rate σ:

A
γ


σ
A+A .

For simplicity, we shall not consider any spatial dimension, though it only
introduces technical difficulties without altering the conclusions. If we want
to study the time evolution of such a system, the best way is to start with
the master equation which gives the evolution of Pn, the probability to have
n particles. It contains four terms, corresponding to gain and loss terms for
splitting and merging weighted by adequate combinatorial factors:

∂tPN = γ (N − 1)PN−1
︸ ︷︷ ︸

gain

− γ NPN
︸ ︷︷ ︸

loss

+σN(N + 1)PN+1
︸ ︷︷ ︸

gain

−σN(N − 1)PN
︸ ︷︷ ︸

loss

.

4 We show the equivalence between the two formulations in appendix B, for a simpler
Langevin equation encountered in Section 4.
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In practice, this equation is only helpful to find evolution of observable,
averaged, quantities. The most simple example is the average particle num-
ber

〈n〉 =

∞∑

N=0

N PN ,

which can be generalised to a subset of k particles

〈

nk
〉

≡
∞∑

N=k

N !

(N − k)!
PN .

Using the master equation, one finds the evolution of the particle number
and its correlators after a bit of algebra

∂t

〈

nk
〉

= γ k
〈

nk
〉

+ γ k(k − 1)
〈

nk−1
〉

− σ k(k + 1)
〈

nk+1
〉

− σ k
〈

nk
〉

.

More interesting is the evolution of the scattering amplitude for this
system off a generic target, defined by

A(t) =
∞∑

k=0

(−)k
〈

nk
〉

t0

〈

T k
〉

t−t0
,

where we evolve the particle system up to a time t0 and the scattering
matrix for the target from t0 to t. To be consistent, this definition should
not depend on any specific choice for t0. This gives a renormalisation group
equation from which one can infer the evolution of the scattering amplitude:

∂t

〈

T k
〉

= γ
〈

T k
〉

︸ ︷︷ ︸

BFKL

− γ
〈

T k+1
〉

︸ ︷︷ ︸

sat.

+σ
[〈

T k−1
〉

−
〈

T k
〉]

︸ ︷︷ ︸

fluct.

.

We clearly recognise in this expression the BFKL, saturation and fluctua-
tions contributions obtained in QCD5.

Inserting the correct spatial degrees of freedom to account for transverse
coordinates, we find [25] that the high-energy QCD evolution hierarchy ob-
tained in the previous section can be seen as an effective dipole reaction-

diffusion process where rapidity plays the role of time and with the vertices

γ(xy → xz, zy) ∼ ᾱMxyz , (11)

σ(x1y1,x2y2 → uv) ∼ ᾱα2
s∇2

u∇2
v [MuvzA0(x1y1|uz)A0(x2y2|zv)] (12)

5 The second fluctuation term disappears in the case of QCD.
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for splitting and merging respectively. One recognise in these expressions
that the splitting is given by the BFKL kernel while the merging comes from
the computation in the previous section.

This interesting analogy is however to be taken with care. Indeed, the
merging vertex is not positive defined. Physically, this comes from the fact
that fluctuations really involve the gluonic degrees of freedom. Their inter-
pretation as a reaction-diffusion system in terms of dipoles can hence only
be effective.

3. Properties of the BK scattering amplitudes

In this section, we shall sketch out the main properties of the solutions of
the evolution equations towards high energy. As we shall explain in details
in the next lines the major source of information comes from the analogy
between the BK equation and the Fisher–Kolmogorov–Petrovsky–Piscounov
(F-KPP) equation which is well studied in statistical physics. This section
shall be devoted to derive this analogy and its consequences in the case of the
BK equation. We shall first consider the impact-parameter-independent BK
equation and then show how the arguments extend to the full BK equation.
We leave the discussion concerning the effect of fluctuations for the next
section.

3.1. Statistical physics and geometric scaling

So, let us start with the BK equation (6). We shall first restrict ourselves
to the impact-parameter-independent version of the equation, for which one
can easily go to momentum space by using6

T̃ (k) =
1

2π

∫
d2r

r2
eik·r T (r) =

∞∫

0

dr

r
J0(kr)T (r) ,

and where the equation becomes

∂Y T̃ (k) =
ᾱ

π

∫
dp2

p2

[

p2T̃ (p) − k2T̃ (k)

|k2 − p2| +
k2T̃ (k)

√

4p4 + k4

]

− ᾱT̃ 2(k) .

It is actually possible to rewrite the integral in this equation in term of a
differential operator:

∂Y T̃ (k) = ᾱχ(−∂L)T̃ (k) − ᾱT̃ 2(k) , (13)

6 In this section, we omit the 〈·〉 quotations as they do not play any role in the mean-
field approximation.
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with L = log(k2/k2
0), k0 being a soft reference scale and χ(γ) is the BFKL

kernel.
In order to simplify the problem, we shall work in the saddle point ap-

proximation (often referred to as the diffusive approximation) i.e. expand the
BFKL kernel to second order around γ = 1/2, transforming the complicated
differential operator in equation (13) into a second-order operator

χ(−∂L)T̃ (k) ≈ χ( 1

2
) + 1

2
χ′′( 1

2
) (∂L + 1

2
)2 .

Up to a linear change of variable switching from Y and L to time t = ᾱY
and space x = L+const.Y and a renormalisation of the amplitude T → u =
const.T , the BK equation in the saddle point approximation becomes

∂tu(x, t) = ∂2
xu(x, t) + u(x, t) − u2(x, t) .

This equation is nothing but the F-KPP equation studied in statistical
physics since forty years and applying to many problem. It describes re-
action diffusion processes in the mean-field approximation where one can
have creation and annihilation of particles locally and diffusion to neigh-
bouring site. This equation has many applications e.g. in chemistry and
biology.

One knows that the F-KPP equation admits travelling waves as asymp-
totic solutions i.e. there exists a critical velocity vc and a critical slope γc,
determined only from the knowledge of the linear kernel of the F-KPP equa-
tion ∂2

x + 1, such that (see figure 11 for a pictorial representation coming
from the BK equation which we shall explain a bit later)

u(x, t)
t→∞−→ u(x− vct)

x�vct≈ e−γc(x−vct)(x− vct) .

Although working in the diffusive approximation makes the discussion easier
due to the direct matching with the F-KPP equation, this assumption is not
required. Indeed, for an equation with a more complicated kernel (than
∂2

x + 1), one can prove the existence of travelling waves provided the three
following conditions are satisfied:

1. the amplitude has 0 as unstable fix point and 1 as stable fix point,

2. the initial condition decreases faster than exp(−γcL) at large L (see
below for the general definition of γc),

3. the equation obtained by neglecting the nonlinear terms admits super-
position of waves as solution:

u(x, t)|lin =

∫
dγ

2iπ
u0(γ) exp [−γ(x− vγt)] ,

where the wave of slope γ travels at a speed vγ .
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Then, travelling waves are formed during evolution with the critical param-
eters γc and vc obtained, from the linear kernel only, through the relation

vc = χ′(γc) =
χ(γc)

γc
.

This corresponds to the selection of the wave with the minimal speed χ(γ)/γ
and the point where group and phase velocities are equal.

Before going any further, let us give a qualitative argument explaining
how the minimal speed is selected. To simplify the discussion, we shall
consider the initial front at the left of figure 10. At an initial time, it cap-
tures the main features of the spatial dependence: saturation (first condition
here-above) followed by a decrease with the critical exponent γc and finally a
steeper decrease (second condition here-above). After one step of time evo-
lution, each of the decreasing fronts shall evolve with its own speed (those
fronts are in a dilute regime so we can use the third condition). The result
of this evolution is shown in figure 10 and we clearly see that the region
with critical slope, i.e. the one with the minimal speed, is growing during
the evolution. This selection mechanism is very general. It mainly relies on
the properties of the linear equation and saturation only ensures that the
slope is γc at some point in the initial condition.

x

u

γc

γ0

vγc

vγ0

Fig. 10. Formation of a travelling wave from a schematic evolution of a wavefront

in time/rapidity.

In the case of the BK equation, the first condition is satisfied due to
BFKL growth and saturation, the second comes from colour transparency
(T ∝ 1/k2 = exp(−L)) and the last one is equivalent to the solution (4)
(with r/r0 replaced by k0/k) of the BFKL equation obtained by neglecting
nonlinear terms in (13).

The critical parameters (for the complete BFKL kernel i.e. for (13)),
are found to be γc ≈ 0.6275 and vc ≈ 4.8836ᾱ. Written in terms of the
QCD variables Y and k2, one can then write the asymptotic solution for the
impact-parameter-independent BK equation under the form

T (k;Y )
Y →∞

= T

(
k2

Q2
s(Y )

)
k�Qs

=

[
k2

Q2
s(Y )

]−γc

log

[
k2

Q2
s(Y )

]

, (14)
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with the saturation scale given by

Q2
s(Y )

Y →∞
= k2

0 exp

[

vcY − 3

2γc
log(Y )

]

. (15)

The formation of a travelling-wave pattern when energy increases can
easily be seen on numerical simulations of the BK equation. As displayed in
figure 11, if one starts with a steep enough initial condition (leftmost curve),
the amplitude increases with energy and a wave moving into the dilute do-
main gets formed. From that simulation, one can extract the saturation
scale by solving T (Q2

s, Y ) = N at each values of Y and for a fixed threshold
N . In figure 12, we have plotted log(Q2

s)/Y which goes to a constant value
as it is expected from (15).

log(k2)

T

4035302520151050-5

10

1

0.1

0.01

0.001

1e-04

1e-05

Fig. 11. Numerical simulation of the rapidity-evolution of the BK equation. We

start at Y = 0 from the leftmost amplitude and evolve to higher Y using (13).

Amplitude is shown for Y = 5, 10, 15, 20, 25 and clearly exhibits a travelling-wave

pattern.

Equation (14) has a remarkable property: it proves that at high energy
the amplitude, a priori a function of both Y and k, depends only on the
ratio between k and the saturation momentum. This property, known as
geometric scaling, has been observed [13] in the HERA measurements of the
proton structure function. The fact that geometric scaling can be derived
from the BK equation is one of the most important indication for the ex-
perimental observation of saturation. The saturation scale obtained from
the structure function data is of the order of 1 GeV for x ∼ 10−5. This
means that high-energy QCD can indeed be studied from the point of view
of perturbation theory.
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Fig. 12. Rapidity evolution of the saturation scale extracted from figure 11. More

precisely, the speed of the wave, i.e. the exponent of the saturation scale, is plotted.

It goes to a constant as it should.

3.2. Nonzero momentum transfer

Up to now, we have only discussed the impact-parameter-independent
BK equation. We might therefore ask whether or not these arguments extend
to the full equation including all phase-space degrees of freedom. A dipole of
transverse coordinates (x,y) is then represented through its size r = x − y

and impact parameter b = (x + y)/2. The problem is then that dipole
splitting is non-local in impact parameter. This means that the BK equation
couples different values of b and we can not apply directly the previous
arguments for each value of b. Again, the solution consists in moving to
momentum space and replacing the impact parameter by the momentum
transfer q

T̃ (k, q) =

∫

d2x d2y eik·xei(q−k)·y T (x,y)

(x − y)2
.

The BK equation then takes a form [14] for which the BFKL kernel is local in
q (the non-locality of the non-linear term is not important for our purposes
as its only role is to ensure saturation)

∂Y T̃ (k, q)

=
ᾱ

π

∫
d2k′

(k − k′)2

{

T̃ (k′, q) − 1

4

[
k2

k′2 +
(q − k)2

(q − k′)2

]

T̃ (k, q)

}

− ᾱ

2π

∫

d2k′ T̃ (k,k′)T̃ (k − k′, q − k′) . (16)
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We can now proceed with this equation in a similar way as for the impact-
parameter-independent case. The existence of travelling waves requires the
three conditions stated previously to be satisfied. The two first ones are
trivially satisfied7. For the third condition to be valid, we need to find
solutions of the linear part of (16), i.e. the complete BFKL equation, which
can be expressed as a superposition of waves. This consists in a careful
treatment of the solutions of the BFKL equation [26] including all phase-
space variables. It turns out that, using the momentum transfer q instead of
the impact parameter b , leads to a powerful factorisation between the target
and the projectile (see Appendix C for more details). Then, we can show [15]
that when the dipole momentum k is much larger than the momentum
transfer q and the typical scale of the target k0, the solutions of the BFKL
equation are a superposition of waves and therefore, we obtain travelling
waves for the full BK equation. More precisely, the high-energy behaviour
of the amplitude takes the form

T̃ (k, q;Y )
Y →∞

= T

(
k2

Q2
s(q;Y )

)

k�Qs

=

[
k2

Q2
s(q;Y )

]−γc

log

[
k2

Q2
s(q;Y )

]

.

This expression is exactly the same as for the previous case except that the
saturation scale now depends on momentum transfer

Q2
s(q;Y )

Y →∞
= Λ

2 exp

[

vcY − 3

2γc
log(Y )

]

with

Λ
2 =

{

k2
0 if k0 � q ,

q2 if q � k0 .

We explain in Appendix C how the exponential behaviours required for
travelling-waves formation appear and how the reference scale k0 or q emerges.
Naively, we can expect the saturation scale at large q to be determined by
q as, in the tail of the amplitude, we are dominated by the hard part of the
scattering. In addition, when q → 0 we should recover the b-independent
result and some soft reference scale should come back.

It is very interesting to notice that the critical slope γc and speed vc, ob-
tained from the BFKL kernel only, are the same as for the impact-parameter-
independent case.

7 Indeed, we have saturation and BFKL growth ensuring the first condition and colour
transparency still applies for the second one.
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The important point at this stage is that this study predicts geometric
scaling at non-zero momentum transfer. Experimental measurements of the
DVCS cross-sections or diffractive ρ-meson production are good candidates
and can provide more evidence for saturation.

4. High-energy QCD with fluctuations

Let us now consider the effect of the fluctuation contribution (9). This
new term, added to the full Balitsky hierarchy, turns a simple non-linear
equation into an infinite hierarchy with a complicated transverse-plane de-
pendence8. We can however simplify the equation to a tractable problem
by performing a local-fluctuations approximation. This amounts to simplify
the dipole–dipole scattering amplitude A0 used to relate the dipole density
n with the scattering amplitude T . We assume that two dipoles interact if
they are of the same size and if their centre-of-mass are sufficiently close to
allow for an overlap of the two dipoles. Within this approximation equation
(7) is replaced by

〈Txy〉 = κα2
s |x − y|4 〈nxy〉 ,

where κ is an unknown fudge factor of order 1.
Once this is done, the remaining steps are as follows: one Fourier-

transform the dipole size r = |x − y| into momentum k and perform a
coarse-graining approximation to get rid of the impact-parameter depen-
dence of the fluctuation term. This computation results into the following
simplified form of the hierarchy (we give only the expression for 〈T 〉 and
〈
T 2

〉
for simplicity)

∂Y 〈Tk〉 = ᾱχ(−∂L) 〈Tk〉 − ᾱ
〈
T 2

k,k

〉
,

∂Y

〈
T 2

k1,k2

〉
= ᾱχ(−∂L1

)
〈
T 2

k1,k2

〉
− ᾱ

〈
T 3

k1,k1,k2

〉
+ (1 ↔ 2)

+ᾱ κα2
s k

2
1δ(k

2
1 − k2

2) 〈Tk1
〉 ,

where, as previously, Li = log(k2
i /k

2
0).

Again, this infinite hierarchy has the advantage that it can be rewritten
under the form of a Langevin equation9

∂Y T (L) = ᾱ
[

χ(−∂L)T (L) − T 2(L) +
√

κα2
sT (L)η(L, Y )

]

, (17)

8 The fluctuation term involves an awkward integration. By integration by part one
can express it as a vertex applied to T but the integration over the internal variable
z in (9) is unknown.

9 As we have seen previously, the complete hierarchy using (9) can also be rewritten
as a Langevin equation (10). However, the noise term here, being local, appears to
be much simpler than for the general case (10).
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where η is a Gaussian white noise satisfying the following commutation
relations:

〈η(L, Y )〉 = 0 ,

〈η(L1, Y1)η(L2, Y2)〉 =
4

ᾱ
δ(L1 − L2)δ(Y1 − Y2) . (18)

The Langevin equation is a stochastic equation describing an event-by-
event picture. Each realisation of the noise term corresponds to a particular
evolution of the target and one can show (see Appendix B) that once we
average over those realisations using the correlations (18) the complete hier-
archy for the evolution of

〈
T k

〉
is recovered. It is interesting to notice that

equation (17) is formally equivalent to the BK equation with an additional
noise term.

As for the case of the BK equation, we can first restrict ourselves to
the diffusive approximation. This leads to the stochastic FKPP (sFKPP)
equation which amounts to add a noise term to the FKPP equation. It has
found many applications in various fields, e.g. in the description of reaction-
diffusion systems. The noise term appears once we have to consider discrete-
ness effects (e.g. for a reaction-diffusion system on a lattice, only an integer
number of particles are admitted per site). When the number of particles
involved goes to infinity, the mean-field approximation seems justified and
the (non-stochastic) FKPP equation is valid.

The basic effects of the additional noise term in the sFKPP equation are
known, at least qualitatively. Despite the fact that the fluctuations are only
expected to have large consequences on the dilute tail of the wavefront, these
modifications change the picture at saturation. In order to test the validity
of those results in the case beyond the diffusive approximation, i.e. with the
full BFKL kernel, we have performed [16] numerical studies (see also [17]) of
the QCD equation (17). Moreover, many analytical results are only known in
the limit where the noise strength κα2

s is (irrealistically for QCD) small while
we have concentrated our numerical work on physically acceptable values.
In the following paragraphs, we review the main effects of the fluctuation
contribution and show that they are observed in the numerical analysis.

First of all, for a single event, the evolved amplitude shows a travelling-
wave pattern (up to small fluctuations in the far tail which, at least at this
level, are irrelevant for the wave pattern at saturation). This means that
each single realisation of the noise leads to geometric scaling, as it is the
case for the BK equation. At this level, the major difference comes from a
decrease of the speed of the wave. Analytically, this can only be computed
in the limit κα2

s → 0 i.e. when the fluctuations are a small perturbation
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around the mean-field behaviour10. It has been found [19, 20] that

v∗ →
α2

sκ→0
vc −

ᾱπ2γcχ
′′(γc)

2 log2(α2
sκ)

.

Unfortunately, this expression gives only reliable results for extremely small
values of κα2

s → 0 such as 10−20, which is not sufficient for realistic situa-
tions. The numerical simulations we have performed, clearly exhibits this
decrease of the speed when the noise strength κα2

s increases (see figure 13).

0 (BK)
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Fig. 13. Speed of the wave for different values of the noise strength κα2

s
. The BK

speed has been added for comparison. One sees that the speed decreases when κα2

s

increases.

The second noticeable effect of the noise term is to introduce dispersion
between different events. Different events have the same shape but their
position X(Y ) (log[Q2

s(Y )] in physical variables) fluctuates. At a given
rapidity, one can compute the dispersion of those events. This diffusion
process being very similar to a random walk, one expects that the dispersion
of the events behaves like

√
Y :

〈
X2

〉

Y
− 〈X〉2Y

Y →∞≈ DdiffY.

The parametric dependence of the diffusion coefficient Ddiff has been com-
puted numerically [19] and behaves11 like | log−3(κα2

s )| for small κα2
s .

Concerning the numerical simulations, the dispersion of the wavefront
between different events and its increase with rapidity are manifest in fig-
ure 14. One can then extract the dispersion as a function of rapidity. The

10 A recent analysis has also computed its strong-noise behaviour [18].
11 Recently, this coefficient has been computed analytically [20] for κα2

s � 1.
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Fig. 14. Numerical simulations of equation (17). The dashed curves are different

events corresponding to the same initial condition with different realisations of the

noise term. Travelling waves are observed for each curve, together with dispersion.

The black curve is the average amplitude.

resulting curve, shown in figure 15 for different values of the noise strength,
calls for two remarks. First, the expected asymptotic behaviour (dispersion

∝
√
Y ) is observed and the diffusion coefficient Ddiff increases with rapidity

and with the noise strength. However, for small values of the rapidity, we do
not observe a significant dispersion. This lack of dispersion may come from
the fact that we have to wait for the travelling front to get formed before dis-
persion becomes significant. However, those effects in the beginning of the
evolution are perhaps not universal and deserve more detailed studies. This
dispersion of the events has an important physical consequence: although

linear fit
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Fig. 15. Dispersion (squared) of the position of the events as a function of rapidity.

As expected, dispersion increases like
√
Y but few dispersion is obtained in early

stages of the evolution.
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Fig. 16. Evolution of the averaged amplitude for different values of the noise

strength, compared with the mean field result (dotted curve). The curves cor-

respond, from left to right, to Y = 0, 10, 20, 30, 40 and 50.

each single event displays geometric scaling, once we compute the average
amplitude, dispersion induces geometric scaling violations. This effect is
best seen in figure 16 where we have compared the evolution including the
fluctuations to the BK results. While in the BK equation, a fixed travelling-
wave pattern is formed, once fluctuations are taken into account, we see a
broadening of the average amplitude as rapidity increases.

Those violations of geometric scaling can be studied [21] in a model which
encompasses all the physical arguments presented here-above and which shall
prove to be very efficient for phenomenological studies. In order to recon-
struct physical amplitudes, we need two building ingredients:

• a front-by-front amplitude which displays geometric scaling. This am-
plitude has to satisfy unitarity in the infrared and must decrease ex-
ponentially in the ultraviolet. The simplest choice, which is actually
sufficient for what follows, is

Tevent(ρ− ρs) =

{

exp[−γ0(ρ− ρs)] if ρ ≥ ρs ,

1 if ρ < ρs ,
(19)

where we have introduced the notations ρ = log(r2
0/r

2) and ρs =
log[1/(r2

0Q
2
s)]. This expression shows indeed geometric scaling since it

is a function of ρ− ρs only. The precise value of γ0 is not relevant for
what follows, although it might be adequate to adopt γ0 = γc = 0.6275
or γ0 = 1.

• a dispersion between different events. Physically, this dispersion of the
position of the events, i.e. of their saturation scale, means that the sat-
uration scale becomes a random variable. We thus need a probability
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distribution for ρs. We shall take a Gaussian form12

P (ρs) =
1√

2πσ2
exp

[
(ρs − ρ̄s)

2

2σ2

]

. (20)

The parameters of the Gaussian (the average saturation scale ρ̄s and
the dispersion σ2) are expected to grow linearly with rapidity, but we
shall treat them as parameters.

The average amplitude can be constructed from (19) and (20)

〈T (ρ)〉 =

∞∫

−∞

dρs P (ρs)Tevent(ρ− ρs)

=
1

2
erfc

(
z√
2σ

)

+

[

1 − 1

2
erfc

(
z − γ0σ

2

√
2σ

)]

exp

(

−γ0z +
γ2
0σ

2

2

)

,

with z = ρ−ρ̄s. In the last line, the first term comes from the event-by-event
fronts which are at saturation (T = 1) while the second one comes from the
exponential tail. Practically, there are two interesting limits to analyse in
more details:

1. γ0σ
2 � 1

When the dispersion is small (compared to 1/γ0 which is the typical
decay length of the exponential tail), the dispersion can be neglected.
We thus recover

〈T (ρ)〉 = Tevent(ρ− ρ̄s), (21)

and geometric scaling is satisfied. Since σ2 ∝ Y , this is what happens
in early stages of the evolution.

2. γ0σ
2 � 1

For large dispersion, i.e. at very high energies, we find

〈T (ρ)〉 =
1

2
erfc

(
z√
2σ

)

. (22)

This expression is valid for −γ0σ
2 � z � γ0σ

2 which is arbitrarily
large at high energy.

From this analysis, we deduce two very important physical consequences
for the high-energy behaviour of the amplitudes:

12 We can actually prove [22] that, at high-energy, the probability distribution can be
considered as Gaussian over an arbitrarily large domain.
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• a new scaling law, called diffusive scaling, appears. The amplitude
scales like z/σ, which, in more physical variables means that it only

depends on the ratio log(r2Q2
s)/

√
Y . It is possible to show that this

property of diffusive scaling extends to physical observables such that
DIS, diffractive DIS [21, 27] and gluon production [23, 27].

• The error function in (22) fully comes from the event-by-event fronts
which are at saturation. In other words, the high-energy behaviour of
the amplitudes can be obtained by taking Tevent = θ(ρs − ρ). Thus, at
high energy, the scattering amplitudes are dominated by black spots,
T = 0 or T = 1.

5. Discussion and perspectives

Let us now summarise the main points raised in this paper. As this
document is in itself some kind of a summary, I shall only pick up the most
important points, refer to various references for detailed approaches and
discuss open questions.

First, we have shown that it is possible to describe the evolution to high
energy in pQCD by an infinite hierarchy of equations (see (9)). This gives
the evolution of the 〈T 〉 matrix (averaged over the target wave-function) and
its higher-order correlations

〈
T k

〉
. In this hierarchy, the evolution of

〈
T k

〉

contains three types of contribution:

1. the linear BFKL growth, proportional to ᾱ
〈
T k

〉
. This is the usual

high-energy contribution computed thirty years ago and corresponding
to the exchange of k pQCD Pomerons. It leads to a fast (exponential)
increase of the scattering amplitude.

2. the saturation corrections, proportional to ᾱ
〈
T k+1

〉
. This negative

term becomes important when the amplitude reaches unitarity and it
allows for the constraint T (r, b) ≤ 1 to be satisfied.

3. the fluctuations term, proportional to ᾱα2
s

〈
T k−1

〉
. These fluctuations

correspond to gluon-number fluctuations in the target. They play an
important role when the amplitude is of order of α2

s or, equivalently,
when the dipole density is of order one, i.e. in the dilute regime where
one indeed expects fluctuation effects to appear.

If one neglects the fluctuation contributions, we recover the Balitsky
hierarchy (in its large-Nc formulation) and, in the mean field approximation,
the BK equation is obtained. This last equation, much simpler than the
infinite hierarchy captures many important points concerning the physics
of saturation. We also have to point out that, as long as we do not take
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into account fluctuations, the evolution at all orders in 1/Nc exists under
the form of the Balitsky/JIMWLK equation. The Balitsky equations take
the form of a hierarchy, similar to the one introduced in this article but
involving, in addition to dipoles, more complicated objects like quadrupoles,
sextupoles, . . . The JIMWLK equation is an equivalent formulation based on
the Colour Glass Condensate approach, in which the probability density for
the colour field of the target evolves through a functional equation. Further
information concerning the Balitsky (resp. CGC) approach can be found
in [28] (resp. [29]).

Many additional things can be said concerning those different contribu-
tions, e.g. concerning the equivalence between descriptions from the target
and projectile point of view (see e.g. [30]), or the attempts to describe the
evolution beyond its large−Nc limit [31]. Those questions are active fields
of research and the interested reader is forwarded to the corresponding ref-
erences for further information.

In the second part of this overview of high-energy QCD, we have con-
centrated ourselves on the physical consequences arising from saturation
and fluctuation effects. We have investigated how those contributions man-
ifest themselves on the scattering amplitude and change the exponential
behaviour obtained from the BFKL evolution. Again, the most important
points can be summarised in two important steps which have their respective
physical consequences:

1. Considering BFKL with saturation effects (mean-field picture), one
can show that the BK equation lies in the same universality class as the
FKPP equation. This implies that travelling waves are formed during
the evolution towards high energy. From the BFKL kernel one obtains
the critical parameters which are the anomalous dimension observed
in the large-Q2 tail and the speed of the wave, equivalent to the expo-
nent of the saturation scale. In physical terms, these travelling waves
correspond to geometric scaling. The experimental observation of ge-
ometric scaling in DIS at HERA can thus be seen as a consequence of
saturation. It is extremely important to realise that geometric scaling
is a prediction from saturation physics which extends to large values
of Q2, far beyond the saturation scale itself13. This geometric scaling
has also been predicted at nonzero momentum transfer, a result which
may be applied for example to vector-meson production or DVCS.

2. If one includes the effects of fluctuations, the evolution becomes a
Langevin equation equivalent to the stochastic FKPP equation, in-
cluding a noise term. For each realisation of this noise, we observe

13 The geometric scaling window grows, in logarithmic units, like
√

Y beyond the satu-
ration scale.
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geometric scaling with a decrease of the speed w.r.t. the mean-field
case. If we consider a bunch of events, we observe that, although they
all have the same shape, their position is diffused with diffusion in-
creasing like

√
Y . This dispersion of the saturation scale for a set of

events implies that geometric scaling is violated for the averaged am-
plitude. Recent studies indicate that geometric scaling is still valid at
small rapidities. At higher energies, a new (diffusive) scaling is pre-
dicted [21] in which the amplitude scales w.r.t. the scaling variable

τ = log[k2/Q2
s(Y )]/

√
Y .

Although these two pictures endow most of the physical effects, they
are far from being completely understood. Among the improvements, one
can quote phenomenological applications like geometric and diffusive scaling
predictions for vector-meson productions, for diffraction [21] and for LHC
physics [23]. On more theoretical grounds most of the work that still need
to be done concerns the effects of fluctuations. Most of the results known
so far are derived within the local approximation for the noise term and
neglecting the impact parameter dependence. In addition, apart from nu-
merical studies, analytical results can only be applied to irrealistically small
values of αs and a better understanding for more physical values is still lack-
ing. Although the existing picture is believed to contain all the qualitative
effects, a more precise treatment is certainly an interesting and challenging
problem to address.

Within the framework presented here, the link between the QCD evo-
lution equations and equations from statistical physics has led to a large
number of interesting ideas and results. Even in statistical physics, many
questions are yet opened, hence, extending the QCD picture including more
sophisticated treatments of the BFKL kernel and more precise forms of
the noise term is certainly not a straightforward task. The questions of
making clear predictions for phenomenology, of understanding the effects of
fluctuations beyond the local-noise approximation and of including impact-
parameter dependence are hence expected to give interesting work in the
near future. Among particle physics, high-energy QCD is thus one of the
most active fields. Because of those open questions and because of the re-
quirement for an excellent knowledge of QCD at the LHC, we expect that
high-energy QCD is going to be even more active in the near future.

I would like to thank warmly Michał Praszałowicz and Andrzej Białas,
for the invitation to give a course in the Cracow School of Theoretical
Physics. I also thank Robi Peschanski for a careful reading of this pa-
per. G.S. is funded by the National Funds for Scientific Research (FNRS),
Belgium.
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Appendix A

BFKL evolution of dipole wavefunction

Let us show that it is also possible to obtain the BFKL equation by
looking at the evolution of the dipole densities in the target. We hence need
to compute how, within a small increase of rapidity, the density of dipoles
of coordinates (x,y) evolves. The answer is

∂Y nxy =

∫

d2zMxzynx,z + Mzyxnz,y −Mxzynx,z .

The three contribution in this equation has well determined origin: the first
term correspond to the situation where, at rapidity Y , we had a dipole
(x, z) which splits into (x,y) and (y, z) hence the positive contribution to
the evolution of nxy. The second term has similar explanation with an
original dipole (z,y) and the third one corresponds to the situation where
we had one dipole (x,y) at rapidity Y which disappears through splitting
into (x, z) and (z,y), leading to a loss term coming with a minus sign.

Getting to the evolution of the scattering amplitude when we probe that
system with a dipole (u,v) requires a few technical manipulations. First,
we shall use Eq. (7) to construct the scattering amplitude from the dipole
density by convolution with the fundamental dipole–dipole interaction14:

∂Y 〈Tuv〉 =

∫

xyz

A0(uv|xy) [Mxzynx,z + Mzyxnz,y −Mxzynx,z] .

The trick to recover (3) is to use conformal properties. For example, for the
first term in the equation, we perform the following change of variables15 for
the integration over y:

y → y′ = f(y) =
ay + b

cy + d
with

{

a = −d = xu− zv, c = u− v + x− z,

b = uvz − uvx+ xzv − xzu,

which has the effect to interchange x with u and z with v. It thus implies
∫

y

A0(uv|xy)Mxzy →
∫

y′

A0(f(u)f(v)|f(x)f(y))Mf(x)f(z)f(y)

=

∫

y′

A0(xz|uy′)Muvy′ .

14 The precise form of A′ (see (8)) is not really important, we shall only ask it to be
conformal invariant.

15 We use the complex notations in which a two-dimensional vector x is equivalent to
the complex number x1 + ix2.
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Carrying on with the x and z integration will give

∫

y′

Muvy′

〈
Tuy′

〉
.

Renaming y′ into z and performing a similar treatment for the remaining
terms, one recovers the BFKL equation (3).

Appendix B

Langevin equation and infinite hierarchy

In this appendix, we show that a Langevin equation with a noise term
proportional to

√

u(x, t)η(x, t) (with η a Gaussian white noise), turns into
the fluctuation term in the hierarchy for averaged amplitudes. To stay as
close as possible to the problem we are concerned with, let us consider a
sFKPP-like equation with one spatial dimension and a generic linear kernel:

∂tu(x, t) = χ(∂x)u(x, t) − u2(x, t) +
√

2σ u(x, t) η(x, t) ,

with 〈η(x, t)〉 = 0 and 〈η(x1, t1)η(x2, t2)〉 = δ(t1 − t2)δ(x1 − x2).
As usual, the Langevin equation has to be taken with the Ito prescription.

This means that we consider discrete time steps ∆ and write

ui+1(x) − ui(x)

∆
= χ(∂x)ui(x) − u2

i (x) +
√

2σ ui(x) ηi(x),

with the r.h.s. taken at time i and the following noise correlators:

〈ηi(x)〉 = 0 and 〈ηi1(x1)ηi2(x2)〉 =
1

∆
δi1i2δ(x1 − x2) .

We can then consider the time evolution of any functional F [ui(x)] of the
event-by-event amplitude ui(x). By series expansion and using the Langevin
equation, we have

F [ui+1(x)] = F [ui(x)]

+

∫

dx
δF [ui(x)]

δui(x)
∆[χ(∂x)ui(x) − u2

i (x) +
√

2σ ui(x) ηi(x)]

+
1

2

∫

dx1dx2
δ2F [ui(x)]

δui(x1) δui(x2)
∆[χ(∂x1

)ui(x1) − u2
i (x1) +

√

2σ ui(x1) ηi(x1)]

×∆[χ(∂x2
)ui(x2) − u2

i (x2) +
√

2σ ui(x2) ηi(x2)] .
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We want to obtain the evolution of the average amplitude 〈F [u(x, t)]〉. For
that, we take the average in the previous equation and use the correlators
of the noise term:

〈F [ui+1(x)]〉 − 〈F [ui(x)]〉
∆

=

∫

dx

〈
δF [ui(x)]

δui(x)
[χ(∂x)ui(x) − u2

i (x)]

〉

+
1

2

∫

dx1dx2

〈
δ2F [u(x)]

δu(x1) δu(x2)
∆ 2σ

√

ui(x1)ui(x2)
1

∆
δ(x1 − x2)

〉

,

where we have only kept the leading terms in ∆.
One can finally take the continuum limit for the time variable and obtain

∂t 〈F [u(x, t)]〉

=

∫

dx

〈
δF [u(x, t)]

δu(x, t)
[χ(∂x)u(x, t) − u2(x, t)] +

δ2F [u(x, t)]

[δu(x, t)]2
σ u(x, t)

〉

.

In particular, one can consider the case F [u(x)] = uk(x), from which one
recovers the infinite hierarchy of equations

∂t

〈

uk(x, t)
〉

= k
〈

uk−1(x, t)χ(∂x)u(x, t)
〉

− k
〈

uk+1(x, t)
〉

+ k(k − 1)σ
〈

uk−1(x, t)
〉

.

In this expression, we clearly see that the last term, responsible for fluctu-
ations, directly comes from the noise term in the Langevin equation. The
two remaining ones correspond to the Balitsky hierarchy i.e. linear evolution
and saturation corrections.

Appendix C

Saturation scale at nonzero momentum transfer

Let us show in more details how the reference scale for the saturation
scale at nonzero momentum transfer moves from t = q2 at large t to a soft
scale k2

0 when t becomes small. From the condition for travelling-waves for-
mation, we need to satisfy the requirement that the amplitude in the dilute
tail (described by the linear equation) can be expressed as a superposition of
waves. Hence, our starting point is the generic solution for projectile-target
scattering in the BFKL limit:

Tlin(k, q) =

∫
dγ

2iπ
eᾱχ(γ)Y fγ(k, q)φγ

0 (QT, q),
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where k is the momentum of the projectile dipole, q is the momentum
transfer and QT is a typical scale for the target. The crucial point at this
stage of the analysis is that, in this momentum space representation, we
have a factorisation between a target and a projectile contribution. Since
we are interested in the dilute tail of the scattering amplitude, the scale
of the projectile is bigger than Q2

s, t and Q2
T. In that limit, we know the

asymptotic behaviour of the BFKL eigenfunctions

fγ(k, q) ∝
(
k2

q2

)−γ

.

On the target side, two limits are possible depending on the ordering between
t and Q2

T. Again, we can expand the BFKL eigenfunctions to get16

φγ
0(QT, q)∝







1 for QT � q ,
(

Q2

T

q2

)γ−1
for QT � q .

Reinserting everything back into the expression for the amplitude, we obtain
the required exponential behaviour in the two limits:

Tlin(k, q) ∝
∫

dγ

2iπ
eᾱχ(γ)Y −γL with L =

{

log(k2/q2) if q � QT

log(k2/Q2
T) if q � QT

.

This means that the reference scale for the saturation scale is fixed by the
hardest between the target soft scale Q2

T and the momentum transfer t as
anticipated from the beginning.
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